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Abstract—In this paper, we design a set of 2D needle steering
controllers used to minimize the 3D deflection of a flexible, bevel-
tipped needle. The controllers are based on a nonlinear design
tool known as integrator-backstepping. The needle’s deflection
is split into its two 2D planar problems, each of which is then
governed by its own, separate controller. One controller, called
Vertical Deflection Control (VDC), steers the needle so that it
deflects primarily along the vertical plane. The second controller,
called Horizontal Deflection Control (HDC), steers the needle so
that it deflects primarily along the horizontal plane. Our 3D
steering algorithm combines the effect of these two controllers
based on the current magnitude of the deflection along each
plane. Using an 18 gauge brachytherapy needle, we tested our
proposed method on a phantom tissue composed of liquid plastic,
and a two-layer biological tissue formed of gelatin and ex-vivo
beef. Without needle steering, the average needle deflection was
11.2 mm. Using the proposed 3D needle steering technique, the
deflection decreased to an average of 0.5 mm.

I. INTRODUCTION

A. Needle Steering Problem

Needle insertion is a standard type of medical procedure
with many different applications. While needle insertion is
commonly used in vaccinations and intravenous line insertions,
with the improvement in medical imaging and technology its
role has expanded to include procedures such as biopsies,
brachytherapy, and regional anesthesia. In this paper, we
focus our discussion on a specific needle insertion application
known as permanent prostate brachytherapy (PPB), a treatment
for early-stage prostate cancer [1]. However, the techniques
discussed here can be applied to any form of deep-tissue
needle insertion procedure.

PPB, when appropriately performed, has shown to be highly
successful in treating early-stage prostate cancer [2]. The
procedure involves the use of long, bevel-tipped needles con-
taining radioactive seeds. The needles are inserted through the
perineum into the prostate gland. The seeds are then ejected
and permanently implanted into the patient’s prostate. These
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brachytherapy seeds are used to apply a pre-specified dosage
of radiation to the prostate gland, destroying cancerous cells
over the course of several months. It is crucial that the seeds
are deposited near their target locations to achieve the proper
radiation dose since errors with respect to radiation exposure
can lead to the remission of cancerous cells. Therefore, the
needles must travel to their target locations with high precision
to allow for proper seed placement.

Bevel-tipped needles are useful in the sense that they are
easy to manufacture and can be designed with a hollow interior
to allow for drugs or fluids to be injected or ejected from the
needle [3]. The design also allows the needle to maintain a
sharp tip that can be effectively advanced through multiple
tissue layers. However, the bevel results in an asymmetrical
tip which leads to an imbalance of tip forces [4], [5], which
causes the needle to deflect during the insertion process.

There are different challenges involved in two dimensional
(2D) and three dimensional (3D) needle steering problem
[6]. There have been a variety of studies performed on 2D
needle steering and the development of 2D needle steering
robots. Most methods perform the needle through axial needle
rotation, which allows the needle follows the desired trajectory.
For example, the needle steering robot developed by Neubach
et al. [7] made use of a spring-based interaction model to
inform their path planning algorithm. DiMaio and Salcudean
[8] developed a system that made use of repulsion and
attraction potentials to steer the needle. Kallem and Cowan
[9] developed a feedback linearization-based controller for
out-of-plane deflection minimization. Authors in [10] used an
adaptive controller to stabilize the needle in one plane. Fallahi
et al. [11] designed a non-model-based sliding controller, and
Khadem et al. [12] proposed a novel dynamical model to be
used in controlling the in-plane needle deflection via axial
rotations. In these studies, the needle has either been assumed
to remain in a single plane, or controlled to deflect within one
plane without consideration of the needle’s deflection within
the other plane. However, factors such as tissue deformation
can influence the needle’s trajectory and lead to noticeable
out-of-plane deflection. As well, deflection outside of a single
plane is nearly inevitable unless the needle is completely
stopped during the rotation process.

Some research groups have explored 3D needle steering
strategies. Studies have been performed on laterally adjusting
an external template or applying lateral forces at the needle
base to affect the needle’s trajectory during insertion, including
[13]–[16]. Other groups have focused on rotation-based 3D
needle steering approaches, which typically allow for a more
compact device. However, many performing research this area
have focused on experiments utilizing thin, nitinol wire as
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Fig. 1. The needle shown in 3D space. The frame {A} is the fixed frame and
the moving frame {B} is attached to the needle tip. The needle is inserted
along the z-axis.

opposed to clinical needles, [17]–[21]. This can lead to the
reliance of needle steering paths that are impossible in hospital
settings due to the stiffness of clinical needles.

Similarly, some groups have focused on the use of pre-
bent or pre-curved needles [20], [21], or needles containing
internal concentric tubes to assist with needle steering [22]–
[24]. However, rotating these type of needles could potentially
cause excessive tissue cutting and trauma. Additionally, in
PPB, the interior of the needle is filled with the radioactive
seeds, preventing other types of steering devices, such as
actively controlled cannulas, be inserted within.

Some groups such as [17]–[19], [25] make use of duty-
cycling controllers, in which the needle is inserted with periods
of no rotation or periods of continual rotation to control the
degree of deflection at various stages of the insertion process
[26]. Some duty-cycling controllers make use of rotation
velocities of up to five rotations per second [17]. Yan et al.
have shown that the use of rotational drilling can be used to
reduce target movement and tissue deformation greatly [27],
but we desire to reduce this type of “drilling” motion used in
duty-cycling controllers since it could have significant effects
on tissue trauma, swelling, and recovery. Instead, we want to
focus on controlled, smaller-scale, slower rotations performed
throughout the insertion process.

In this paper, we demonstrate a 3D needle steering algorithm
based on the kinematic model of a flexible, bevel-tipped
needle developed by Webster et al. [28], and developed in
its current form by Kallem and Cowan [9]. The proposed
controller attempts to reduce deflection in both the x − z
and y− z planes simultaneously without requiring continuous
rotation like many other steering methods. This is beneficial
because it avoids requiring the needle to ”drill” into the tissue.
The relationship between continuous needle rotation, tissue
trauma, and tissue recovery are not well-understood, and from
a clinical perspective, it is sensible to avoid tissue damage as
much as possible.

B. Contributions

The well-known integrator-backstepping technique is a non-
linear design tool based on the proper selection of a Lya-
punov function. The main premise is to divide the system
into multiple cascaded subsystems which are easier to solve
and fine-tune. Then, we gradually work back towards the
original system to obtain the final controller design. Here,
we employ this technique to design the controller. In [29]

this technique is used for needle steering in 2D environment,
however, there are two main differences between the controller
proposed in [29] and the method presented here. First, the
controller in [29] only considers the error compensation in 2D
environment, whereas here, we extend the method to design
a 3D controller. Secondly, the controller in [29] does not
consider the bounds imposed on the transformed variables
and the inherent saturation of the system variables. In the
current method these effects are taken into account and new 2D
controllers are designed and combined to control the needle’s
3D tip path. The effect of state saturation and the convergence
of each individual controller as well as the stability of both
controllers operating together are shown and verified through
simulations and experiments.

The rest of the paper is structured as follows. Section II
describes the derivation of our steering algorithm and the
controller design. Section III provides the analysis of the
effects of the saturation on the stability. In Section IV, the
needle steering robot used in this paper is shown, and an
illustration of our experimental setup is provided. Simulation
and experimental results are shown in Section V and in
Section VI, the results are detailed and discussed. Conclusions
are drawn in Section VII.

II. INTEGRATOR-BACKSTEPPING CONTROLLER

In this section, we discuss the development of our steer-
ing controllers derived using the nonlinear design technique
known as integrator-backstepping. Our strategy makes use of
two separate controllers, each designed to limit the needle’s
deflection to a single plane. By properly combining these two
controllers, we can limit the needle’s overall deflection. In
Section II-A, we give a general overview of the integrator-
backstepping technique applied in our needle steering appli-
cation. In Section II-B, we call the controller designed to limit
needle deflection to the vertical plane as Vertical Deflection
Control (VDC) and the controller designed to limit needle
deflection to the horizontal plane as Horizontal Deflection
Control (HDC).

A. Needle Steering Control Using Integrator-Backstepping

The kinematics of a flexible bevel-tipped needle used in this
paper are based on the bicycle model developed by Webster
et al. [28] as

Ṗ = R

00
v

 (1a)

Ṙ = R

0 −u 0
u 0 −κv
0 κv 0

 (1b)

In this equation, the dot operator { ˙ } represents the first
derivative with respect to time and the vector P = [x, y, z]
refers to the position of the needle tip and R is a 3×3 matrix
representing the orientation of the moving frame B attached
to the needle tip with respect to the fixed frame A, as shown
in Fig. 1. The needle deflects along a curve defined by a
radius of curvature κ. The values v and u are the insertion
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velocity and axial rotation velocity of the needle respectively,
both of which are applied to the base of the needle by our
needle steering robot. The variable u is the control input, and
we assume that v > 0, since (1) is only valid for forward
insertion of the needle, as opposed to needle retraction [28].
In this particular study, v is held constant throughout the entire
insertion. Equation (2) is derived in its current-form by Kallem
and Cowan [9] using the Z-Y-X fixed angles as generalized
coordinates:

ẋ
ẏ
ż
α̇

β̇
γ̇

 =


sinβ 0

− cosβ sinα 0
cosα cosβ 0
κ cos γ secβ 0
κ sin γ 0

−κ cos γ tanβ 1


[
v
u

]
(2)

which is valid in

U = {q ∈ R6 : α, γ ∈ Rmod(2π), β ∈ (−π/2, π/2)} (3)

with q = [x, y, z, α, β, γ] where α, β, and γ refer to the
yaw, pitch, and roll of the needle respectively. These are the
Euler angles corresponding to the rotation matrix, representing
the orientation of the frame attached to the needle tip. In
general, the orientation of the moving frame can be obtained
by three successive rotations about the axes of the fixed frame
and the corresponding rotation matrix can be found by pre-
multiplying of the three basic rotation matrices [30].

In the integrator-backstepping approach, a stabilizing con-
trol input can be found for a system of the form

ξ̇1 = f1(ξ1) + g1(ξ1)ξ2 (4a)

ξ̇2 = f2(ξ1, ξ2) + g2(ξ1, ξ2)ξ3 (4b)

ξ̇3 = f3(ξ1, ξ2, ξ3) + g3(ξ1, ξ2, ξ3)u (4c)

where ξ1, ξ2 and ξ3 represent the state variables and u
represents the control input.

A control law that stabilizes the above system to the origin
can be derived in three steps, described in [31]. Note that
stabilizing the system to a non-zero constant can be done
by shifting the states and rewriting the equations as a zero
stabilization problem. Step 1 starts with (4a). Viewing ξ2 as
the input, we design the feedback control ξ2 = φ(ξ1) to
stabilize (4a) to the origin ξ1 = 0 and such that the Lyapunov
function V1(ξ1) is positive definite and radially unbounded,
and V̇1(ξ1) is at least negative semi-definite. In step 2, the
subsystem composed of (4a) and (4b) is considered and having
ξ3 as the input a controller is designed using the associated
Lyapunov function V2(ξ1, ξ2) and in step 3, the control signal
u is designed for the system (4a), (4b) and (4c) using the
Lyapunov function V3(ξ1, ξ2, ξ3). These steps will now be
applied to construct the VDC and HDC controllers. In the
sequel, all the values ki and ci, (i = 1, 2, ...) are positive
constant parameters which will be designed accordingly.

B. Vertical Deflection Control (VDC)

In order to limit the needle to the vertical plane, thereby
reducing deflection along the x-axis, we must develop a
control input that brings the deflection x and the effect of the

bevel orientation to zero. This can be performed by applying
integrator-backstepping to the following subsystem:

ẋ = v sinβ (5a)

β̇ = κv sin γ (5b)
γ̇ = −κv cos γ tanβ + u (5c)

Using the change of variable ξ1 = x, ξ2 = sinβ and ξ3 =
sin γ, we can re-write (5a)-(5c) in (3) as

ξ̇1 = vξ2 (6a)

ξ̇2 = κv

(√
1− ξ22

)
ξ3 (6b)

ξ̇3 = −κvξ2(1− ξ23)±
(√

1− ξ22
)
u (6c)

The above system is now in strict feedback form. We can
begin deriving the control law to stabilize the system to the
origin. It should be noted that this change of variable bounds
the system variables as |ξ2| < 1 and |ξ3| < 1, for which
the boundedness of the states’ references |ξ2ref | and |ξ3ref |
should be taken into account. Let the upper bounds of ξ2ref
and ξ3ref be 0 < ξ∗2 < 1 and 0 < ξ∗3 < 1, respectively.

Step 1: Start with (6a). Choosing the Lyapunov function
V1(ξ1) = k1ξ1 arctan(κξ1), which is positive definite and
radially unbounded, we can select

ξ2ref = φ(x) = −c1 arctan(κξ1) (7)

to stabilize (6a) to the origin. Defining

z1 = ξ2 − ξ2ref (8a)

ż1 = κv

(√
1− ξ22

)
ξ3 +

c1κvξ2
1 + (κξ1)2

(8b)

the time derivative of V1 can be written as

V̇1 = −W + k1vz1

(
arctan(κξ1) +

κξ1
1 + (κξ1)2

)
(9)

with W = k1vc1 arctan(κξ1)
(
arctan(κξ1) +

κξ1
1+(κξ1)2

)
> 0.

Remark: c1 should be selected such that |c1 arctan(κξ1)| <
ξ∗2 or equivalently

c1 <
ξ∗2

arctan(κξ1max)
(10)

where ξ1max is the maximum possible initial deflection along
the x axis. With this selection, since ξ2 is also bounded, z1
will be bounded as well.

Step 2: Next, consider the subsystem composed of (6a) and
(6b). Select the Lyapunov function:

V2 = V1 +
k3

2(k22 − z21)
(11)

which is positive definite for |z1| < k2. As it will be shown in
section III-A, this function ensures k2 to be the desired hard
bound on z1, which can be achieved by proper selection of
the parameters. Taking the time derivative of V2 we have:

V̇2 = z1

(
k1v arctan(κξ1) +

k1vκξ1
1 + (κξ1)2

+
k3ż1

(k22 − z21)2

)
−W

(12)
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Viewing ξ3 as an independent input for the subsystem, we can
find a state feedback control law ξ3ref = φ(ξ1, z1) to stabilize
the subsystem to the origin. By selecting k1 = κ, a stabilizing
control law can be selected as

ξ3ref =
1√

1− ξ22

(
−c2z1 −

c1ξ2
1 + (κξ21)

2

− (k22 − z21)2

k3

(
arctan(κξ1) +

κξ1
1 + (κξ1)2

)) (13)

To guarantee the upper bound |ξ3ref | < ξ∗3 , the following
constraint should be satisfied:

c2k2 + c1 +
k22
k3

(
π + κ

2

)
< ξ23

√
1− (ξ∗2 + k2)2 (14)

In this equation ξ∗2 and k2 should be selected such that ξ∗2 +
k2 < 1

Step 3: Define

z2 = ξ3 − ξ3ref (15a)

ż2 = −κvξ2(1− ξ23)±
(√

1− ξ22
)
u− ξ̇3ref (15b)

Using the Lyapunov function:

V3 = V2x +
k5

2 (k24 − z22)
(16)

which is positive definite for |z2| < k4, the stabilizing control
law ux for the subsystem described in (5a)-(5c) is obtained
as:

ux =
±1√
1− ξ23

[
−c3z2 + ξ̇3ref +

κvξ2(1− ξ23)√
1− ξ22

− (k24 − z22)2

k5

(
k3z1

(k22 − z21)

)] (17)

The ± sign in (17) is related to sign(cos γ), which can be
selected accordingly. In section III-A it will be shown that k4
is the hard bound on z2. Moreover, the value of k4 and ξ∗3
should be selected such that ξ∗3 + k4 < 1, which also ensures
that in (17),

√
1− ξ23 6= 0. Then we have the time derivative

of V3 as:

V̇3 = −W − c2k3z
2
1

(k22 − z21)2
− c3k5z

2
2

(k24 − z22)2
< 0 (18)

which shows the convergence of the deflection to the origin.

C. Horizontal Deflection Control (HDC)
Analogous to the previous section, a similar strategy is used

to develop a controller that limits the needle to the horizontal
plane. To this end, here we write the rotation matrix in (1)
using the Z-X-Y fixed angles. The system equations can be
re-written as

ẋ = v sinβ′ cosα′ (19a)
ẏ = −v sinα′ (19b)
ż = v cosα′ sin γ′ (19c)

α̇′ = κv cos γ′ (19d)

β̇′ = κv sin γ′ secα′ (19e)

γ̇′ = κv tanα′ + u (19f)

which is valid in

U ′ = {q ∈ R6 : α′, γ′ ∈ Rmod(2π), β′ ∈ (−π/2, π/2)}
(20)

The relation between [α, β, γ] and [α′, β′, γ′] can be found
as

α′ = arcsin(sinα cosβ)

β′ = arccos(
cosα cosβ

cosα′
)

γ′ = γ + arctan(sinα′ tanβ′)

(21)

Using the change of variable [ζ1, ζ2, ζ3] =
[y,− sinα′,− cos γ′], we have

ζ̇1 = vζ2 (22a)

ζ̇2 = κ
√
1− ζ21ζ3 (22b)

ζ̇3 =
−κv(1− ζ23 )√

1− ζ22
±
√
1− ζ23u (22c)

Comparing (22) and (6) it is clear the using the new
variables, the HDC controller can be designed using the same
procedure presented for VDC, and the controller can be written
as

uy =
±1√
1− ζ23

[
−c3z′2 + ζ̇3ref +

κvζ2(1− ζ23 )√
1− ζ22

− (k24 − z
′2
2 )2

k5

(
k3z
′
1

(k22 − z
′2
1 )

)] (23)

in which z′1 = ζ2− ζ2ref and z′2 = ζ3− ζ3ref . This procedure
gives ζ3ref = cos γ′d, which is related to cos γd as

cos γd =
ζ3ref ±

√
1− ζ23ref (1 + sin2 α′ tan2 β′)√
1 + sin2 α′ tan2 β′

(24)

III. BOUNDS AND SATURATION

Since the accelerations along the x and y axes are related to
sin(γ) and cos(γ), respectively, they are naturally bounded to
[−1, 1]. Moreover, from (17) and (23), implementing any of
these controllers individually requires to bound the magnitude
of the acceleration to some value less than one. In this section,
we analyze the effect of the acceleration saturation on the
stability of the system. Since the control inputs ux and uy
have the same structure, in the sequel we provide the analysis
for the x direction, however, the same argument applies to the
y direction.

A. Bounds on the Variables

In the previous section it is assumed that k2 and k4 are the
hard bounds on z1 and z2, respectively. To show this, we use
the Lyapunov function (16). Denoting

X = {ξ1, z1, z2} (25a)
C = {X ∈ R : |z1| < k2, |z2| < k4} (25b)
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and the boundaries and the interior of C as ∂C and Int{C},
respectively, we have

inf
x∈Int{C}

V3(x) ≥ 0 (26a)

lim
x→∂C

V3(x) =∞ (26b)

V̇3 ≤ 0
x∈Int{C}

(26c)

In [32] it is shown that such a function is a control barrier
function, for which Int{C} is invariant. Equivalently, any state
starting from Int{C} remains in this region and guarantees the
hard bounds on z1 and z2.

B. Effect of Saturation

According to the change of variables introduced in II-B,
the new states ξ2 and ξ3 as well as their references ξ2ref and
ξ3ref are upper bounded. Any reference value greater than
one produces large control inputs causing the needle to rotate
constantly and lose the control over the system. This can be
avoided by proper selection of the design parameters to keep
the reference values in the desired region. To this end the
design parameters c1, c2 and k2 should satisfy (10) and (14),
which impose very strict constraints on these parameters. From
(14) having c1 less than one is not desirable as it slows down
the deflection convergence. Another solution is to saturate the
reference values manually. Having |ξ3ref | = ξ∗3 keeps the
system in saturation to use the system’s maximum capacity.
In this case, the stability and convergence analysis should be
performed in the presence of the state saturation. Consider the
following assumptions.

Assumptions: To simplify the analysis assume k3 in (13) is
large so we can neglect the last term on the right-hand side
of (13). Whenever |ξ3ref | > ξ∗3 let ξ3ref = sgn(ξ3ref )ξ

∗
3 and

ξ̇3ref = 0. Assume that using these values and the control
signal (17), z2 → 0 and consequently ξ3 = ξ3ref .

Case 1: If ξ3ref > ξ∗3 , using (13) and (8b) we have z1 <
−ż1, which for z1 > 0 leads to z1ż1 < 0. If z1 < 0 and
|ξ̇2ref | <

√
1− ξ22ξ∗3 or ξ̇2ref < −

√
1− ξ22ξ∗3 > 0 then ż1 <

0 and again z1ż1 < 0. However, |ξ̇2ref | >
√
1− ξ22ξ∗3 and

ξ̇2ref > 0, leads to ż1 > 0. To overcome this case, we set
ξ2ref = −ξ∗2 and ξ̇2ref = 0 until the states get out of this
situation.

Case 2: If ξ3ref < −ξ∗3 , using (13) and (8b) we have z1 >
−ż1, which for z1 < 0 leads to z1ż1 < 0. If z1 > 0 and
|ξ̇2ref | <

√
1− ξ22ξ∗3 or ξ̇2ref >

√
1− ξ22ξ∗3 > 0 then ż1 >

0 and again z1ż1 < 0. However, |ξ̇2ref | >
√
1− ξ22ξ∗3 and

ξ̇2ref < 0, leads to ż1 < 0. To overcome this case, we set
ξ2ref = −ξ∗2 and ξ̇2ref = 0 until the states get out of this
situation.

C. 3D Controller Design and Stability

In the previous sections, separate controllers were designed
to control the needle deflection in vertical and horizontal
planes. Having one control input, in this section we combine
the two controllers. It should be noted that the two subsystems
have needle tip orientation angles as state variables and there-
fore have dynamic coupling. The 3D controller introduced in

this section deals with this coupling by simultaneously con-
sidering the effect of two subsystems. According to the design
procedure of the 2D VDC (HDC), the last step determines and
controls ξ3(ζ3), which is the needle acceleration along the x(y)
axis. Since ξ3 (ζ3) is related to sin γ (cos γ), it is possible to
define a desired angle γd [33] so whenever γ → γd, then ξ3
(ζ3) reaches its desired value, which leads to z2(z

′
2) → 0.

However, since the trigonometric relation sin γ2d + cos γ2d = 1
should be satisfied, we select one axis as the primary axis
and the other direction as the secondary and the find desired
angle γd for the primary axis while considering the effect
of the secondary desired value. The primary axis selection
is done based on the greater deflection error; whichever axis
with greater absolute error is the primary axis and the other
is the secondary. Defining sin γd = ξ3ref and cos γd = ξ′3ref ,
the desired angle γd is found as

if x, γd = atan2
(
ξ3ref , sgn(ξ′3ref )

√
ξ∗23 − ξ23ref

)
if y, γd = atan2

(
sgn(ξ3ref )

√
ξ∗23 − ξ

′2
3ref , ξ

′
3ref

)
(27)

with γ̇d = 0. Defining z2γ = γ − γd, the control input

u = −c4z2γ − γ̇d +
κvξ2

√
1− ξ23√

1− ξ22
(28)

ensures γ → γd. The sgn function in (27) takes the effect of
the secondary axis into account, keeping the bevel orientation
in a direction such that the accelerations along primary and
secondary axes have their desired signs as determined by the
2D controllers. This is equivalent to having V̇x < 0 and
V̇y < 0 and consequently decreasing the deflection error along
both axes, however, it is clear that the acceleration along the
primary axis is of greater magnitude, which makes the error to
decrease faster in that direction. I should be noted that since
this system does not have any equilibrium points, i.e., as long
as the needle is being inserted, the velocities along the x and
y axes have non-zero values, the proposed controller ensures
the boundedness of the deflection error.

D. Practical Consideration
The algorithm presented in the previous section can be

effective only if γ → γd to keep the bevel at the desired
orientation to compensate the deflection error. The value γd
should be updated at a slow rate since the radius of curvature
κ limits the rate at which the deflection can be corrected.
This imposes a natural delay on error compensation. Moreover,
according to the dynamics of the system, the rotation transition
time to steer γ to the desired value γd should be taken into
account. If the changes in γd is faster than the settling time of
γ, the designed strategy will not be effective. To overcome this,
we update γd every Ts seconds, which should be larger than
the settling time of the rotation loop. However, the value of
Ts should be selected carefully as large values of Ts increase
the bounds on the error.

In switching between the VDC and HDC controllers, we
monitor the deflections along the x and y axes. If the deflection
along x is higher than y, we use VDC as the primary controller
and if the deflection along y is greater than x, we use HDC.
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DC Motor 1

Potentiometer

needle

ultrasound probe

phantom tissue

DC Motor 2

linear rail

Fig. 2. Needle steering device. A two degree-of-freedom needle insertion
robot is used in our experiments. A prismatic joint which controls the needle’s
insertion velocity is attached to a needle carriage. A rotational joint controls
the needle’s axial rotation velocity. An ultrasound probe is attached to a
separate motor and is used to track the needle tip over the course of the
insertion. A potentiometer is used to determine the position of the US probe.

IV. EXPERIMENTAL SETUP

In this section, we discuss our needle steering device, our
ultrasound setup, as well as the tissue phantoms used in our
experiments.

A. Needle Steering Device

Our needle steering device consists of a two degree-of-
freedom robot, modified from the version described in [34]. A
prismatic joint is used to control the needle’s insertion velocity
while a rotational joint is used to control the needle’s axial
rotation velocity. The prismatic joint is designed using a ball-
bearing mounted needle carriage system attached to a trans-
mission belt. The transmission belt is connected to a Maxon
RE40 DC motor (Maxon Motor AG, Sachseln, Switzerland),
which controls the needle’s linear motion. The rotational joint
allows us to adjust the needle’s bevel angle during the insertion
process using a PID controller. Considering the minimum
update time of Ts = 1 sec for γd, the PID controller is tuned by
trial and error to provide a fast response with a settling time of
less than one. The revolute joint is powered by a Maxon RE25
1:14 geared motor (Maxon Motor AG, Sachseln, Switzerland).
The motors are controlled through Simulink using a Humusoft
MF624 DAQ card which interfaces with our PC via PCI
connection. An image of the needle steering device is shown
in Fig. 2.

A separate motorized prismatic joint is attached to an
ultrasound (US) probe holder whose position is monitored
using a linear potentiometer. The US probe is controlled such
that the needle tip is always in view of the US images. The US
probe is positioned such that axial images of the needle are
obtained. Axial images observe a cross-section of the needle,
causing the needle to appear as a bright elliptical object. A
description of our US needle tracking is performed in the next
section.

B. US Tracking

US imaging is the most common modality for PPB, and
needle insertion procedures in general, due to its accessibility,

Fig. 3. US image processing steps. The original US image contains the needle,
along with other similar objects. First, a ROI is defined around the needle.
The image is enhanced, and an appropriate threshold is obtained to produce a
binary image. Morphological opening is then used to produce the final image.

low cost, and real-time capabilities [35]. In order to track the
needle under US feedback, we implemented an image pro-
cessing algorithm incorporating a dynamic region-of-interest,
along with a threshold-based needle tracking approach. The
image processing algorithm was first described in [36] and
was built off of techniques described in [7] and [37].

A visual overview of the initial US image followed by
the subsequent image processing steps is shown in Fig. 3.
We then perform contrast enhancement on the ROI to obtain
the image labelled “Enhanced”. Afterwards, we choose an
appropriate intensity threshold for which to produce a binary
black-and-white image. In this binary image, the white pixels
are expected to correspond to the needle while the black pixels
correspond to background tissue. Small, isolated pixel clusters
are removed via morphological opening to produce the final
image, labelled as “Final”.

US images are obtained with a SonixTouch Ultrasound
System (Analogic Ultrasound, Richmond, BC, Canada) using
a linear US transducer model 4DL14-5/38 (Analogic Ultra-
sound, Richmond, BC, Canada). The US machine is connected
to a PC through a DVI-to-USB 3.0 frame grabber (Epiphan,
Palo Alto, CA, USA). The frame grabber obtains US images
at a frequency of 20 Hz which are processed using Simulink.
A Kalman filter is used to help track the needle during the
insertion process and adjust the ROI between each successive
frame. Details about the Kalman filter can be found in [36].

C. Tissue and Needle

The experiments are performed on two different types of
tissues; phantom tissue and biological tissue. First we used a
plastisol sample tissue, which is made of 80% liquid plastic
and 20% plastic softener (M-F Manufacturing Co., Fort Worth,
TX, USA). The estimated Young’s modulus of elasticity of
the sample is 35 kPa. Next we performed the experiments on
a two-layer biological tissue. The first 40 mm of the tissue
is composed of gelatin and the rest is ex-vivo beef tissue.
This design is intended to simulate the effects of multiple
tissue layers. The gelatin layer is made by mixing water at
temperature of 70◦C with porcine gelatin powder (Sigma-
Aldrich Co., ON, Canada). The weight ratio of gelatin to water
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TABLE I
CONTROLLER PARAMETERS

Subsystem c1 c2 c3 k1 k2 k3 k4 k5
VDC 20 20 100 κ/v 0.1 10 0.1 50
HDC 20 20 100 κ/v 0.1 10 0.1 50
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Fig. 4. The simulation results with initial condition x0 = 0.1, mm y0 = 0.1,
mm and γ0 = 45◦. (a): Results from proposed 3D controller. (b): Results
from switching between HDC and VDC based on error magnitude.

mixtures is 15%. The surface of the tissue provides a smooth,
consistent surface on which the US probe can slide and ensure
good acoustic contact between the US probe and the tissue.
In the case of non-flat tissue, the translation and ultrasound
probe contact should be taken into account [38]. A standard
18 gauge brachytherapy needle (Eckert & Ziegler BEBIG Inc.,
Oxford, CT, USA) made of stainless steel was used for each
of the insertion trials, and the needle’s insertion velocity was
held constant at 2 mm/s.

V. RESULTS

The controller we are testing here is the 3D controller (28)
to minimize deflection along the x and y axes. This controller
considers both axes simultaneously, however, more weight is
given to the axes with larger error. In simulations, we also test
a 3D steering method, swapping between x and y axes, where
only one axes is being controlled. Whenever the deflection
along the x axis becomes larger than or equal to that along the
y axis, VDC is implemented and whenever the deflection along
the y axis is higher, HDC is implemented. In Section V-A, we
demonstrate through simulation that our 3D needle steering
approach can reduce overall needle deflection. In Section V-B,
we use a tissue sample to evaluate the performance of the 3D
algorithm via experiments.

A. Simulation Results

Simulations are performed in Matlab/Simulink to test the
3D controller (28) as well as switching between the VDC and
HDC controllers based on the larger error. In these simulations,
the initial values are selected as x0 = 0.1 mm, y0 = 0.1 mm,
and γ0 = 45◦. The insertion velocity v is 2 mm/sec and the
needle curvature κ is selected as 0.0025 mm−1 [39]. The value
of the controller parameters ki and ci, (i = 1, 2, ...) are tuned
during the simulations by trial and error and later used in the
experiments. These values are shown in Table I.

The results are shown in Fig. 4. Comparing the results show
that the 3D controller can reduce the error along both axes
simultaneously, whereas using HDC and VDC individually is
not sufficient.

B. Experimental Results

Here, we demonstrate the performance of the 3D controller
using experiments. The experiments are performed on two
different tissues and two different scenarios, each for seven
trials. In scenario 1, the needle is steered on a straight line
to the depth of 130 mm. In scenario 2, the needle is steered
to reach a desired final deflection along the x axis and zero
deflection along the y axis while inserted to the depth of
130 mm. It should be noted that the proposed 3D controller
requires all system states, i.e. position and orientation vari-
ables, to be known; however, since our experiment setup can
only provide position measurements, the angles α and β are
considered to be zero and the angle γ is considered be equal to
the needle base angle. This assumption disregards the effects
of torsional friction applied to the needle shaft, which should
be quite small in practice [28]. Also, the needle is inserted
without any initial bending, and the initial bevel angle is set
to zero. These assumptions are valid for scenario 1, as for
small deflections the orientation angles α and β are close
to zero. In scenario 2, due to the needle bending in the x
direction the assumption of small orientation angles might
not be valid. However, we still use the same assumptions to
evaluate the behaviour of the controller. To see the effect of
the maximum acceleration, first set of experiments on phantom
tissue are performed for the maximum acceleration of 0.99
mm/sec2 and the second set is performed with the maximum
acceleration of 0.71 mm/sec2. The controller parameters used
in the experiments are the same values as simulations shown
in Table I. The results are summarized in Table II and one
sample trial for each experiment set is shown in Fig. 5 and
Fig. 6.

Defining the total error as the Euclidean norm of the error
vector, the results for phantom tissue show a maximum mean
absolute error of 0.91 mm in scenario 1 and a maximum final
error of 1.8 mm in scenario 2. The experiments performed
on the biological tissue also show a maximum mean absolute
error of 0.57 mm and 2.5 mm in scenario 1 and scenario 2,
respectively and a maximum final error of 1.7 mm in scenario
1 and 2.6 mm in scenario 2. Considering scenario 1, the
maximum value of error is less than 2 mm which is the size of
the smallest lesion that can be detected by ultrasound images
[40] and the errors are in the same order as other methods in
the literature such as [41].

VI. DISCUSSION

Using the experimental results in Table II, the expected
behaviour of the controller can be clearly observed. In scenario
1, by increasing the update time Ts, the deflection error
increases. The slower sampling provides less update to the
system causing the error to increase. It should be noted that
small sample times might also lead to a poor performance due
to the delay on error compensation caused by curvature limits.
The sample time should be greater than the settling time of
the rotation loop to provide the bevel with enough time to
reach the desired angle and stay there to compensate for the
error. For scenario 2, the effect of the maximum acceleration,
or equivalently the maximum bevel angle for each direction
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Fig. 5. Samples of experimental results of the 3D controller for steering the needle on a straight line. (a), (d): Insertion in phantom tissue with Ts = 1 sec
and maximum acceleration of 0.99 mm/sec2. (b), (e): Insertion in phantom tissue with Ts = 2 sec and maximum acceleration of 0.71 mm/sec2. (c), (f):
Insertion in biological tissue with Ts = 1 sec and maximum acceleration of 0.99 mm/sec2.
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Fig. 6. Samples of experimental results of the 3D controller for steering the needle to the desired deflection of xd = −4 mm along the x-axis and zero
deflection along the y-axis. (a), (d): Insertion in phantom tissue with Ts = 1 sec and maximum acceleration of 0.99 mm/sec2. (b), (e): Insertion in phantom
tissue with Ts = 1 sec and maximum acceleration of 0.71 mm/sec2. (c), (f): Insertion in biological tissue with Ts = 1 sec and maximum acceleration of
0.99 mm/sec2.

TABLE II
SUMMARY OF THE EXPERIMENTAL RESULTS

x y

Tissue Scenario Specification
Mean

Absolute
Error [mm]

Standard
Deviation
σ [mm]

Max
Final

Error [mm]

Mean
Absolute

Error [mm]

Standard
Deviation
σ [mm]

Max
Final

Error [mm]

Phantom
Tissue

1
xd = 0 mm, yd = 0 mm,
Ts = 1 sec, max(γd) = 81◦

0.37 0.33 0.5 0.25 0.26 0.8

xd = 0 mm, yd = 0 mm,
Ts = 2 sec, max(γd) = 45◦

0.54 0.57 1.7 0.74 0.52 1.05

2
xd = −4 mm, yd = 0 mm,
Ts = 1 sec, max(γd) = 81◦

2.6 1.3 1.1 0.5 0.31 1.5

xd = −4mm, yd = 0 mm,
Ts = 1 sec, max(γd) = 45◦

2.8 1.03 1.1 0.16 0.18 0.54

Biological
Tissue

1 xd = 0 mm, yd = 0 mm,
Ts = 1 sec, max(γd) = 81◦

0.57 0.45 1.7 0.55 0.48 1.1

2 xd = −4 mm, yd = 0 mm,
Ts = 1 sec, max(γd) = 81◦

2.5 1.1 2.6 0.66 0.44 1.9
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can be seen from the experimental results in Table II. For a
larger bevel angle, the error along the y direction is smaller
since higher acceleration puts more effort to compensate the
error along the x axis, which in return has less effect on the y
direction. However, by decreasing the bevel angle, the bevel
orientation affects the error along the y axis more, causing
the error to increase. It should be noted that this discussion is
true for the considered case. If the y axis desired deflection
is non-zero, the discussion might be different. However, the
results verify the expected behaviour. It worth mentioning that
in scenario 2, the approximation of the orientation variables
might not be accurate and these experiments are only used to
understand and verify the behaviour of the controller.

The 3D controller presented here uses the idea presented
in [33] to combine the 2D controllers and form the 3D
controller. The main difference between these two works is
in using different techniques for designing the 2D controllers.
Moreover, in [33], the upper bound on the desired angle γd is
determined by maximum allowed needle bending such that for
compensating larger deflections, the upper bound on γd should
be smaller. This constraint is necessary for guaranteeing the
convergence of the error. The controller proposed here does
not impose such limitation on the desired angle γd as it is
only required to choose the maximum acceleration to be less
than one, which provides more flexibility in using the system’s
capacity for compensating the error.

Simulations are provided to compare the proposed controller
with the Sliding mode controller proposed by Webster et. al.
[25]. The simulations are performed for the two scenarios
used in the experiments. The needle rotation velocity for the
sliding mode method is selected as 1 rad/sec. The needle
curvature, insertion velocity, and all control parameters are
the same the values presented in the simulations above. The
simulation results are shown in Fig. 7. From these results, we
can see that the deflection error behaviour is similar in both
methods. Comparing the roll angle γ, the sliding mode method
continuously rotates the needle and the variation in this angle
is larger when compared to the same quantity in the proposed
backstepping control method. The continuous rotation has a
drilling effect on tissue, which may increase tissue trauma.
In the backstepping method, the needle is rotated only when
required and there are times that the needle does not rotate,
which reduces the tissue trauma. It should be noted that since
the quantitative performance of the method highly depends on
the selected parameters, this comparison can only be used to
qualitatively compare the performance of these methods.

The model used in this work has only one parameter,
the needle path curvature (κ). Having only one parameter
limits the effects of parameter uncertainty. The 3D controller
structure deals with this uncertainty to some extent as it mainly
rotates the needle based on the desired acceleration from
both subsystems. If the desired roll angle obtained from the
2D controllers resides in the correct quadrant, the error will
decrease. This problem requires further studies to determine
the tolerable uncertainty bounds.
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Fig. 7. Simulation results comparing the proposed method with the Sliding
mode controller proposed in [25] for the two scenarios. (a),(c),(e): needle
deflection and the needle roll angle for moving the needle on a straight line
to reach a depth of 130 mm. (b),(d),(f): needle deflection and the needle roll
angle for reaching the desired deflection of -4 mm along the x-axis and zero
deflection along the y-axis at the depth of 130 mm.

VII. CONCLUSION

In this paper, we describe a method for controlling needle
deflection through the use of multiple 2D planar controllers,
each designed using the integrator-backstepping control ap-
proach. One controller implements Vertical Deflection Con-
trol to reduce needle deflection outside of the y − z plane
while the second controller implements Horizontal Deflection
Control to reduce deflection outside of the x − z plane. By
properly combining the effect of these controllers, we attempt
to minimize the overall needle deflection. The proposed 3D
controller considers the effect of the error along both x and y
axes simultaneously and can guarantee the boundedness of the
error. Our needle insertion setup consisted of a two degree-
of-freedom surgical robot designed to insert the needle at a
constant velocity while adjusting the needle’s rotational ve-
locity to allow for needle steering via our derived controllers.
Needle insertions were performed using an 18 gauge bevel-
tipped brachytherapy needle and a plastisol phantom tissue.
Our 3D needle steering approach was able to obtain an average
error of less than 1.5 mm.

Future work involves exploration regarding the impact of
needle rotation on tissue trauma. As well, we work on improv-
ing our 3D needle steering approach by incorporating more
accurate ways to estimate α, β, and γ, possibly through the
use of state observers.

REFERENCES

[1] K. K. Charyulu, “Transperineal interstitial implantation of prostate
cancer: a new method,” International Journal of Radiation Oncology



10

- Biology - Physics, vol. 6, no. 9, pp. 1261–1266, 1980.
[2] A. V. Taira, G. S. Merrick, R. W. Galbreath, K. E. Wallner, and

W. M. Butler, “Natural history of clinically staged low-and intermediate-
risk prostate cancer treated with monotherapeutic permanent interstitial
brachytherapy,” International Journal of Radiation Oncology - Biology
- Physics, vol. 76, no. 2, pp. 349–354, 2010.

[3] N. J. Cowan, K. Goldberg, G. S. Chirikjian, G. Fichtinger, R. Alterovitz,
K. B. Reed, V. Kallem, W. Park, S. Misra, and A. M. Okamura, “Robotic
needle steering: Design, modeling, planning, and image guidance,” in
Surgical Robotics. Springer, 2011, pp. 557–582.

[4] M. Khadem, C. Rossa, R. S. Sloboda, N. Usmani, and M. Tavakoli,
“Mechanics of tissue cutting during needle insertion in biological tissue,”
IEEE Robotics and Automation Letters, vol. 1, no. 2, pp. 800–807, July
2016.

[5] C. Rossa, M. Khadem, R. Sloboda, N. Usmani, and M. Tavakoli,
“Adaptive quasi-static modelling of needle deflection during steering
in soft tissue,” IEEE Robotics and Automation Letters, vol. 1, no. 2, pp.
916–923, July 2016.

[6] C. Rossa and M. Tavakoli, “Issues in closed-loop needle steering,”
Control Engineering Practice, vol. 62, pp. 55–69, 2017.

[7] Z. Neubach and M. Shoham, “Ultrasound-guided robot for flexible nee-
dle steering,” Biomedical Engineering, IEEE Transactions on, vol. 57,
no. 4, pp. 799–805, 2010.

[8] S. P. DiMaio and S. Salcudean, “Needle steering and motion planning
in soft tissues,” Biomedical Engineering, IEEE Transactions on, vol. 52,
no. 6, pp. 965–974, 2005.

[9] V. Kallem and N. J. Cowan, “Image guidance of flexible tip-steerable
needles,” Robotics, IEEE Transactions on, vol. 25, no. 1, pp. 191–196,
2009.

[10] M. Motaharifar, H. A. Talebi, F. Abdollahi, and A. Afshar, “Nonlinear
adaptive output-feedback controller design for guidance of flexible
needles,” IEEE/ASME Transactions on Mechatronics, vol. 20, no. 4, pp.
1912–1919, 2015.

[11] B. Fallahi, C. Rossa, R. S. Sloboda, N. Usmani, and M. Tavakoli,
“Sliding-based switching control for image-guided needle steering in
soft tissue,” IEEE Robotics and Automation Letters, vol. 1, no. 2, pp.
860–867, July 2016.

[12] M. Khadem, C. Rossa, N. Usmani, R. S. Sloboda, and M. Tavakoli,
“A two-body rigid/flexible model of needle steering dynamics in soft
tissue,” IEEE/ASME Transactions on Mechatronics, vol. 21, no. 5, pp.
2352–2364, 2016.

[13] D. Glozman and M. Shoham, “Image-guided robotic flexible needle
steering,” Robotics, IEEE Transactions on, vol. 23, no. 3, pp. 459–467,
2007.

[14] S. E. Salcudean, T. D. Prananta, W. J. Morris, and I. Spadinger, “A
robotic needle guide for prostate brachytherapy,” in Robotics and Au-
tomation, 2008. ICRA 2008. IEEE International Conference on. IEEE,
2008, pp. 2975–2981.

[15] G. Fichtinger, J. P. Fiene, C. W. Kennedy, G. Kronreif, I. Iordachita,
D. Y. Song, E. C. Burdette, and P. Kazanzides, “Robotic assistance
for ultrasound-guided prostate brachytherapy,” Medical image analysis,
vol. 12, no. 5, pp. 535–545, 2008.

[16] D. Y. Song, E. C. Burdette, J. Fiene, E. Armour, G. Kronreif, A. Deguet,
Z. Zhang, I. Iordachita, G. Fichtinger, and P. Kazanzides, “Robotic
needle guide for prostate brachytherapy: clinical testing of feasibility
and performance,” Brachytherapy, vol. 10, no. 1, pp. 57–63, 2011.

[17] G. J. Vrooijink, M. Abayazid, S. Patil, R. Alterovitz, and S. Misra,
“Needle path planning and steering in a three-dimensional non-static en-
vironment using two-dimensional ultrasound images,” The International
Journal of Robotics Research, pp. 1–14, 2014.

[18] T. K. Adebar, A. E. Fletcher, and A. M. Okamura, “3-D ultrasound-
guided robotic needle steering in biological tissue,” Biomedical Engi-
neering, IEEE Transactions on, vol. 61, no. 12, pp. 2899–2910, 2014.

[19] J. Van Den Berg, S. Patil, R. Alterovitz, P. Abbeel, and K. Goldberg,
“LQG-based planning, sensing, and control of steerable needles,” in
Algorithmic Foundations of Robotics IX. Springer, 2011, pp. 373–389.

[20] K. B. Reed, V. Kallem, R. Alterovitz, K. Goldbergxz, A. M. Okamura,
and N. J. Cowan, “Integrated planning and image-guided control for
planar needle steering,” in Biomedical Robotics and Biomechatronics,
2008. BioRob 2008. 2nd IEEE RAS & EMBS International Conference
on. IEEE, 2008, pp. 819–824.

[21] T. R. Wedlick and A. M. Okamura, “Characterization of pre-curved
needles for steering in tissue,” in Engineering in Medicine and Biology
Society, 2009. EMBC 2009. Annual International Conference of the
IEEE. IEEE, 2009, pp. 1200–1203.

[22] P. E. Dupont, J. Lock, B. Itkowitz, and E. Butler, “Design and control of
concentric-tube robots,” Robotics, IEEE Transactions on, vol. 26, no. 2,
pp. 209–225, 2010.

[23] D. C. Rucker, R. J. Webster, G. S. Chirikjian, and N. J. Cowan,
“Equilibrium conformations of concentric-tube continuum robots,” The
International journal of robotics research, 2010.

[24] R. J. Webster and B. A. Jones, “Design and kinematic modeling
of constant curvature continuum robots: A review,” The International
Journal of Robotics Research, 2010.

[25] D. C. Rucker, J. Das, H. B. Gilbert, P. J. Swaney, M. I. Miga, N. Sarkar,
and R. J. Webster, “Sliding mode control of steerable needles,” Robotics,
IEEE Transactions on, vol. 29, no. 5, pp. 1289–1299, 2013.

[26] D. S. Minhas, J. A. Engh, M. M. Fenske, and C. N. Riviere, “Modeling
of needle steering via duty-cycled spinning,” in Engineering in Medicine
and Biology Society, 2007. EMBS 2007. 29th Annual International
Conference of the IEEE. IEEE, 2007, pp. 2756–2759.

[27] K. Yan, W. S. Ng, K. V. Ling, T.-I. Liu, Y. Yu, and T. Podder,
“High frequency translational oscillation & rotational drilling of the
needle in reducing target movement,” in Computational Intelligence in
Robotics and Automation, 2005. CIRA 2005. Proceedings. 2005 IEEE
International Symposium on. IEEE, 2005, pp. 163–168.

[28] R. J. Webster, J. S. Kim, N. J. Cowan, G. S. Chirikjian, and A. M. Oka-
mura, “Nonholonomic modeling of needle steering,” The International
Journal of Robotics Research, vol. 25, no. 5-6, pp. 509–525, 2006.

[29] M. Waine, C. Rossa, N. Usmani, R. Sloboda, and M. Tavakoli, “An
integrator-backstepping control approach for out-of-plane needle deflec-
tion minimization,” in Advanced Intelligent Mechatronics (AIM), 2016
IEEE International Conference on. IEEE, 2016, pp. 1598–1603.

[30] H. D. Taghirad, Parallel robots: mechanics and control. CRC press,
2013.

[31] H. K. Khalil and J. Grizzle, Nonlinear systems. Prentice hall New
Jersey, 1996, vol. 3.

[32] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876, 2017.

[33] B. Fallahi, C. Rossa, R. S. Sloboda, N. Usmani, and M. Tavakoli,
“Sliding-based image-guided 3D needle steering in soft tissue,” Control
Engineering Practice, vol. 63, pp. 34–43, 2017.

[34] T. Lehmann, C. Rossa, N. Usmani, R. Sloboda, and M. Tavakoli, “A
virtual sensor for needle deflection estimation during soft-tissue needle
insertion,” in Robotics and Automation (ICRA), 2015 IEEE International
Conference on. IEEE, 2015, pp. 1217–1222.

[35] P. C. Mozer, A. W. Partin, and D. Stoianovici, “Robotic image-guided
needle interventions of the prostate,” Rev. Urol, vol. 11, no. 1, pp. 7–15,
2009.

[36] M. Waine, C. Rossa, R. Sloboda, N. Usmani, and M. Tavakoli,
“Needle tracking and deflection prediction for robot-assisted needle
insertion using 2D ultrasound images,” Journal of Medical Robotics
Research, vol. 01, no. 01, p. 1640001, 2016. [Online]. Available:
http://www.worldscientific.com/doi/abs/10.1142/S2424905X16400018

[37] P. Yan, J. C. Cheeseborough, and K. C. Chao, “Automatic shape-based
level set segmentation for needle tracking in 3-d TRUS-guided prostate
brachytherapy,” Ultrasound in medicine & biology, vol. 38, no. 9, pp.
1626–1636, 2012.

[38] M. Abayazid, P. Moreira, N. Shahriari, S. Patil, R. Alterovitz, and
S. Misra, “Ultrasound-guided three-dimensional needle steering in bi-
ological tissue with curved surfaces,” Medical engineering & physics,
vol. 37, no. 1, pp. 145–150, 2015.

[39] M. Khadem, C. Rossa, N. Usmani, R. S. Sloboda, and M. Tavakoli,
“Robotic-assisted needle steering around anatomical obstacles using
notched steerable needles,” IEEE journal of biomedical and health
informatics, vol. 22, no. 6, pp. 1917–1928, 2018.

[40] P. Moreira and S. Misra, “Biomechanics-based curvature estimation for
ultrasound-guided flexible needle steering in biological tissues,” Annals
of biomedical engineering, vol. 43, no. 8, pp. 1716–1726, 2015.

[41] A. Krupa, “3D steering of a flexible needle by visual servoing,” in
International Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer, 2014, pp. 480–487.



11

Bita Fallahi received her BSc and MSc degrees in
electrical engineering from K.N. Toosi University of
Technology, Iran, in 2007 and 2011, respectively.
She earned her PhD degree in Control Systems from
the University of Alberta in 2018, focusing on con-
trol of robot-assisted minimally invasive surgery. Her
current research interests include medical robotics
and image-guided surgery.

Michael Waine received his Master’s degree in
biomedical engineering at the University of Alberta
in 2015. He focused on robot-assisted prostate can-
cer during his graduate research, with a special
interest in biomedical imaging and control systems.
He is now attending medical school at the University
of British Columbia.

Carlos Rossa is an Assistant Professor of Mecha-
tronics in the Faculty of Engineering and Applied
Science at Ontario Tech University. He received his
BEng and MSc degrees in Mechanical Engineering
from the Ecole Nationale d’Ingnieurs de Metz, Metz,
France, both in 2010, and earned his PhD degree in
Mechatronics and Robotics from the Universit Pierre
et Marie Curie, Paris, France, in 2013, under the
auspices of the French Atomic Energy Commission
(CEA). From 2014 to 2017, he was a postdoctoral
fellow at the University of Alberta, Canada. His

research interests include medical robotics and imaging systems

Ron S. Sloboda received the B.Sc. degree in physics
from the University of Manitoba, Winnipeg, MB,
Canada, in 1974, and the Ph.D. degree in physics,
nuclear theory, from the University of Alberta, Ed-
monton, AB, Canada, in 1979. He is currently a
Professor in the Department of Oncology, University
of Alberta. His research interests include dosimetry
and treatment planning for brachytherapy, including
the design of clinical studies to obtain patient data
and model based dose calculation.

Nawaid Usmani is an Associate Professor as a
Radiation Oncologist at the University of Alberta.
His practice is based on treating genito-urinary
malignancies and gastro-intestinal malignancies. Dr.
Usmani’s main focus on research is in prostate
brachytherapy. Currently, prostate brachytherapy is
an increasingly popular treatment option for local-
ized prostate cancer due to its excellent efficacy,
good toxicity profile and convenience. However,
there remains a great deal of potential to improve the
current technique. Dr. Usmani’s main objective for

this research is to characterize current brachytherapy techniques and identify
strategies for improving this treatment. This includes quantifying inaccuracies
in current brachytherapy techniques, identifying patient populations at a higher
risk of toxicity from this treatment, and finding ways to improve our outcomes
with brachytherapy implants (using technical and translational approaches). In
addition to this research in prostate brachytherapy, Dr. Usmani is involved in a
number of other research endeavours. His other research includes: Investigat-
ing the potential benefits of metformin in preventing metabolic complications
of hormonal therapy and improving prostate cancer outcomes, identifying new
prognostic or predictive biomarkers in prostate cancer, investigating the utility
of magnetic resonant imaging and PET imaging in the management of prostate
cancer, investigating the potential benefits of exercise in rectal cancer patients.

Mahdi Tavakoli is a Professor in the Department
of Electrical and Computer Engineering, University
of Alberta, Canada. He received his BSc and MSc
degrees in Electrical Engineering from Ferdowsi
University and K.N. Toosi University, Iran, in 1996
and 1999, respectively. He received his PhD degree
in Electrical and Computer Engineering from the
University of Western Ontario, Canada, in 2005. In
2006, he was a post-doctoral researcher at Cana-
dian Surgical Technologies and Advanced Robotics
(CSTAR), Canada. In 2007-2008, he was an NSERC

Post-Doctoral Fellow at Harvard University, USA. Dr. Tavakolis research in-
terests broadly involve the areas of robotics and systems control. Specifically,
his research focuses on haptics and teleoperation control, medical robotics,
and image-guided surgery. Dr. Tavakoli is the lead author of Haptics for
Teleoperated Surgical Robotic Systems (World Scientific, 2008). He is an
Associate Editor for IEEE/ASME Transactions on Mechatronics, Journal of
Medical Robotics Research, Control Engineering Practice, and Mechatronics.


