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Abstract—Robot-assisted arthroscopic surgery has been in-
creasingly receiving attention in orthopedic surgery. To build
a robot-assisted system, dynamic uncertainties can be a critical
issue that could bring robot performance inaccuracy or even
system instability if cannot be appropriately compensated. Dis-
turbance observer is a common tool to be used for disturbance
estimation and compensation by taking all uncertainties as
disturbances, but this will refuse human-robot interaction since
the human-applied force will also be regarded as a disturbance
by the observer. Iterative learning for gravity compensation
can be another promising way to solve this problem when
gravity compensation is the main concern. In this paper, a
gravity iterative learning (Git) scheme in Cartesian space for
gravity compensation, integrating with an impedance controller,
is presented. A steady-state scaling strategy is then proposed
which released the updating requirements of the learning scheme
and also extended its validity to trajectory-tracking scenarios
from set-point regulations. The deriving process and convergence
properties of the Git scheme are presented and theoretically
analyzed, respectively. A series of simulations and physical
experiments are conducted to evaluate the validity of the scaling
strategy, the learning accuracy of the Git scheme, and the
effectiveness of the learning-based impedance controller. Both
simulation and experimental results demonstrate good perfor-
mance and properties of the Git scheme and the learning-based
impedance controller.

Index Terms—Iterative learning, gravity compensation,
impedance control, physical human-robot interaction, robot-
assisted arthroscopy.

I. INTRODUCTION

Robot-assisted minimally invasive surgery (MIS) has been
becoming increasingly popular across various surgical spe-
cialties, such as orthopedics. [1]. MIS can bring the benefits
of a faster recovery rate and decreased pain to patients thus
getting more favor. Robot-assisted surgeries are transforming
traditional orthopedic surgeries by helping surgeons achieve
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more successful and precise surgical outcomes with the assis-
tance of robots [2]–[4]. Elbow arthroscopy is a typical type
of MIS in orthopedics that allows the management of elbow
stiffness, arthritis, and fractures in a minimally invasive fashion
[5]. During traditional elbow arthroscopy, the surgeon needs
to hold an arthroscope with one hand while performing the
surgical operations with the other hand, which can restrict
the dexterity of the surgical performance and increase the
cognitive load. This arouses the necessity to develop a robot-
assisted arthroscope holder where the robot can hold the
arthroscope for the surgeon during the surgery.

To build a robot-assisted system for assisting surgeons in
holding with arthroscope during orthopedic surgery, some
requirements need to be satisfied [6]. First, The robot can
hold the arthroscope still at a specified pose (i.e., setpoint
regulation) while rejecting all possible disturbances (e.g.,
external disturbances delivered to the arthroscope via contact
with the patient’s body during surgery). Second, when the
surgeon needs to move the arthroscope to a new pose (e.g.,
for adjusting the scope view perspective), the robot should
allow the surgeon to move it around freely (i.e., human-
robot interaction). Then, when a new pose is determined
by the surgeon, the robot should keep the arthroscope still
again while rejecting any disturbances. The main problem
to build such a robot-assisted system is the dynamic model
uncertainties and external disturbances, which could largely
affect the robot’s task performance accuracy and even stability
if they are not appropriately compensated. More specifically,
incomplete gravity compensation can be the main issue in this
case since heavy surgical tools with unknown weights will be
attached to the robot end-effector (EE).

Disturbance observer is a promising way to estimate and
compensate for dynamic uncertainties. In our previous work
[6], we have shown that by integrating impedance control
and nonlinear disturbance observer (NDOB), an accurate
impedance control can be achieved. In that work, the distur-
bance observer can accurately estimate and compensate for the
lumped uncertainties including incomplete gravity compensa-
tion. However, the nonlinear disturbance observer as well as
other types of observers [7], such as generalized momentum
observer (GMO) [8], joint velocity observer (JVOB) [8],
extended state observer (ESO) [9], and disturbance Kalman
filter (DKF) method [10], [11], always estimate a lumped
uncertainty term and is not able to separate out any one
component when several uncertainty sources exist. Moreover,
the observer will refuse human-robot interaction since human-
applied force will be taken as a part of the lumped disturbances
thus being rejected.
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Learning control has been developed to track repetitive
trajectories for both rigid and non-rigid robots. De Luca
and Ulivi presented a simple and efficient iterative learning
algorithm for robots with joint elasticity [12]. In their work,
a learning term was used to learn the necessary modifica-
tion to the desired trajectory position. They demonstrated
the algorithm’s usefulness by good motion performance of
simulations on a two-link planar robot. Based on a similar
design methodology, an iterative learning scheme for gravity
compensation in setpoint regulation problems was initially
proposed by De Luca and Panzieri [13], [14]. The learning
scheme completes the required gravity compensation at the
final steady state in setpoint regulation tasks. It can iteratively
learn the constant gravity without the need of introducing an
integral error term or using high-gain feedback.

Based on the same contraction mapping theorem, Basovich
et al. developed an iterative output feedback controller for
a 6-degree-of-freedom (DOF) precision positioning system
when only position measurement is available [15]. Their
proposed controller can learn and compensate for the payload
uncertainties with bounded error in setpoint control tasks.
Ji et al. used the iterative learning method to auto-calibrate
gravity compensation when the robot has no contact with the
environment thus making the robot EE weightless [16].

Incomplete or absent gravity compensation will cause a con-
stant steady-state error [13]. For impedance control, making
the robot ”stiffer” by tuning up the impedance gains can reduce
the error to some extent, but not eliminate it. Especially when
heavy but unknown external payloads are attached to the robot
EE, the method of tuning up impedance gains will be largely
limited and be difficult to achieve satisfying results.

In summary, in our target application scenario, i.e., robot-
assisted arthroscopic surgery, gravity compensation and phys-
ical human-robot interaction (pHRI) are the main concerns.
There are various disturbance observers available for gravity
compensation [7], e.g., NDOB, GMO, etc. However, the output
of an observer is a lumped estimate on all uncertainties
including gravity, and it will refuse human-robot interaction
by taking it as a part of uncertainties [6]. Furthermore, it
also requires the estimated dynamic parameters of the robot
dynamics [7]. An adaptive controller [17], [18] can also deal
with dynamic uncertainties including gravity. However, it is a
controller rather than an independent approach for disturbance
estimation, and it cannot provide compliant robot behavior for
a safe human-robot interaction like an impedance controller
can do. Therefore, a simple method that can focus on gravity
compensation while enabling pHRI and avoiding the necessity
of the robot dynamics is needed in our scenario.

Inspired by [13], in this paper, we proposed a gravity
iterative learning (Git) scheme for gravity compensation in
Cartesian space and integrated it with an impedance controller.
The convergence properties of the Git scheme are theoretically
analyzed. The learning performance and effectiveness are then
evaluated by a series of simulations and experiments in both
trajectory tracking tasks and setpoint regulation tasks. Finally,
an application experiment in pHRI scenario is presented to
show the effectiveness of the integrated controller. The main
contributions in this work can be described as the following,

• An adapted iterative learning scheme for gravity compen-
sation in Cartesian space is presented, and the converging
properties are theoretically analyzed.

• A steady-state scaling strategy is proposed, which enables
the iterative learning update law to be executed in each
servo loop, and more importantly, it extends the validity
of the learning scheme to general trajectory-tracking
scenarios.

The paper is organized as follows. Section II is devoted
to introducing the proposed iterative learning scheme in
impedance control. Section III presents simulations, exper-
iments, and corresponding results in various scenarios for
evaluating the scheme. Section IV remarks the conclusions.

II. METHODS

A. Robot Dynamics and Disturbances

A general dynamic model for an n-degree-of-freedom
(DOF) rigid robot with revolute joints [19] can be given by

M(q)︸ ︷︷ ︸
M̂+∆M

q̈+ S(q, q̇)︸ ︷︷ ︸
Ŝ+∆S

q̇+ G(q)︸ ︷︷ ︸
Ĝ+∆G

+τ fric(q̇) = τ+ τ ext︸︷︷︸
JTFext

(1)

where q, q̇, q̈ ∈ Rn are the joint position, velocity, and accel-
eration, respectively, M ∈ Rn×n denotes the inherent inertia
matrix, S ∈ Rn×n denotes a matrix of the Coriolis and cen-
trifugal forces, G ∈ Rn represents the gravity vector. M̂, Ŝ, Ĝ
represent users’ model estimates, while ∆M, ∆S, ∆G are the
corresponding estimate errors. τ fric ∈ Rn is joint friction,
τ ∈ Rn is the commanded joint torque vector, τ ext ∈ Rn is
the torque caused by external force, Fext ∈ R6 is the external
force in Cartesian space, and J ∈ R6×n is the Jacobian matrix.

By collecting all the disturbances together, the dynamic
model (1) of a robot can be re-written as

M̂q̈+ Ŝq̇+ Ĝ = τ+ τ ext − [τ fric + (∆Mq̈+∆Sq̇+∆G)]︸ ︷︷ ︸
τdist

(2)
where τdist denotes the lumped uncertainties containing the
model error (∆Mq̈+∆Sq̇+∆G), the joint friction τ fric,
and the external disturbances τ ext.

In this paper, we will focus on estimating and compensating
for the gravity caused by external constant payloads using
an iterative learning method. In order to clearly reveal the
behavior of the iterative learning algorithm to learn the gravity
of the external payloads, in the simulations we assume that,
(a) an ideal dynamic model is available, i.e., M̂ = M, Ŝ = S,
Ĝ = G, thus ∆M = 0, ∆S = 0, ∆G = 0; (b) no joint
friction, i.e., τ fric = 0; (c) only constant payloads exists
for external disturbances. By applying these assumptions, the
dynamic model (2) will become (3).

Mq̈+ Sq̇+G = τ+JTFext︸ ︷︷ ︸
τdist

(3)

The model (3) can be expressed in Cartesian space as

Mxẍ+ Sxẋ+Gx = J−Tτ + Fext (4)

where Mx,Sx,Gx have
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Mx = J−TMJ−1

Sx = J−TSJ−1 −MxJ̇J
−1

Gx = J−TG

(5)

where Mx,Sx,Gx are the M,S,G expressed in Cartesian
space, respectively.

B. Impedance Control

A desired impedance model [6], [20], [21] for robot-
environment interaction can be expressed as

Fimp = Mm(ẍ− ẍd)

+(Sx +Dm)(ẋ− ẋd) +Km(x− xd)
(6)

where Mm,Dm,Km are user-designed matrices for inertia,
damping, and stiffness, respectively. Note that xd, ẋd, ẍd are
the desired position, velocity, and acceleration, respectively in
Cartesian space, while x, ẋ, ẍ are the actual ones. Fimp is the
interaction force between the robot and the environment.

To avoid the measurement of external forces, the designed
inertia matrix will be set as the inherent inertia matrix of the
robot, i.e., Mm = Mx. Then, by substituting (6) into (4) with
Fext = Fimp, the impedance control law can be given by [6]

τ = MJ−1(ẍd − J̇J−1ẋd) + SJ−1ẋd +G

+JT[Dm(ẋd − ẋ) +Km(xd − x)]
(7)

Note that when implementing the impedance controller (7)
in practice for physical experiments, the estimates M̂, Ŝ, Ĝ
will be used for the calculation since an accurate model of a
physical robot is usually not available.

For moving robot EE to a fixed point, i.e., set-point regula-
tion, we have ẋd = 0, ẍd = 0. Then, the impedance control
law (7) can be simplified and reduced to (8), which is also
known as task-space proportional–derivative (PD) controller
with gravity compensation.

τ = JT[Km(xd − x)−Dmẋ] +G (8)

C. Iterative Learning for Gravity Compensation

One straightforward way to reduce the effect of dynamic
uncertainties (including incomplete or absent gravity compen-
sation/cancellation) is to make the robot stiffer by tuning up
the spring gains (Km) in the impedance model. This could
be feasible in simulations where the gains can be set to be
very large, but not feasible in practice where the robot may
have chattering due to large gains. Especially when heavy
external payloads are involved, solely tuning the impedance
gains may not be able to obtain a satisfactory result. To solve
this problem, we introduce an iterative learning scheme for
gravity compensation in Cartesian space.

Inspired by [13] where iterative learning was integrated with
a PD controller in joint space, a Cartesian-space impedance
control law (at the i-th iteration, i = 1, 2, ...) integrating
with a gravity iterative learning (Git) scheme for gravity
compensation is proposed which can be expressed by

τ i = MJ−1(ẍd − J̇J−1ẋd) + SJ−1ẋd

+JT[Dm(ẋd − ẋ) + γKm(xd − x)] + JTui−1

(9)

where JTui−1 is an iterative learning term for gravity com-
pensation instead of a gravity term G. For setpoint regulation,
it will be reduced to be

τ i = JT[γKm(xd − x)−Dmẋ] + JTui−1 (10)

The update law for the iterative learning ui can be given by

ui = γKm(xd − x) + ui−1 (11)

where γ is a positive scalar gain, and setting u0 = 0 for
initialization. Also, different from [13] where one iteration
was set as 3 seconds while in this paper it updates itself in
each sampling loop. This ensures the updated values of the
iteration term are changing continuously and smoothly from
one iteration to the next, and also extends its validity to more
general tracking tasks from setpoint regulation. Theoretical
analysis will be introduced in detail later.

To avoid a sudden impulse at the moment of the robot starts
up due to a potentially large initial error between the initial
actual position and the initial desired position, a simple linear
interpolating strategy is used which is given by

xd = x0 + (xd − x0)
t
t1

if t ≤ t1

ẋd = ẋ0 + (ẋd − ẋ0)
t
t1

if t ≤ t1

ẍd = ẍ0 + (ẍd − ẍ0)
t
t1

if t ≤ t1

xd = xd if t > t1

ẋd = ẋd if t > t1

ẍd = ẍd if t > t1

(12)

where x0 = constant, ẋ0 = 0, ẍ0 = 0 are the initial actual
position, velocity, and acceleration, t1 is the duration of the
transition period defined by the user (in this paper, t1 = 2
seconds). Note that the xd, ẋd, ẍd on the right-hand side
of the equations represent the theoretical values from the
predefined trajectory or setpoint, while those on the left-
hand side represent the values used for calculation in the
controller. As shown in (12), the desired position, velocity,
and acceleration are set up increasingly from the initial actual
ones (x0, ẋ0, ẍ0) (at t = 0) to the desired ones (xd, ẋd, ẍd)
(at t = t1) within the very first t1 seconds. In other words,
Eq.(12) ensures errors increase linearly from zeros (at t = 0)
to the actual errors (at t = t1) when the robot starts up. It
should be noted that this smoothing strategy is independent of
the control laws and only valid within the first t1 seconds. The
block diagram of the proposed iterative learning for gravity
compensation in impedance control is illustrated in Fig. 1.

D. Analysis

In this section, the process of designing the iterative learning
term and the corresponding update law will be presented
in detail. Then, the convergence properties of the iterative
learning scheme will be theoretically analyzed in a scenario
of setpoint regulation.

At the steady state (q = constant, q̇ = q̈ = 0) of the i-th
iteration in the scenario of setpoint regulation, it has{

��Mq̈+��Sq̇+G(q) = τ i

τ i = JT[γKm(xd − x)−���Dmẋ] + JTui−1

(13)
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Fig. 1: Control block diagram of an impedance controller
with iterative learning scheme for gravity compensation. When
xd = x, the position-dependent terms in the impedance con-
troller and the Git update law vanish, meaning that the setpoint
regulation is released and interaction is enabled, and now the
user can move the robot EE around. When xd = x∗, a setpoint
regulation task is recovered and interaction is disabled. The
latest set of position (x∗) ensures seamless switching between
the “interaction enabled” mode and the “interaction disabled”
mode, which can be easily realized by a pedal switch.

Combining the two equations in (13) as one equation, yields,

G(qi) = JTγKm(xd − x) + JTui−1 (14)

Based on (14), the update law of the iterative learning term
can be designed as

JTui = JTγKm(xd − x) + JTui−1 (15)

Simplify (15), we obtain the update law given by (11). By
designing the update law in this way and by comparing (14)
with (15), we are actually assuming that at the steady state,
the learning term converged to the gravity term, i.e.,

G(qi) = JTui (16)

The subsequent part will analyze and show proof of the con-
vergence capability of the designed iterative learning scheme.
The update law (11) can be rewritten as

ui − ui−1 = γKm(xd − xi) (17)

Define the position error in Cartesian space as
ei = xd − xi, Equation (17) can be rewritten as

ui − ui−1 = γKmei (18)

Also, the position error in Cartesian space between two
adjacent iteration steps can be expressed as

xi − xi−1 = xi − xd + xd − xi−1 = −ei + ei−1 (19)

Knowing that the derivative of gravity is bounded [13] by

∥∂G(q)

∂q
∥ ≤ α (20)

where α is a positive constant. Rewrite (20) in the form of
finite difference as

∥G(qi)−G(qi−1)

qi − qi−1
∥ ≤ α (21)

Also, the relationship between Cartesian velocity and joint
velocity is given by

ẋ = Jq̇ (22)

Assuming that the Jacobian matrix is invertible, i.e., J−1

exists. Rewrite (22) in the form of finite difference as

qi − qi−1 = J−1(xi − xi−1) (23)

From the relationship between gravity term and iterative
learning term at steady state (16), it yields

∥ui − ui−1∥ = ∥J−TG(qi)− J−TG(qi−1)∥
≤ ∥J−T∥∥G(qi)−G(qi−1)∥
≤ α∥J−T∥∥qi − qi−1∥ (by (21))

≤ α∥J−T∥∥J−1(xi − xi−1)∥ (by (23))

≤ α∥J−T∥∥J−1(−ei + ei−1)∥ (by (19))

≤ α∥J−T∥∥J−1∥(∥ei∥+ ∥ei−1∥)
(24)

Assuming that the minimum eigenvalue of the user-defined
matrix Km meets the condition of λmin(Km) > α, then it
can yield the following inequality property

γα∥ei∥ < γλmin(Km)∥ei∥ ≤ ∥γKmei∥ (25)

By combining (18) (24) (25), yields

γα∥ei∥ < ∥γKmei∥ ≤ α∥J−T∥∥J−1∥(∥ei∥+ ∥ei−1∥)
(26)

By simplifying (26), yields

γ∥ei∥ < ∥J−T∥∥J−1∥(∥ei∥+ ∥ei−1∥) (27)

Reorganizing (27), yields

∥ei∥ <
β

γ − β
∥ei−1∥ (28)

where β = ∥J−T∥∥J−1∥. In order for contraction mapping,
requires

β

γ − β
≤ 1 (29)

Due to β > 0 is always true, yields

γ ≥ 2β

γ ≥ 2∥J−T∥∥J−1∥ ≥ 2∥J−TJ−1∥
(30)

Assuming that the Jacobian matrix J is bounded, then J−T

and J−1 are both bounded. Then, set the following boundness

b ≥ ∥J−TJ−1∥ (31)

Finally, it can conclude that, on the conditions of
(1) Jacobian matrix is invertible and bounded, and (2)
λmin(Km) > α, then, γ ≥ 2b can ensure the iterative learning
term (JTui−1 in (10)) being a contraction mapping, in other
words, can ensure the iterative learning term converges to the
true gravity at the steady state. Note that the convergence
condition here is only sufficient, which means that even if
it is violated the iterative learning term may still converge.
This is consistent with the conclusion made in [13]. Note that
this convergence analysis result still holds true when model
uncertainties exist (see supplementary material)1.

1Online file: https://drive.google.com/file/d/
1rLEKJfsgCqtWBDyvlROXtAm1qiD5VwGa/view?usp=sharing
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E. Steady-State Scaling Strategy

For the iterative learning-based update law (11), to explicitly
display an learning rate η (by default η = 1), the update law
(11) can be rewritten as

ui = γηKm(xd − x) + ui−1 (32)

It is worth noting that an important assumption has been
made for the contraction mapping is ”at steady state”, and
the update law (32) should be executed at steady state the-
oretically. This is consistent with the drawback described in
the prior work [12]–[14], where the steady state is set as 3
seconds in their simulations. Executing the update law only
at steady state (e.g., every 3 seconds in [13]) is ok for simple
simulations, but in practice, it would be a significant limitation.

As a further step in this paper, analog to the concept of finite
difference, we scale the common ”steady-state” period (taking
1 second here as an example) down to the level of sampling
time (0.001 seconds) such that the update law can be executed
in each sampling loop. Since the default learning rate (η = 1)
in (32) is corresponding to the common steady-state period
(1 second), it also needs to be scaled down to be η = 0.001
in order to match with the scaled steady-state period (0.001
seconds). This enables the easy implementation of the update
law (32) and allows it to be updated in each sampling loop.

More importantly, the steady-state scaling strategy enables
the iterative learning scheme to be valid also for more general
trajectory-tracking scenarios. Since learning-based impedance
control law (10) (for setpoint regulation scenario) is re-
duced from (9) (for the general trajectory-tracking scenario),
impedance control law (9) and iterative learning update law
(32) can be used for iterative learning on the gravity compen-
sation in trajectory-tracking scenarios. This strategy will be
evaluated with simulations and experiments in the next section.

III. SIMULATIONS, EXPERIMENTS, AND RESULTS

A. Robotic System

A 3-DOF PHANToM Premium 1.5A robot (3D Systems,
Inc., Cary, NC, USA) is used for simulations and experiments
in this paper. For the simulations, we reconstruct the kinematic
model and dynamic model of the PHANToM robot based on
[22] and conduct the simulations using MATLAB/Simulink
(version R2020a, MathWorks Inc., Natick, MA, USA). For
the experiments, the physical robot is controlled via joint
torque command, which is sent from MATLAB/Simulink us-
ing Quarc real-time control software (Quanser Inc., Markham,
ON, Canada). The control rate of the robot is 1, 000 Hz. The
MATLAB/Simulink and Quarc software run on a computer
with a 3.33 GHz Intel(R) Core(TM) 2 i5 CPU with a Windows
7 Enterprise 64-bit operating system.

B. Parameterization

For all simulations and experiments in the remaining part
of this paper, the parameter values used in the learning-based
impedance controller (9) and the iterative learning update law
(32) are listed in Table I. In order to involve acute changes in
position and velocity, a concaved-square trajectory is selected

TABLE I: Parameterization for simulations and experiments.

Parameters Simulations Experiments

Spring Km = 38.44I Km = 7.29I
Damper Dm = 12.40I Dm = 5.40I
Spring (increased stiffness) NA Km = 200I
Damper (increased stiffness) NA Dm = 2I
Learning gain γ 1 1
Learning rate η 1/0.001/0.005/0.025 0.001

Note: I ∈ R3×3 denote identity matrix. NA, not applied. The parameters
are determined via trial and error with a binary search strategy.

for the simulations and experiments, which can be expressed
as a function of time given by

xd = R cos3(t)

yd = R sin3(t) +R

zd = 0

(33)

where R = 0.02 m is a parameter of the concaved-square.
Note that the described trajectory is in a vertical plane in the
workspace of the 3DOF robot.

In the following sub-sections, a series of simulations and
experiments are conducted to evaluate the effectiveness of the
proposed iterative learning scheme both in free-motion mode
(i.e., trajectory tracking tasks) and in restricted-motion mode
(i.e., setpoint regulation tasks). A demonstration video of the
experiments can be found in the supplementary material2.

It should be noted that the gravity compensation estimated
by the iterative learning scheme may include two main com-
ponents, i.e., gravity term in the dynamic model, and (if
applicable) all constant payloads attached to the robot EE or
robot body. In order to clearly reveal the converging properties
and learning performance of the learning scheme, in the
simulations of this work, we will assume the gravity term
is fully known in such a way the iterative learning term only
learns and compensates for the unknown external payloads.

C. Simulation to Evaluate Steady-State Scaling Strategy

In the original work [13] where the iterative learning scheme
was initially proposed with a PD controller in joint space, a
significant drawback of the scheme is that the iterative update
should be executed at steady-state. This is also true for this
work since the same ”steady-state” assumption has been used
during the theoretical analysis of the convergence properties.
This drawback can largely limit the learning scheme to be
implemented in practice.

To overcome this drawback, at the end of Section II, we
proposed a strategy to scale down the steady-state period
(equivalent to iterative update time for updating the update
law (32)) to the same level as the sampling time in order
to improve and generalize the iterative learning scheme. The
steady-state scaling strategy requires the learning rate (η) to
be scaled to the same level accordingly. In this section, we
will evaluate this strategy with simulations.

In Fig. 2, a comparison of with-scaling and without-scaling
the iterative update time is presented when the robot is in a

2Online video: https://drive.google.com/file/d/1-7NaY11clzW
-7ldo3nk8-qGMRQ2Lmir/view?usp=sharing
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Fig. 2: Simulation results of scaling down the iterative update
time (Tit, i.e., the steady-state time) while scaling down the
iterative learning rate (η) accordingly. The reference is an
external payload-1 (25g). The setpoint is set as [0.01, 0.04, 0]
m in Cartesian space.

setpoint regulation task. For the without-scaling (η = 1) sce-
nario, the gravity learning behavior under various conditions
of iterative update time (Tit = 0.5, 1, 2, 3s) is investigated as
shown by the green dash-dot lines in the figure. Correspond-
ingly, the blue dot lines represent the gravity learning behavior
in the with-scaling scenario, where the iterative update time
is scaled (Tit = 0.001s) to be the same as the sampling
time while the learning rate η is scaled accordingly (η =
0.002, 0.001, 0.001/2, 0.001/3s). The comparison between the
green dash-dot lines and the blue dot lines in Fig. 2 revealed
that the steady-state scaling strategy is effective and reasonably
sound. Especially in Fig. 2a, the similarity between the with-
scaling scenario and the without-scaling scenario is clearly
revealed.

D. Simulation on Setpoint Regulation Task

Simulations in four cases are conducted in setpoint regula-
tion tasks (restricted-motion mode). Different cases are related
to different external payloads attached to the robot EE which
can be described below

• Case #0, reference, no external payloads.
• Case #1, payload-1 (25 gram) attached.
• Case #2, payload-2 (125 gram) attached.
• Case #3, payload-3 (250 gram) attached.
A 3DOF robot is implemented with the iterative learning-

based control law (10) and learning update law (32) as well as
the steady-state scaling strategy, where the iterative learning
scheme is used to iteratively learn and compensate the gravity
of the external payloads in different cases. Fig. 3 shows the
simulation results in a setpoint regulation task with a pure
impedance controller (8) (or equivalently controller (10) with
setting the learning rate η = 0) under an ideal dynamic model
(i.e., the dynamic model matrices M,S,G are fully known).
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Fig. 3: Simulation results in a setpoint regulation task with
a pure impedance controller under an ideal dynamic model.
(a) Case #0, no payloads; (b) Case #1, payload-1 (25g); (c)
Case #2, payload-2 (125g); (d) Case #3, payload-3 (250g).
The setpoint is set as [0.01, 0.04, 0] m in Cartesian space.

As shown in Fig. 3a (Case #0), with the ideal dynamic model
and without any external disturbances, the impedance con-
troller can achieve very good setpoint regulation performance.
However, in Fig. 3b (Case #1), when an external payload-1
(25g) is attached to the robot EE, the regulation result made
by the same impedance controller shifted downward due to the
incomplete gravity compensation. Furthermore, as the weight
of the external payload increases, the shifts get worse as shown
in Fig. 3c (Case #2) and in Fig. 3d (Case #3).

When the iterative learning-based controller (10) and the
update law (32) are implemented, the external payloads can
be accurately compensated via iterative learning thus accu-
rate regulation performance is recovered. Fig. 4 shows the
simulation results in a setpoint regulation task under different
iterative learning rates (η = 0.001/0.005/0.025). As shown
in Fig. 4a and Fig. 4b, when an external payload-1 (25g) is
attached to the robot EE (Case #1), the setpoint regulation
performance (Fig. 4a) is recovered to be accurate with the help
of iterative learning on gravity compensation, while different
learning rates (η = 0.001/0.005/0.025) may result in different
converging behavior (Fig. 4b). Specifically, a large learning
rate (η) may result in an oscillate converging behavior while
a smaller learning rate (η) may result in smooth converging
behavior. Similar simulation results can be found when the
weight of the payload increases (Fig. 4c,d for payload-2
(125g), and Fig. 4e,f for payload-3 (250g)). The getting worse
oscillation behavior as the learning rate increases also indicates
that the learning rate should be matching the iterative update
time, which again verified the reasonability of the proposed
steady-state scaling strategy.

The simulation results in the regulation task demonstrate
that the incomplete gravity compensation will cause the actual
regulated position to shift downward thus the task performance
is destroyed. However, with the steady-state scaling strategy
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Fig. 4: Simulation results in a setpoint regulation task under
different iterative learning rates for learning gravity compen-
sation. (a) Case #1 with payload-1 (25g); (b) Gravity learning
result in Case #1; (c) Case #2 with payload-2 (125g); (d)
Gravity learning result in Case #2; (e) Case #3 with payload-
3 (250g); (f) Gravity learning result in Case #3. Note that
the solid lines converging to zero in subfigure (b,d,f) are the
learning results along the non-gravity axes in Cartesian space
and their legends are ignored for clarity purposes.

and implementing the iterative learning scheme to learn for
gravity compensation, the regulation accuracy can be recov-
ered.

E. Simulation on Trajectory Tracking Task

By using the steady-state scaling strategy, the steady-state
period can be scaled to be on the same level as the robot
sampling time. By doing this, the iterative learning scheme
can be extended to trajectory-tracking tasks theoretically. This
will be evaluated by simulations in this section.

Similar to the procedures used in the setpoint regulation task
presented in the previous section, we repeat all the procedures
in the trajectory tracking task. The trajectory of concaved-
square (33) is employed for the trajectory tracking task.
The same 3DOF robot model is employed and the iterative
learning-based impedance controller (9) with the update law
(32) is implemented.

The simulation results in the trajectory tracking task are
similar to that in the setpoint regulation task. Fig. 5 shows
the simulation results in a trajectory tracking task with a pure
impedance controller (7) (or equivalently controller (9) with
setting the learning rate η = 0) under an ideal dynamic model
where the M,S,G are fully known. As shown in Fig. 5a
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Fig. 5: Simulation results in a trajectory tracking task with a
pure impedance controller under an ideal dynamic model. (a)
Case #0, no payloads; (b) Case #1, payload-1 (25g); (c) Case
#2, payload-2 (125g); (d) Case #3, payload-3 (250g).

(Case #0), with the ideal dynamic model and without any ex-
ternal payloads attached, the impedance controller can achieve
accurate trajectory tracking performance. However, in Fig. 5b
(Case #1), when an external payload-1 (25g) is attached to the
robot EE, the actual trajectory made by the same impedance
controller shifted downward. Again, as the weight of the
external payload increases, the shifted displacements get larger
as shown in Fig. 5c (Case #2) and Fig. 5d (Case #3).

When the learning-based impedance controller (9) is im-
plemented with the steady-state scaling strategy, the external
payloads can be compensated via iterative learning thus ac-
curate tracking performance can be recovered. Fig. 6 shows
the simulated tracking performance under different iterative
learning rates (η = 0.001/0.005/0.025). As shown in Fig. 6a
and Fig. 6b, when an external payload-1 (25g) is attached to
the robot EE (Case #1), the trajectory tracking performance
(Fig. 6a) is recovered to be accurate with the help of iterative
learning on gravity compensation, while different learning
rates may have different converging behaviors (Fig. 6b) which
is affected by the learning rate η. Similar to the observed
phenomenons in the setpoint regulation task, a larger learning
rate may have an oscillate converging behavior while a smaller
learning rate may have a slow but smooth converging behavior.
Similar simulation results can be found when the weight of the
payload increases (Fig. 6c,d for payload-2 (125g), and Fig. 6e,f
for payload-3 (250g)).

The simulation results in the trajectory tracking task demon-
strate that, by using the steady-state scaling strategy, the
iterative learning scheme for gravity compensation is also valid
when a robot is in a free-motion mode. With an appropriate
setting on the learning rate, the iterative learning term is able
to converge to the actual weight of the external payload.

If we take a comparison on the gravity learning behavior
in the trajectory tracking task (Fig. 6b,d,f) with that in the
setpoint regulation task (Fig. 4b,d,f), and put them in a same

7



Fig. 6: Simulation results in a trajectory tracking task under
different iterative learning rates for learning gravity compen-
sation. (a) Case #1 with payload-1 (25g); (b) Gravity learning
result in Case #1; (c) Case #2 with payload-2 (125g); (d)
Gravity learning result in Case #2; (e) Case #3 with payload-
3 (250g); (f) Gravity learning result in Case #3. Note that
the solid lines converging to zero in subfigure (b,d,f) are the
learning results along the non-gravity axes in Cartesian space
and their legends are ignored for clarity purposes.

figure as shown in Fig. 7, we can clearly found that the gravity
learning behavior is very similar and has almost the same
converging process. Especially in Fig. 7, the gravity learning
behavior is almost the same in the two scenarios. The results in
Fig. 7 indicate that by using the steady-state scaling strategy,
the iterative learning scheme for gravity compensation can be
used for both setpoint regulation tasks and trajectory-tracking
tasks, while their converging process are almost the same.
This verified the feasibility of extending the iterative learning
scheme to scenarios of robots in free motions.

F. Experiment on Trajectory Tracking Task

In contrast to simulations, a series of experiments are
conducted to evaluate the presented iterative learning-based
controller by using a 3DOF Phantom Premium 1.5A robot.
The trajectory of concaved-square (33) is employed.

The experimental results of trajectory tracking performance
in different conditions are shown in Fig. 8. Fig. 8a shows the
tracking performance when only an impedance controller (7) is
implemented with relatively small impedance gains. Note that
inherent uncertainties of the physical robot system, including
but not limited to dynamic model error and unmodeled friction,
always exist in all physical experiments. As shown in Fig. 8a,

Fig. 7: Simulation results of comparing the gravity learning
behavior in a trajectory tracking task and in a setpoint regu-
lation task under different iterative learning rates. (a) Gravity
learning results in Case #1 with payload-1 (25g); (b) Gravity
learning results in Case #2 with payload-2 (125g); (c) Gravity
learning results in Case #3 with payload-3 (250g).

the tracking performance is significantly affected due to the
inherent uncertainties.

A straightforward way to overcome the inherent uncertain-
ties is to make the robot stiffer by tuning the impedance
gains. When increasing the robot stiffness (see Table I for
increased stiffness by tuning impedance gains), the inherent
uncertainties can be overcome thus accurate tracking can
be obtained. However, solely using increased stiffness to
overcome the uncertainties is limited when external payloads
are attached to the robot EE, especially for heavy external
payloads. As shown in Fig. 8c, when payload-1 (25g) is
attached, although most of its mass can be overcome by the
increased stiffness, there still have significant shifting-down
for the actual trajectory. Especially when two payload-1 (50g
in total, all attached since the beginning) are attached, the shift
gets larger as shown in Fig. 8d. The effect of increasing the
stiffness could be very good in simulations in order to achieve
accurate task performance, but it is limited in practice since
too large stiffness can cause robot chattering and thus unstable.
Therefore, in practice, smaller impedance gains are used at
the cost of task performance accuracy. From Fig. 8c,d, we can
clearly observe that the inaccuracy part is a shift downward
away from the desired trajectory which is mainly caused by
incomplete gravity compensation.

To reduce the effect brought by incomplete gravity compen-
sation, the iterative learning scheme is employed. By imple-
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menting the learning-based impedance controller (9), the effect
of external payload-1 (25g) can be effectively compensated
(Fig. 8e, Fig. 8f). Furthermore, a second payload-1 (25g) can
also be effectively compensated (Fig. 8g, Fig. 8h). One can
notice that in Fig. 8f and Fig. 8h, the learning term has
bounded errors and cannot converge to the exact weight of
the payloads. By comparing with the simulation results on
trajectory tracking tasks, we can reasonably conclude that the
bounded learning errors are caused by inherent uncertainties in
the physical robotic system (e.g., inaccurate dynamic model,
joint friction, etc.). In other words, the iterative learning term
estimates gravity plus a part of the other uncertainties. This is
verified with a further experiment where NDOB is employed
to estimate the lumped uncertainties, and the results are shown
in Fig. 9. In the figure, we can see that with an appropriately
high learning rate (η = 0.001 × 10), the Git algorithm can
accurately estimate the lumped uncertainties as the same as the
NDOB does. While with a low learning rate (η = 0.001× 1),
the iterative learning algorithm can still accurately estimate
the gravity part (Fig. 9b), but only a rough estimation for
the other uncertainties (Fig. 9a). Note that NDOB is a specific
type of observer among a variety of disturbance observers, and
it is selected here as a reference due to its high accuracy in
estimating the lumped uncertainties and its ability to estimate
the nonlinearities in the dynamics [7].

G. Experiment on Setpoint Regulation Task

By implementing the iterative learning-based controller
(10), experiments on setpoint regulation involving physical
human-robot interaction (pHRI) are conducted in two scenar-
ios, i.e., pHRI disabled, and pHRI enabled. Fig. 10 shows
setpoint regulation performance under the iterative learning-
based controller when pHRI is involved. As shown in Fig. 10a
and Fig. 10b, when the pHRI is disabled the robot will
reject human-applied force and keep the robot EE remain at
a fixed position. This realizes one expected condition in our
application, i.e., the robot holds with an arthroscope and keeps
it still while rejecting all potential disturbances. When pHRI
is enabled (Fig. 10c, Fig. 10d), the robot EE can be freely
moved by the human user to wherever the user wanted. This
realizes another expected condition in our application, i.e., the
robot allows the surgeon to freely move it to a new position
for adjusting the arthroscope view when necessary.

A further evaluation is to implement the controller in
an application scenario mimicking robot-assisted arthroscopic
surgery with a FAST (fundamentals of arthroscopic surgery
training) simulator as shown in Fig. 11a. In the application
scenario, the robot EE is expected to hold with an arthroscope
still while rejecting all potential disturbances. And when nec-
essary, the arthroscope can be freely moved to a new position
for adjusting the scope view. The experimental results of this
application scenario are shown in Fig. 11b. The two shaded
gray areas in Fig. 11b represent two periods of holding the
arthroscope still by the robot with different scope views. And
during these two periods, we can see that the robot EE position
is accurately kept constant which verified the effectiveness of
the implemented iterative learning-based controller.

Fig. 8: Experimental results of a trajectory tracking task in dif-
ferent scenarios. (a) Impedance controller only; (b) Impedance
controller only, but with increased robot stiffness; (c) Increased
robot stiffness with payload-1 (25g); (d) Increased robot
stiffness with two payload-1 (50g in total, both attached since
the beginning); (e) Increased robot stiffness with payload-1
and iterative learning; (f) Iterative learning result with payload-
1; (g) Increased robot stiffness with two separate payload-1
(25g+25g) and iterative learning; (h) Iterative learning result
with two separate payload-1. Note, for (g),(h) where two
payload-1 appear, the first payload-1 is attached since the
beginning while the second payload-1 is attached at around
the 6th second.
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Fig. 9: Experimental results of disturbance estimation by
NDOB and Git in trajectory tracking tasks. Note that only
estimation along the y-axis is displayed for clarity since
gravity is along the y-axis in this work.
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Fig. 10: Experimental results in a setpoint regulation task
involving pHRI. (a) Trajectory when pHRI disabled; (b) Com-
puted torque when pHRI disabled; (c) Trajectory when pHRI
enabled; (d) Actual position when pHRI enabled. Note, the
five shaded areas in (d) indicate five times of interaction during
which the user moves the robot EE from one point to another
as shown in (c). The five vertical blue lines in (d) are the time
points corresponding to the five actual endpoints in (c).
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Fig. 11: Robot-assisted arthroscopy with a FAST simulator.
Gray areas represent two periods of holding the arthroscope
still by the robot with different scope views.

H. Comparing with Other Methods

The presented Git scheme in this work extended the validity
of the prior work [13] into both trajectory tracking tasks and
setpoint regulation tasks. The simulation and experimental

TABLE II: Comparing with methods in literature.

Methods Uncertainties Applicability Requirements

Git Gravity 1⃝, 2⃝ x,xd,J
T

Git [13] Gravity 1⃝ q,qd

NDOB [7] All 1⃝, 2⃝ q̇,M−1,S,G
Adapt [17], [18] Dynamics 1⃝, 2⃝ q, q̇,qd, q̇d, q̈d,Y

Note: 1⃝ Setpoint regulation tasks; 2⃝ Trajectory tracking tasks;
subscript d means “desired”; Y is the regressor matrix in a
linearized dynamic model which is derived via sophisticated
process based on the general dynamic model, which means that
M,S,G are implicitly required in order to obtain Y.

results demonstrate the good performance of the Git scheme
in learning and compensating for gravity. The disturbance
observers like NDOB can accurately estimate the lumped
uncertainties including gravity, but it is not suitable for pHRI
scenarios since it will prevent human-robot interaction [6],
[7]. An adaptive controller can also compensate for dynamic
uncertainties including gravity [17], [18], but it is a controller
rather than an independent strategy of disturbance estimation.
Moreover, as a controller, it cannot provide compliant robot
behavior like an impedance controller can do. The main
differences among these methods are summarized in Table II.

In future work, we will further investigate the similarities
and differences in the performance of simulations and exper-
iments by comparing with the methods in the literature, e.g.,
NDOB, adaptive controller, and conventional PID controller.
Also, we will use the full impedance model without simplifi-
cations which will enable the inertia term to be tunable.

IV. CONCLUSIONS

In this paper, we presented a simple and compact gravity
iterative learning (Git) scheme for gravity compensation in
Cartesian space. The whole process of developing the Git
scheme is presented in detail, including motivation, theoretical
analysis, simulations, experiments, and application. First, the
convergence properties are theoretically analyzed. Then, a
steady-state scaling strategy is proposed to improve the Git
scheme which also extends its validity to more general trajec-
tory tracking scenarios. By integrating the Git scheme with an
impedance controller, an iterative learning-based impedance
controller is constructed, where the Git algorithm can accu-
rately learn for gravity compensation while the impedance
controller can provide a robot with compliant behavior thus
ensuring a safe human-robot interaction in pHRI scenario.
The learning accuracy of the Git scheme together with the
scaling strategy are verified by simulations on both setpoint
regulation tasks and trajectory tracking tasks. The effectiveness
of the learning-based controller is further validated by physical
experiments on both trajectory tracking tasks and setpoint
regulation tasks. An application experiment in a simplified
scenario of robot-assisted arthroscopic surgery also evaluated
the effectiveness of the implemented learning-based controller.
The results demonstrated that the integrated controller can
achieve good tracking performance and regulation accuracy
when heavy external payloads are attached to the robot EE.
Moreover, it allows seamless switching between setpoint reg-
ulation and human-robot interaction.
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The major benefits of the presented Git scheme for gravity
compensation can include (1) simple and compact formulation
and no need for the robot dynamics, (2) no need for any
information about external payloads, (3) no need for higher
impedance gains for reducing the effects of incomplete gravity
compensation, and (4) it is valid for both setpoint regulation
tasks and trajectory tracking tasks.
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