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Abstract—Physiological motion makes performing a surgical or
therapeutic procedure more difficult for the physician. In heart
surgery, the heart is stopped as it is too difficult for the surgeon
to follow the heart’s beating motion and perform a surgical task.
In radiation therapy, respiration causes the cancerous tissue to
move, rendering the therapy less effective and possibly damaging
to healthy tissue. This paper focuses on controlling a robot, which
is used to perform the surgery or therapy, to compensate for the
physiological motion along the surgical tool’s axis such that the
point of interest (POI) on the organ becomes stationary relative
to the robot. The difficulty in creating such a system lies in the
measurement of the POI’s and robot’s positions via different
sensors that are unregistered, have different measurement rates,
and have data acquisition and processing delays. This paper
presents Kalman filter based estimation of the organ motion
despite the large data acquisition/processing delays and low
update rates inherent in some measurements used for robot
control in robot-assisted surgeries and therapies. This paper
also proposes control systems that compensate for the organ
motion despite the delayed, multi-rate and unregistered sensor
data allowing the physician to perform a therapeutic or surgical
procedure with a teleoperated robot on a seemingly stationary
POI.

NOMENCLATURE

C A controller of a system without a time delay
C̄ A controller of a time delayed system
H Transfer function of a system without a time delay
H̄ Transfer function of a time delayed system
R Input to a controller
Y Output of a controller

D Robot-POI distance
PO Point of interest position
PR Robot position
PP Physician position

X Continuous-time signal
X ′ Slowly-sampled discrete-time signal
X ′′ Fast-sampled discrete-time signal
X̄ ′ Delayed and slowly-sampled discrete-time signal
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X̄ ′′ Delayed and fast-sampled discrete-time signal
X̂ Predicted X ′′ from X̄ ′′ (a discrete-time signal)

R
I T Image to robot frame transformation
RX A point in the robot frame
IX A point in the image frame

EKF Extended Kalman filter
POI Point of interest
SP A Smith predictor

I. INTRODUCTION

During surgical or therapeutic interventions, the patient lies
still so that the physician can perform a procedure on a specific
organ. However, even though the patient is still, the organ
may be moving due to physiological motion. This makes the
intervention less effective and more difficult to perform. There
are two main sources of physiological motion: respiration
and heart beat. Two types of interventions that are affected
by such physiological motion are radiation therapy treatment
of cancerous tissue and surgery on the heart. In radiation
therapy treatments, the radiation is aimed towards the target
cancerous tissue. If the cancerous tissue is continually moving
due to respiration, the dosage will not be concentrated on it
and healthy tissue will be treated instead. The second source
of physiological motion, heartbeat-induced motion, makes it
nearly impossible to operate on a freely beating heart. Other
sources of physiological motion, such as hand tremor also
make the surgical procedure more difficult for the surgeon to
perform. Methods to reduce the effect of the surgeon’s hand
tremor are discussed in [1], but as this motion does not cause
the organ to move, it is outside the scope of this paper.

Currently, different techniques are employed to overcome
the aforementioned challenge in radiation therapy. Shirato et
al. propose to intermittently run the radiation source such that
radiation is emitted only when the point of interest (POI) is not
displaced significantly [2]. In other words, when respiratory
motion causes the organ and hence, the POI to move away
from a fixed location, the radiation source is turned off. Bel
et al. automatically reposition the patient couch to cancel
the effect of respiration-induced motion in order to keep the
POI stationary [3]. This continual motion, however, may be
uncomfortable for the patient. If the tissue motion is in-
plane with respect to the radiation source, the aperture of
the source can be shifted such that its focal point moves in-
plane with the tissue [4], [5]. Alternatively, the beam can
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be steered in three dimensions electromagnetically, but this
poses a challenge in terms of the required equipment cost [6].
CyberKnife has designed a radiation therapy system which
automatically repositions the radiation source in near real-time
if the POI has moved, but has a very low update rate [7]. The
Xsight lung tracking system is an addition to the CyberKnife
that tracks lung tumors during respiration without the use
of fiducial markers [8]. These methods either increase the
length of the procedure, are uncomfortable for the patient, are
limited to compensating for the motion in a single direction,
are expensive, or have a very low update rate. The robot-
assisted motion compensation system presented in this paper
will not significantly increase the length of the procedure, will
not be uncomfortable for the patient, and can be expanded to
compensate for motion in all directions.

Currently, to perform a surgical procedure on the heart,
either a mechanical stabilizer is used or the heart is stopped
and the patient is connected to a heart-lung machine. A
mechanical stabilizer suppresses the heart’s beating motion
using pressure or suction, but fails to eliminate all of the
motion and is only useful for procedures on the heart’s exterior
surface [9]. Also, a heart-lung bypass increases the patient’s
risk of stroke and long-term cognitive loss [10], [11]. These are
serious side-effects, that could be reduced if the surgeon is able
to operate on a freely beating heart. The robot-assisted motion
compensation system presented in this paper will cancel the
relative motion between the robot and the POI, allowing the
physician to operate on a seemingly stationary heart. This will
eliminate the risks associated with mechanical stabilizers and
heart-lung bypass machines.

II. ROBOT-ASSISTED COMPENSATION FOR
PHYSIOLOGICAL MOTION

For both of the above categories of interventions, we pro-
pose the use of robotic-assistance, which can greatly reduce
the difficulties caused by physiological motion. By controlling
the robot used by the physician for delivering the therapy
or performing the surgery to move in synchrony with the
physiological motion in a single dimension, along the surgical
tool’s axis, the POI can be made motionless with respect
to the robot. This will allow for safer and more effective
interventions and can lead to the advent of new procedures
such as surgery performed on a freely beating heart or radio-
therapy on the spine [6], [12]. To this end, first, the POI’s
position (e.g., the cancerous tissue or the POI on the heart)
must be measured in real-time. Computed Tomography (CT)
and X-ray images are often used to locate cancerous tissue
while endoscopes and ultrasound images are often used to
visualize the exterior surface and the interior of the beating
heart, respectively. Obtaining these measurements from images
creates three main challenges in designing the above-described
robot-assisted motion compensating system.

1) Slowly sampled data from the image sensor: The POI’s
motion measurements are taken from images that can be
acquired at a rate as low as 20 Hz from an ultrasound
scanner or as low as 1 Hz from a CT scanner. If the
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Fig. 1: The robot’s position measurements will be recorded with
respect to the robot frame and the sensor’s position measurements
will be recorded with respect to the sensor frame.

robot is controlled to follow these slowly sampled POI
position measurements, its motion will not be smooth,
which will make performing the procedure not much
easier for the physician. Therefore, the slowly sampled
position measurements must first be upsampled before
being used in the robot’s feedback control loop.

2) Delay in position data acquisition and processing from
the image sensor: To measure the POI’s position, an
appropriate image-based sensor such as ultrasound scan-
ners, magnetic resonance imaging (MRI) scanners, CT
scanners, or endoscopes is used. Depending on the
utilized sensor, the data acquisition delay, which is de-
pendent on the sampling rate, may be small as with high-
speed endoscopes or large as with ultrasound scanners.
Once the image is obtained, it must be processed to
locate the POI’s position and the robot’s position within
the image. This processing time varies between image
sensors and adds to the acquisition delay. If the delayed
position data concerning the POI motion is used in
the feedback control loop without delay compensation,
the robot control loop may become unstable, possibly
leading to uncontrolled collisions between the robot
and the POI (in the case of beating heart surgery) or
dangerously exposing healthy tissue to radiation (in the
case of radiation therapy).

3) Unregistered frames between data sources: The POI’s
position measurements are taken in the image’s frame
of reference, whereas the robot’s real-time position,
measured by the robot’s encoders, is in the robot’s frame
of reference - see Fig. 1. If the robot is to follow the
POI’s motion, the POI’s motion must be transformed
from the image frame into the robot frame.

Thus, the current POI position must be estimated from the
slowly-sampled and delayed image-based measurements of the
POI position. Then, a method of repositioning the robot such
that it follows the combination of the POI motion and the
physician-commanded motion (input through teleoperation)
required for the intervention needs to be developed.

Various approaches meeting some of these requirements
have been proposed for radiation therapy and beating heart
surgery. These techniques can be divided into the following
categories based on the type of controller, the position mea-



surements (for position control), and the robot’s configuration.
• Robot control: position or force
• POI motion measurement source: images or other sensors
• POI measurements: distances between or positions of

organ structures
• POI motion prediction or robot predictive motion control
• Robot configuration: hand-held or teleoperated
Force control can compensate for the POI’s physiological

motion by maintaining a desired force between the robot and
the POI but, it only works when there is contact between the
robot and the organ [13]–[15]. Force control does not account
for the initial phase of the intervention during which the robot
comes into contact with the organ, nor can it be used for
certain procedures such as radiation therapy where the robot
may never come in contact with the organ. Alternatively, the
robot’s position can be controlled to follow the combination of
the POI’s and physician’s motions [7], [9], [16]–[22]. Position
control is used in this work because of these limitations.

The robot’s position can be measured from the robot’s
encoders in real-time, but measuring the POI’s position is
more difficult. Different invasive and non-invasive methods
of measuring the POI’s position have been presented in the
literature. In radiation therapy, cancerous tissue is imaged
using positron emission tomography (PET), but this exposes
the patient to radiation, which is not desirable [23]. For lung
biopsies, Xu et al. track a lesion using CT fluoroscopy, which
also exposes the patient to radiation [24]. In beating-heart
surgery, invasive methods include sonomicrometry crystals,
which are sutured to the organ and use ultrasound pulses
to determine a single point on the organ’s motion [16]–
[18]. However, this method only measures the position where
sonomicrometry crystals are placed, which is not practical for
many interventions as the target site on the organ may change
throughout the procedure. Other research uses endoscopes
to capture the motion of the organ’s exterior surface [9],
[19], [25]. These images can be obtained quickly, but cannot
visualize the heart’s interior due to the opaque blood pool. For
this reason, ultrasound images will be used in this research for
POI motion tracking in beating-heart surgery [20]–[22].

The difficulty in using images to obtain position measure-
ments is that the positions are measured in the image frame,
which is not aligned with the robot’s frame. Consequently,
the robot cannot be made to follow the POI’s position as it is
unknown in the robot frame. One possible solution is to have
the POI’s position measurements transformed into the robot’s
frame. Then, the robot’s position will be controlled to follow
the combination of the POI’s motion and the physician’s
motion. The proposed Approach 1 assumes the POI’s position
measurements can be transformed into the robot frame. If this
is not possible, then in the proposed Approach 2, the distance
between the robot and POI, which remains the same regardless
of the frame of reference, can be measured in the images.
The robot-POI distance can then be controlled to follow the
physician’s motion.

One method of performing the intervention is to attach the
aforementioned motion compensating system onto a hand-held

tool [20], [26]. In this case, there is no electromechanical
dynamic effect between the physician’s position and the tool’s
position. Hand-held robotic surgical tools have previously been
developed in [27]. Other systems instead use a teleoperated
robot, where the physician’s motions are captured by a user
interface and then are incorporated into the robot’s motion
[21]. In this work, a teleoperated robot is considered as it is
more intuitive for the surgeon to use than laparoscopic tools,
allows the surgeon to sit behind a user console instead of
standing at times awkwardly above a patient, offers tools with
more dextrous wrists, and allows for a stabilized view of the
surgical site to be provided.

Based on the POI motion measurement (POI position or
robot-POI distance) and the configuration of the robot chosen
(hand-held or teleoperated), different control systems have
been presented in the literature. The approaches to compen-
sating for the data acquisition and processing delay can be
divided into two methods: prediction algorithms and predictive
feedback control. If the robot is hand-held, it will directly
follow the physician’s motion and the predicted POI’s position
is fed forward as the reference for the position of the tool
attached to the robot. If the robot is teleoperated, predictive
feedback controllers, which account for the POI’s position
measurement time delays in a feedback structure and are
thus affected by the dynamic characteristics of the robot,
must be used. In both methods the reference position for
the robot includes the measurement of the fast-varying heart
position. Table I summarizes the above. Approaches 1 and 2
are developed in this paper as discussed later.

The remainder of this paper is organized as follows. The
upsampling, prediction, and control systems are described in
Sec. III and are tested experimentally in Sec. IV. A functional
task where a needle makes contact with a simulated heart is
tested experimentally in Sec. V and the results are compared
to the literature in Sec. VI. Finally, the concluding remarks
are given in Sec. VII.

III. CONTROL SYSTEMS

The choice of the control system depends on the data
acquired from the sensors; more specifically, whether or not
the position measurements from the images can be transformed
into the robot’s frame of reference. Regardless of whether
the image to robot frame transformation (RI T ) is available,
a controller will need to compensate for the image acquisition
and processing delay incurred in extracting the slowly sampled
position data. If the R

I T is available, the POI’s trajectory is
measured directly from the images and transformed into the
robot’s frame of reference. Then, it is upsampled to the robot
trajectory’s sampling rate. Next, it is predicted forward from
the delayed measurement time to the current time. If the R

I T
is not available, the robot-POI distance is measured in the
images and then upsampled. From this distance and the robot’s
real-time position measurements, the delayed POI’s position
is calculated and then predicted to the current time. These
upsampling and prediction calculations, which are described
in detail below, generate the predicted POI motion.
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[6] PC P I T NA PID
[9] PC P I T P TT
[12] PC P I T NA AR
[13] FC NA O T FB MPC
[14] FC NA I T P PID
[16] PC P O T P RHMPC

+ECG
[17] PC P O T P RHMPC
[18] PC P O NA P MPC
[19] PC P I T FB R-GPC
[20] PC P I H P EKF
[21] PC D I T FB SP
[22] PC P I T P ANN
[28] PC P O T FB MPC
A1 PC P I T FB Pro
A2 PC D I T FB SP

TABLE I: A summary of the approaches taken to compensate for
physiological motion in surgical and therapeutic interventions, where
A1 and A2 are the presented approaches 1 and 2 respectively. The fol-
lowing controllers have been presented in the literature: Proportional
Integral Derivative (PID), Taken’s Theorem (TT), Autoregressive
(AR), Model Predictive Control (MPC), Receding Horizon MPC
(RHMPC), RHMPC + Electrocardiogram (RHMPC+ECG), Repeti-
tive Generalized Predictive Control (R-GPC), Proportional (Pro), and
Artificial Neural Network (ANN).

A. Upsampling of POI Motion Measurements

Many of the sensors such as ultrasound or CT will capture
the images at a slower rate than the typical robot control
system sampling rate. To take advantage of the robot’s faster
sampling rate, the slowly sampled position data is upsampled.
Two different position measurements may be obtained from
the images: the POI’s position when the R

I T is available
(Approach 1), or the robot-POI distance when the R

I T is not
available (Approach 2). As the robot-POI distance is to follow
the physician’s motion, the shape and periodicity of this signal
are unknown. On the contrary, the POI’s motion will be quasi-
periodic as both the heart’s beating motion and respiratory
motion follow a quasi-periodic trajectory. Accordingly, two
upsampling methods are used in this work: cubic interpolation,
which does not require a quasi-periodic input signal, and
extended Kalman filter (EKF) based upsampling, which does
require a quasi-periodic input signal.

To begin, cubic interpolation does not require prior knowl-
edge about the signal and hence, it can be used to upsample

either the robot-POI distance or the POI position itself. The
following equations describe the upsampled data points p(i).

p(i) = h00(i)p0 + h10(i)m0 + h01(i)p1 + h11(i)m1 (1a)

h00(i) = 2i3 − 3i2 + 1 (1b)

h10(i) = i3 − 2i2 + i (1c)

h01(i) = −2i3 + 3i2 (1d)

h11(i) = i3 − i2 (1e)

where p0 and p1 are the points in between which the
interpolation occurs, m0 and m1 are the slopes at points p0

and p1, respectively, and i is the interpolation variable and
contains evenly spaced values between 0 and 1 and has a
length of the number of points, n, to be added between the
two slowly sampled points, p0 and p1. As four data points are
required (points p0 and p1 and a data point on either side used
to calculate the slope) to ensure that the upsampled signal and
its first derivative are continuous, cubic interpolation involves
a processing delay of 2n− 1 sample times.

The second method, upsampling using an EKF, does not
increase the data acquisition and processing delay. The input
signal has a slow sampling time of ∆T , which is to be
increased to a fast sampling time of ∆t. However, a model of
the input signal is required and hence, the input signal must be
quasi-periodic. For this reason, this method can only be used
when the R

I T is available such that the POI motion data can
be extracted and fed as the input to the upsampler. First, the
EKF is based on the following state space model that evolves
through random walk.

x(t+ ∆t) = F(∆t)x(t) + µ(t) (2a)
z(t) = y(x(t)) + υ(t) (2b)

where

y(x(t)) , c+

m∑
l=1

rl sin θl(t) (3)

F(∆t) =



Im+1 0
1

∆t 1
0 2∆t 0 1

...
. . .

m∆t 1


(4)

and θl(t) = l
∫ t

0
ω(τ)dτ + φl(t), x(t) =

[c(t), rl(t), ω(t), θl(t)]
T , µ(t) and υ(t) are independent

Gaussian noise terms. In this case, the signal model (3) is
based on a Fourier series where the coefficients can vary
with time [20], [29]. As this equation is non-linear an EKF
is used.

Next, the EKF is updated every time step by the following:

P(t+ ∆t|t) =F(∆t)P(t|t)F(∆t)T + Q (5a)

S =σ2
R + H(∆t)P(t+ ∆t|t)H(∆t)T (5b)

K(t) =P(t+ ∆t|t)H(∆t)TS−1 (5c)



where P(t) is the estimated covariance matrix, Q is the
process noise covariance matrix, σ2

R is the observation noise
covariance matrix, and H(∆t) is:

HT (∆t) =

(
∂y

∂x

)T
∣∣∣∣∣
x̂(t+∆t|t)=Fx̂(t|t)

(6a)

=



1

sin θ̂1(t+ ∆t|t)
...

sin θ̂m(t+ ∆|t)
r̂1(t+ ∆t|t) cos θ̂1(t+ ∆t|t)

...
r̂m(t+ ∆t|t) cos θ̂m(t+ ∆t|t)


(6b)

where theˆsymbol denotes the estimated value.
As the EKF upsamples the slowly sampled signal y, with a

sampling time of ∆T , a new position measurement z(t+ ∆t)
is not available at every time step when the EKF is updated at
the fast sample time of ∆t. When a new position measurement
is available, i.e., ∆t is a multiple of ∆T , the estimated
covariance matrix P and the state matrix x are updated as:

x̂(t+ ∆t|t+ ∆t) =F(∆t)x̂(t|t) (7a)
+K(t)(z(t+ ∆t)− y(F(∆t)x̂(t|t))) (7b)

P(t+ ∆t|t+ ∆t) =(I−K(t)H(∆t))P(t+ ∆t|t) (7c)

When a new position measurement is not available, the es-
timated covariance matrix P and the state matrix x are not
updated, but simply propagated ahead one time step as:

x̂(t+ ∆t|t+ ∆t) =F(∆t)x̂(t|t) (8a)
P(t+ ∆t|t+ ∆t) =P(t+ ∆t|t) (8b)

B. POI Motion Prediction

Once the position data has been upsampled, the POI’s
position is predicted ahead to the current time to overcome
the image acquisition and processing delay inherent in image-
based POI motion tracking. The POI’s motion is either mea-
sured from the image directly when the R

I T is available, or by
subtracting the robot-POI distance from the robot’s position.
Either way, there is a delay in the POI motion tracking. Two
methods are used in this work for POI motion prediction
and both take advantage of the POI motion’s periodicity.
The first uses the POI’s motion from the last heart beat or
respiratory cycle. In this case, the length of the heart beat or
respiratory cycle is predetermined and the current POI position
is estimated by the corresponding POI position in the previous
motion cycle. This method assumes that the respiratory or
heart rate does not change. The second is to use an EKF. This
method allows the respiratory or heart rate and the amplitude
of the motion signal to change. Here, the signal’s state matrix x
and the estimated covariance matrix P are updated every time
step as the position signal has previously been upsampled. To
predict future points, the state matrix x is multiplied j times

by the update matrix F(∆t) to move j steps ahead:

x̂(t+ j∆t|t+ ∆t) = F(∆t)j x̂(t+ ∆t|t) (9)

C. Robot Predictive Feedback Control

When choosing the feedback control structure, two ap-
proaches have been taken in this paper. The first uses position
measurements and does not compensate for the delay within
the feedback loop, whereas the second uses distance measure-
ments and compensates for the delay within the feedback loop.
In both cases, motion compensation is performed along one
dimension - the axis of the surgical tool. Let us denote the POI
position by PO, the physician’s position by PP , the robot’s
position by PR, and the robot-POI distance by D = PR−PO.
Both continuous signals (e.g., actual POI motion) and discrete-
time signals (e.g., measured POI motion) are present within
the feedback loop. The continuous time signals are straight
lines and the discrete time signals are dotted lines where the
distance between the dots is proportional to the sample time,
i.e., shorter sample times are shown by dots that are closer
together. When referring to a specific variable, say X , let us
denote the continuous time signal by X , the slowly-sampled
signal by X ′, the fast-sampled signal by X ′′, the delayed and
slowly-sampled signal by X̄ ′, the delayed and fast-sampled
signal by X̄ ′′, and the prediction of X ′′ from X̄ ′′ by X̂ .
Also, let us denote a variable measured in the robot frame
as RX , and a variable measured in the image frame as IX .
Consequently, if the R

I T is known, the equivalent point in the
robot frame can be calculated as RX =R

I T IX .
1) Approach 1: In the first approach, the R

I T is avail-
able and both the robot’s delayed position, I P̄ ′R, and the
POI’s delayed position, I P̄ ′O, are measured in the images.
Here, the robot’s real-time position, RP ′′R, measured from the
robot encoders is controlled to follow the combination of
the physician’s motion, RP ′′P , and the estimated POI motion,
RP̂O. As the robot’s position, RP ′′R, is measured from the
robot’s encoders and is not delayed, in this case, a regular
(non-predictive) feedback controller shown in Fig. 2 is used.
Note that, the POI’s position, I P̄ ′O, is measured with a data
acquisition delay in the image frame at the slow sampling rate.
This, can be transformed to the robot frame, upsampled to the
robot’s control rate, and predicted ahead to the current time
to obtain RP̂O. The transfer function of this controller is:

RP ′′R =
(RP ′′P +R P̂O)CG

1 + CG
(10)

This first method requires the R
I T . However, this transforma-

tion may be difficult or infeasible to calculate. For instance, if
the position of the sensor (e.g., a hand-held ultrasound probe)
changes during the procedure, the R

I T will need to be recal-
culated in every sampling time assuming that the ultrasound
probe position and orientation can always be tracked. It may
become computationally expensive to continually update the
R
I T . Also, depending on the configuration of the operating
room, measuring the position and orientation of the imaging
sensor may be unfeasible.
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2) Approach 2: In cases where the R
I T is unavailable,

it makes sense to instead rely on the robot-POI distance
measured along the surgical tool’s axis, D, because this
measurement will be the same in any reference frame, i.e.
ID =R D. This means, the imaging sensor is free to move
during the intervention and its position and orientation does
not need to be tracked. Note that in this case, either the
robot’s real-time position, RP ′′R, or the robot’s mathematical
input-output model (for estimating the position based on the
input control signal) must be known. This is because the
POI’s position, RP̂ ′′O will later need to be calculated based
on the robot’s position and the measured robot-POI distance.
It is important to determine the POI’s position as, unlike
the robot-POI distance, it is the only quasi-periodic signal
available whose current value can be estimated based on
delayed measurements using predictive filters.

When the R
I T is not available, the robot-POI distance is

controlled to follow the physician’s motion. The difficulty is
that the distance measurement is slowly sampled and delayed,
D̄′. Cubic interpolation can be used to upsample the signal
to D̄′′, but as the distance signal is not periodic it cannot
easily be predicted forward to overcome the delay. Hence,
the delay must be compensated for by the controller. In this
configuration, the POI’s motion acts as a disturbance. Because
it is periodic, the POI motion can be predicted and added to the
feedback loop. First, the POI’s delayed position can be found
by delaying the robot’s position and subtracting it from the
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Fig. 4: A SP feedback controller for teleoperated motion compen-
sation with a delayed output. Here, the setpoint for the robot-POI
distance, D, is the physician’s position, RP ′′

P . The estimated current
POI position P̂O is added into the inner feedback loop to cancel the
effect of the disturbance caused by the POI’s motion.

upsampled distance measurement, R ˆ̄P ′′O =R P̄ ′′R − D̄′′. Now,
both the robot’s position P ′′R and an estimate of the delayed
POI’s position P̄ ′′O are known. With this data, a Smith predictor
(SP) is used in the feedback control loop to effectively remove
the time delay from within the feedback loop [21], [30]. The
Appendix gives a detailed description of the development of
the SP.

Two different configurations of the SP, shown in Figs. 3
and 4 are tested. In both cases, the POI’s current motion,
PO, affects the loop as an external disturbance. To cancel the
effect of this disturbance, the predicted POI position, RP̂ ′′O,
is incorporated into the control system. The point at which
the estimated POI position is added into the control loop is
the main difference between the two SP configurations. In the
first case, it is added to the surgeon’s position to form a new
setpoint – see Fig. 3. In the second case, it is added to the
inner feedback loop to mimic where the disturbance is added
to the robot’s motion to create the estimated real-time distance
signal – see Fig. 4. The possible upsampling and prediction
methods for each approach are listed in Table II.

To calculate the transfer function of the first SP configura-
tion, an expression for D̄′ is found.

(P ′′P −D̄′′−((P ′′R− P̂O)−P ′′Rz−k)CG−PO)z−k = D̄′ (11)

where z−k represents the time delay, C is the controller, and
G is the robot. Assuming (P ′′R− P̂O) = D′′ (11) simplifies to

((P ′′P − D̄′′ + P ′′P z
−kCG)− PO)z−k = D̄′ (12)

In this case, D̄′′ is approximated by P ′′Rz
−k, which is not ideal.

Assuming D′′z−k is equivalent to D̄′ (12) can be written as:

D̄′ =
P ′′PCG− PO

1 + CG
z−k (13)

To calculate the transfer function of the second SP config-
uration, an expression for D̄′ is found.

(P ′′P−D̄′′−((P ′′R−P̂O)−(P ′′R−P̂O)z−k)CG−PO)z−k = D̄′

(14)
Assuming (P ′′R − P̂O)z−k = D̄′′ and P ′′R − P̂O = D′′ (14)



Upsampling Method Prediction Method
Approach 1 CI or EKF PM or EKF
Approach 2 CI PM or EKF

TABLE II: The possible upsampling and prediction methods for
each approach. CI: cubic interpolation, EKF: extended Kalman filter
based upsampling or prediction, PM: previous motion.
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Fig. 5: The experimental setup, which includes a mechanical cam
that emulates the POI’s motion, the image sensor and its optical
markers, the physician’s user interface, the surgical tool attached to
the robot, and the hand-held syringe used for the functional task.

simplifies to

((P ′′P −D′′CG)− PO)z−k = D̄′ (15)

Assuming D′′z−k is equivalent to D̄′ (15) can be written as:

D̄′ =
P ′′PCG− PO

1 + CG
z−k (16)

IV. EXPERIMENTAL RESULTS

Each of the controllers, prediction, and upsampling methods
were tested experimentally. A Micron Tracker (HX60 from
Claron Technology Inc., Toronto, ON, Canada) was used as
the image sensor. It has a low frame rate of 20 Hz and
a delay of approximately 105 ms in acquiring and storing
each frame. A custom-built mechanical cam generated the
POI motion. The motion trajectory was collected from the
movement of a point on the side wall of the heart in a series of
clinical ultrasound images of a patient’s beating heart. A single
degree-of-freedom (DOF) robot was used and is actuated by a
voice coil motor (NCC20-18-020-1X from H2W Technologies
Inc., Santa Clarita, CA, USA). To verify the results, real-
time position measurements of both the POI and the robot
were collected from two potentiometers (LP-75FP-5K and LP-
30FP-1K from Midori America Corp., Fullerton, CA, USA):
the POI’s real-time position is used for robot-POI tracking
error calculations only and was not used as a measurement
available to the controllers.

For each trial, a cyclic motion with a peak-to-peak ampli-
tude of 10 mm and a period of 63 bpm (0.81 Hz) which is
increased to 66 bpm (1.10 Hz) at t = 10s is used. This motion
is similar to that encountered when a surgeon punctures the
pericardial sac to drain the excess fluid. Here, the surgeon

0 1 2 3 4 5 6 7 8 9 10
0

5

10

m
m

s

 

 

Heart Motion

Fig. 6: The simulated heart motion.

must puncture the pericardial sac that is approximately 5-
10 mm from the exterior heart wall, keep the needle in the
pericardial sac long enough to insert a guide-wire without
puncturing a coronary artery on the heart wall. This procedure
is described further in the following section. Three error
metrics are calculated for each trial: the mean absolute error
(MAE) between the upsampled and fast discrete-time signal
(measured from the potentiometers) is

∑
|error|
j , where j is

the number of data points in the sample, the integral squared
error (ISE) is

∑
(error)2

j , and the peak error is the largest error
at a single point in time. The results from each of the trials
are summarized in Table III.

The same parameters were used for the EKF and upsam-
pling in each trial. To find the initial state x(0) spectral
analysis was performed on the mechanical cam’s motion. The
amplitude, frequency, and number of harmonics were calcu-
lated from the Fourier transformation of the mechanical cam’s
motion. The estimated covariance matrix, P(0) is initialized
to a diagonal matrix with the following values along the
diagonal [0.001, 0.11×m, 0.1, 0.21×m] where m is the number
of harmonics, the process noise covariance matrix Q is a
diagonal matrix with a value of 0.0001, and the observation
noise covariance matrix σ2

R is 0.01. The Micron Tracker
supplied image measurements at a rate of 20 Hz or every
50 ms. The robot measurements were collected at a rate of
100 Hz or every 10 ms. To control the robot at the faster
rate, four measurements were added via upsampling between
measurements of the slowly sampled position signals.

In this work, the following hypotheses are tested.
Hypothesis 1: Predicting and upsampling the POI’s motion

using an EKF will perform better than using the POI’s motion
in the last cycle or upsampling using cubic interpolation,
because the EKF can adapt to changes in the motion’s period
and amplitude.

Hypothesis 2: For the case when the R
I T is not available, the

second SP will perform better than the first as the disturbance
created by the POI motion is compensated for by the second
SP.

A. Approach 1

To begin, the simplest case, where the R
I T is available, is

tested. A simple proportional controller with a gain of 0.2 is
used – Fig. 2. The result of each combination of prediction and
upsampling method are given in Fig. 7. It can be seen from
Fig. 7a and b that using the previous POI positions to predict
future POI positions does not take cyclic rate changes into
account as the error increases when the heart rate is increased.
In this case, the MAE is 1.23 mm, the ISE is 2.39 mm2,
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Fig. 7: The tracking result of using proportional control when the
R
I T is available. The dashed pink line is the physician’s motion, the
solid black line is the real-time distance between the surgical tool tip
and the POI, and the solid red line is the error between the surgeon’s
motion and the real-time robot-POI distance. The vertical line denotes
the time at which the heart rate increases.

and the peak error is 4.34 mm when cubic interpolation is
used for upsampling in Fig. 7a. The MAE is 1.07 mm, the
ISE is 1.99 mm2, and the peak error is 5.44 mm when EKF
based upsampling is used in Fig. 7b. When an EKF is used
for prediction in Fig. 7c and d, the cyclic rate change does not
affect the error, which remains similar throughout the trial. The
MAE is 1.14 mm, the ISE is 2.13 mm2, and the peak error is
4.38 mm when cubic interpolation is used for upsampling in
Fig. 7c. The MAE is 0.99 mm, the ISE is 1.51 mm2, and the
peak error is 3.62 mm when EKF based upsampling is used
in Fig. 7d. Because, the coefficients of the model (9) used
by the EKF can change with time, prediction based on the
EKF performed better than using the past heart motion. Also,
upsampling based on an EKF performed slightly better than
upsampling with cubic interpolation.

B. Approach 2

It is usually difficult to obtain the R
I T as the position and

orientation of the image sensor must be continually tracked in
real-time and the R

I T continually updated, which may become
computationally expensive. Also, it may be difficult to track
the position and orientation of the image sensor. In this case,
the delay must be compensated for within the control loop.

Here, a SP is used to compensate for the delayed distance
measurements. Initially, the first SP (Fig. 3) is used where
the predicted POI motion is added to the reference signal to
counteract the effect of the disturbance (the POI’s motion). As
only the distance between the robot (surgical tool tip) and the

POI is available, the delayed motion of the POI needs to be cal-
culated. First, the robot-POI distance is upsampled using cubic
interpolation and not an EKF, as the EKF requires a quasi-
periodic signal. Next, the motion of the robot is measured in
real-time in the robot-frame. These measurements are delayed
by the length of the data acquisition and processing delay of
the sensor and then the robot-POI distance is subtracted. This
leaves the POI’s delayed position, RP̄ ′′O. As the distance data
was previously upsampled, the POI measurements only need
to be predicted. The results are given in Fig. 8. The MAE,
ISE, and peak errors are 4.46 mm, 11.3 mm2, and 24.8 mm
respectively when the last heart beat is used to predict the
current heart motion shown in Fig. 8a. The MAE, ISE, and
peak errors are 4.45 mm, 22.7 mm2, and 9.39 mm respectively
when EKF based prediction is used to predict the current heart
motion shown in Fig. 8b. It is clear from Fig. 8b that using
an EKF to predict the POI’s motion gives a better result than
using the POI’s previous cycle of motion when the rate of the
POI’s motion is changing.

Then, the second SP is tested. As the predicted POI’s motion
is added to the inner feedback loop to account more directly
for the disturbance the POI’s motion adds to the output (the
distance between the surgical tool and the POI), it is expected
to give a better result than the previous case. Once again,
cubic interpolation must be used to upsample the distance data
as was previously discussed. The results are given in Fig. 9.
The MAE, ISE, and peak errors are 3.10 mm, 13.3 mm2, and
8.29 mm respectively when the last heart beat is used to predict
the current heart motion shown in Fig. 9a. The MAE, ISE, and
peak errors are 1.92 mm, 5.94 mm2, and 8.36 mm respectively
when EKF based prediction is used to predict the current heart
motion shown in Fig. 9b. It is clear from Fig. 9b that using
an EKF to predict the POI’s motion gives a better result than
using the previous POI’s motion if the rate of the POI’s motion
is changing. As expected, because the estimated POI motion is
subtracted from the robot’s position in the inner feedback loop
in the same manner as it is subtracted from the robot’s actual
position in real-time, the second SP configuration performs
better than the first.

Finally, as a comparison, a SP can also be used when the R
I T

is available. Here, the current POI motion is estimated directly
from the POI motion measurements, P̄ ′O. As the second SP
configuration performed better than the first, only the second
configuration was used for this test. The results are given
in Fig.10 where cubic interpolation is used, and EKF based
prediction is used as it consistently outperformed predicting
the current POI motion based on previous motion. The MAE,
ISE, and peak error is 1.65 mm, 4.39 mm2, and 6.28 mm,
respectively as shown in Fig.10a.

In all cases, the motion and delay compensation controllers
reduced the tracking error significantly as compared to no
compensation. Most of the mean tracking errors were reduced
to less than 2 mm when the heart moves approximately
10 mm as shown in the summary given in Tab. III. The results
consistently show that EKF based prediction and upsampling
where possible, performs better than the other methods proving
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Fig. 8: The tracking result of using SP method I when the R
I T is not

available. The dashed pink line is the physician’s motion, the solid
black line is the real-time distance between the surgical tool tip and
the POI, and the solid red line is the error between the physician’s
motion and the real-time distance between the surgical tool tip and
the POI. The vertical line denotes the time at which the heart rate
increases.
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Fig. 9: The tracking result of using SP method II when the R
I T is not

available. The dashed pink line is the physician’s motion, the solid
black line is the real-time distance between the surgical tool tip and
the POI, and the solid red line is the error between the physician’s
motion and the real-time distance between the surgical tool tip and
the POI. The vertical line denotes the time at which the heart rate
increases.

Hypothesis 1. The proportional controller of Fig. 2 performed
better than the two SP based controllers. However, this is an
unfair comparison as these controllers are used in different sit-
uations. If the R

I T is available, more direct measurements can
be taken and, as expected, this case had the best performance.
When the R

I T is not available, the second SP configuration of
Fig. 4 outperformed the first of Fig. 3 – proving Hypothesis 2.
Depending on the availability of the R

I T , both the proportional
controller of Fig. 2 and the second SP configuration of Fig. 4
provide satisfactory performance. Both have small position
tracking errors, maintain the system’s stability despite the
image acquisition and processing delay, and can handle a
changing rate of the POI’s motion.

V. FUNCTIONAL TASK

To test the performance of the motion compensating robotic
system, a functional task is considered. This task simulates
draining fluid from a patient with a pericardial effusion, which
is a build-up of fluid within the pericardial sac – see Fig. 11. As
the pericardial sac is stiff and does not expand when filled with
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Fig. 10: The tracking result of using SP method II when the R
I T

is available. The dashed pink line is the surgeon’s motion. The solid
black line is the real-time distance between the surgical tool tip and
the POI. The solid red line is the error between the physician’s motion
and the real-time distance between the surgical tool tip and the POI.

Controller Upsampling MAE ISE Peak
Type and Error

Prediction (mm) (mm2) (mm)
Proportional CI and PM 1.23 2.39 4.34
Proportional EKF and PM 1.07 1.99 5.44
Proportional CI and EKF 1.14 2.13 4.38
Proportional EKF and EKF 0.99 1.51 3.62
SP I CI and PM 4.46 24.8 11.3
SP I CI and EKF 4.45 22.7 9.39
SP II CI and PM 3.10 13.3 8.36
SP II CI and EKF 1.92 5.94 8.36
SP II F CI and EKF 1.65 4.39 6.28

TABLE III: A summary of the experimental results. Three separate
controllers were tested: the control scheme of Fig. 2 (Proportional),
and the two SP control schemes of Fig. 3 (SP I) and Fig. 4 (SP II).
The final case also uses the SP of Fig. 4 (SP II F), but it is assumed
that the R

I T is available and the POI’s motion is measured directly
from the images. The two upsampling methods are cubic interpolation
(CI) and EKF and the two prediction methods are previous motion
(PM) and EKF based.

excess fluid, the excess fluid puts pressure on the heart causing
it to beat abnormally. This condition can leave the patient short
of breath. To drain the excess fluid and relieve the pressure, a
needle is inserted through the patient’s chest wall and into
the pericardial sac. A guide wire is then inserted through
the needle, the needle is withdrawn, and a drainage tube is
inserted over the guide wire. The difficulty in performing this
procedure is to puncture the pericardial sac without puncturing
a coronary artery, as this would require immediate surgery.

Fig. 11: A diagram showing how pericardiocentesis is performed
[31].
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Fig. 12: The tracking result of the functional task when motion
compensation is not provided. Here, the dotted line is the POI’s
motion, the solid line is the robot’s motion, and the dash-dotted line
is the surgeon’s motion. The shapes of the two curves do not match. It
is very difficult for the surgeon to control the back and forth motion
of the robot from the user interface quickly enough to match the
POI’s motion while also performing the surgical task.
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Fig. 13: The tracking result of the functional task when motion
compensation is provided. Here, the dotted line is the POI’s motion,
the solid line is the robot’s motion, and the dash-dotted line is the
surgeon’s motion. The shapes of the two motion curves are similar
except for the surgeon’s purposeful motions that move the robot close
to the heart to withdraw fluid at 9 s.

To simulate this functional task, a small cylindrical con-
tainer is placed within a larger one. The smaller container is
filled with coloured water (simulating blood in an artery) and
is covered by a latex membrane. The larger container is filled
with clear water (simulating the excess fluid to be drained from
the pericardial sac) and is also covered by a latex membrane.
There is a 5 mm gap between the two membranes. This set of
two containers is mounted on the mechanical cam and moves
in a similar manner as a point on the heart surface. The goal
of this task is to puncture the outer membrane with a needle
that is attached to a teleoperated robot and withdraw 1 ml of
clear fluid. Since the inner membrane represents the coronary
artery, if it is punctured the coloured fluid will be withdrawn
and the test will be considered a failure.

Three tests to extract the fluid are performed. In the first
case, there is no motion compensation; rather, the robot
follows the surgeon’s motions. The result is shown in Fig. 12,
where the dotted line, the dash-dotted line, and the solid
line are the POI’s, surgeon’s and robot’s motion, respectively.
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Fig. 14: The tracking result of the functional task when motion
compensation is provided by the second SP. Here, the dotted line is
the POI’s motion, the solid line is the robot’s motion, and the dash-
dotted line is the surgeon’s motion. The shapes of the two motion
curves are similar except for the surgeon’s purposeful motions that
move the robot close to the heart to withdraw fluid.

As the surgeon must manually compensate for the heart’s
motion while extracting the fluid, the tracking of the heart’s
motion is poor and the coloured fluid is extracted meaning the
needle would have punctured the heart if this were an actual
procedure. In the second case, robotic motion compensation
is provided using the control scheme of Fig. 2. The result is
shown in Fig. 13, where the dotted line is the POI’s motion,
the dash-dotted line is the surgeon’s motion and the solid line
is the robot’s motion. Here, the surgeon only needs to move
the robot towards the POI to set the desired position for the
extracting the fluid. The robot follows both the surgeon’s and
the POI’s motion. The tracking result is significantly better
in this case and only the clear fluid is extracted. Finally, SP
method II is tested. The results are shown in Fig 14, where
the dotted line is the POI’s motion, the dash-dotted line is
the surgeon’s motion and the solid line is the robot’s motion.
Once again, the surgeon only needs to move the robot towards
the POI to set the desired position for the extracting the fluid.
The robot follows both the surgeon’s and the POI’s motion
and only the clear fluid is extracted.

VI. DISCUSSION

The results presented in this work are for a more challenging
case compared to the previous literature. In this work, the
POI motion data was first upsampled and predicted ahead to
compensate for the image acquisition and processing delays.
These delays were approximately 180 ms. The errors reported
for POI motion of 10 mm have average values of approxi-
mately 0.99 mm to 1.59 mm and peak values of approximately
3.62 mm to 5.90 mm for the best cases when a proportional
controller and a SP method II were used. Some of the literature
have reported smaller errors, but these cases did not all include
upsampling or motion compensation for such large image
acquisition and processing delays.

Using pre-recorded position data from sonomicrometry
crystals sutured to the heart, average errors as low as 0.669 mm
were reported in [16], but the peak errors were as large as



4.3 mm. This method is not clinically viable as it is not real-
time and the crystals must be sutured onto the POI site.

In [9] the residual motion (approximately 6 and 8 mm in
the x and y directions) left after mechanically stabilizing the
heart was compensated for by moving a 40 Hz endoscope to
stabilize the image. However, this method does not let the heart
beat freely and is only viable on the exterior heart surface.
Mean errors of approximately 0.4 and 0.8 mm in the x and
y directions and a peak error of approximately 2 mm in the
y-direction were reported.

In [19] position data was collected from a 500 Hz camera.
A one sample ahead predictive controller was able to reduce
the tracking error to less than a millimetre. However, in this
case, the position data is collected at a very fast rate meaning
there is less movement between samples and the length of the
prediction is much shorter.

In the most similar case to this work, Yuen et al. reported an
average and peak error of 0.97 mm and 3.26 mm respectively
on simulated heart motion data with a peak-to-peak amplitude
of 12.36 mm [20]. These errors are very similar to those
reported in this work; however, Yuen et al. used a sampling
rate of 28 Hz and therefore only predicted one time step ahead.

Future work will include the extension of this work for
multi-dimensional motion compensation. This method could
also benefit from the addition of ECG data that will provide
information about the upcoming position of the POI.

VII. CONCLUSION

Surgical or therapeutic procedures are difficult for physi-
cians to perform if the POI is continually moving due to phys-
iological motion caused by respiration or the beating heart.
To aid the physician, a robot-assisted system is designed to
compensate for the POI’s physiological motion. The difficulty
in creating such a system is that the position measurements
of the POI are slowly sampled, delayed, and possibly not
registered to the robot’s frame of reference. Three controllers
are presented in this work that overcome these challenges. The
first assumes the R

I T is available such that the POI’s position
measurements can be transformed into the robot frame. In
this case, the POI’s position measurements are upsampled
and predicted ahead to overcome the delay. Now, a regular
controller can be used to ensure that the distance between the
robot and the POI follows the physician’s motion. When the
R
I T is not available, the distance between the POI and the robot
is measured. In this case the POI’s motion is calculated from
the robot’s position and the upsampled distance measurements.
In the second approach, a SP, which compensates for the
delay, is used in the feedback control loop. Two different
configurations are proposed; the first adds the predicted POI
motion to the surgeon’s to form a new setpoint, and the
seconds adds the predicted POI motion into the inner feedback
loop to reflect where the POI’s actual motion is added into
the system. As expected, the second method which adds the
predicted POI motion to the inner feedback loop performs
better than the first.

(b)

Controller Plant

G

+- DelayR Y

z -kC
_

(a)

Controller Plant

C G

R Y+-

Y

(c)

Controller Plant

C G

+
- Delay

Delay

+-R

Ĝ+-

z-k

z-k

(d)

Controller Plant

C G

+- Delay

Delay

+-R Y

+-

z -k

z-k

Fig. 15: (a): A standard plant and feedback controller without a time
delay. (b): A standard plant and feedback controller with time delay.
(c): A SP, where the plant’s model must be estimated. (d): A SP,
where the plant’s model does not need to be estimated.

APPENDIX

A SP is a predictive feedback controller that, in the presence
of a known and fixed time delay, ensures the stability and good
performance of a closed-loop control system [30]. Consider the
feedback loops in Figs. 15a and b. To begin, the controller C
is designed for closed-loop feedback system without a delay,
see Fig. 15a, where the transfer function is given by H .

H =
Y

R
=

CG

1 + CG
. (17)

where G is the plant transfer function, R and Y are the Laplace
transforms of the plant’s input and output, respectively.

In Fig. 15b, the plant G is replaced by a plant with a fixed
time delay k, Gz−k. Here, the controller C is replaced with
C̄ and the closed-loop transfer function becomes H̄ .

H̄ =
Y

R
=

C̄Gz−k

1 + C̄Gz−k
. (18)

To retain the same performance as the system that without a
time delay, the transfer function of the delayed system should
equal that of the system without a delay multiplied by the time
delay, i.e., H̄ = Hz−k. C̄ is calculated from this equality.

C̄ =
C

1 + CG(1− z−k)
. (19)

The SP C̄ in Fig. 15c requires an estimate of the plant, Ĝ.
However, if the plant can be separated from the delay, we do
not need the estimate of the plant’s model; rather, the output
of the plant can be used directly – see Fig. 15d.
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