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Abstract—This paper proposes a new framework for neural-
network-based supervised training of intensity and strategy for
upper-limb haptics-enabled robotic neurorehabilitation systems
for post-stroke motor disabilities. Two alternative approaches
are implemented: (a) Haptics-enabled Teleoperated Supervised
Training (HTST); and (b) EMG-based Indirect Supervised Train-
ing (EIST). The design of both techniques includes two phases: (a)
characterizing and learning the therapeutic intensity and strategy
when a therapist delivers robotics-assisted rehabilitation to a
patient (demonstration phase), and (b) enabling regeneration of
the learned therapeutic behavior when the therapist is out of the
loop, e.g., when she/he is working with another patient (regener-
ation phase). For the first phase, HTST platform allows for direct
transformation of the forces generated by the therapist to deliver
rehabilitation at the patient side, and providing the therapist
with direct force feedback. In contrast, EIST is an indirect
platform which utilizes the posture of the therapist for generation
of rehabilitation forces. EIST uses vibration to the therapist’s
arm to make the therapist aware of the forces applied to the
patient’s hand. Although HTST is a more intuitive alternative,
EIST is safer, portable, wearable, less expensive, and provides
relative motion freedom for the therapist. The proposed training
framework is motivated by the existing challenge regarding the
need for tuning the strategy and intensity of robotic rehabilitation
systems in a patient-specific manner. It also enables therapists to
share their time between several patients. Experimental results
are presented to evaluate the engineering aspects of the work
and feasibility of the concept, where a computational model is
used to simulate motor disability of a post-stroke patient.

I. PRELIMINARIES

Considering the increasing population of post-stroke pa-
tients, there is a need for increasing accessibility to

rehabilitation therapies through the use of neuromechatronic
technologies [1], [2], [3]. Programmable Virtual-Reality (VR)-
based Haptics-enabled Robotic Rehabilitation (HRR) systems
have shown great potential in accelerating Neural Plasticity
(NP) and motor recovery for post-stroke patients [3], [4]. There
are several factors which contribute to this effectiveness:

a) Robots are programmable and powerful and can be used
for a wide range of patients with different biomechanics
to deliver repetitive longitudinal motor therapy.

b) Robots can register motion and force profiles during
therapies, which allows for accurate objective assessment.

c) VR-based environments provide patients with goal ori-
ented tasks that enable them to use their decision-making
abilities. This is a key factor for accelerating NP [2], [5].
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Two forms of motor therapy have been commonly deliv-
ered by HRR systems: Assistive Therapy (AT), and Resistive
Therapy (RT). AT is prescribed when patients cannot execute
the required task. During AT, the robot guides patients while
assisting them towards the correct path. RT is delivered when
patients can manage to perform simple tasks. As a result,
the robot may dissipate parts of the energy generated by the
patients to make the task more challenging [2], [6].

In [7] and [8], comprehensive literature reviews have been
presented on multi-modal stimulation of motor learning in-
cluding haptics-enabled rehabilitation therapy. As discussed
in [7], one of the open problems regarding the use of HRR
technologies is the design of the assistive/resistive therapeutic
force fields (called “therapy intensity” in this paper) to be
delivered to the patient’s impaired limb. This intensity is
correlated to the choice of control parameters (such as the
stiffness of the virtual guidance) considered for delivering hap-
tic therapy. Although the control parameters are conventionally
set as fixed values, it is believed that they need to be adaptively
tuned by considering (a) specific kinematics and biomechanics
of each patient, (b) the motor control capability of the patient,
and (c) characteristics of neuromechanical deficits caused by
the stroke [8]. It should be noted if more haptic guidance
is delivered than needed, it can result in excessive reliance
by the user on the guiding feedback. This can cause passive
participation of the user instead of the interactive participation
required to stimulate NP [7], [8]. Accordingly, automated
adaptive techniques have been proposed in the literature to
provide some level of adaptation considering the motor per-
formance of the user [7], [8], [9], [10].

A. The Existing Challenge & The Motivation

Although using adaptive techniques, the performance of
HRR systems can be improved, it is not possible to find
an automated algorithm that matches the knowledge of a
skilled therapist. In addition, although in general the literature
supports the effectiveness of HRR systems, there are reports
showing that in some cases, robotic therapy can be less
effective than conventional manual therapy [11], [12]. It is
believed that this observation is due to the lack of flexibility
in tuning the control parameters compared to conventional
therapy where the human therapist is capable of appropriately
modifying the “strategy” and “amount of kinesthetic guidance”
over the workspace [7], [8]. This modification of therapy by
therapists is known to be a key factor for delivering effective
therapy [13]. The challenge of appropriate and supervised
tuning the therapeutic force generation by robotic systems in
different parts of the workspace and for patients with different
biomechanics provides the main motivation for this paper.
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II. INTRODUCTION AND PROBLEM STATEMENT

Recently, machine learning techniques (such as those using
probabilistic models) have been suggested for training robots
based on demonstration performed by an expert [14]. This con-
cept is tested for collaborative tasks [15], object manipulation
tasks [16], [17] and for assistive technologies such as smart
wheelchairs [18], [19] and cooperative assistive tasks [20].

In this paper, we propose a new framework that fuses the
concepts of machine learning and VR-based haptics-enabled
assistive/resistive neurorehabilitation robotics to address the
challenges mentioned in Section I.A. The proposed frame-
work has two major phases, namely (A) Supervised Therapy
Demonstration (STD) phase, when the therapist is in the loop
of interaction with the patient for delivering haptic rehabili-
tation, and (B) Regeneration through Modeling (RTM), when
the therapist is not in the loop, for reproducing therapeutic
behavior similar to that demonstrated in the first phase.

During the first phase (i.e., STD), the therapist controls the
intensity and strategy of therapeutic force production. For this
purpose, two different platforms i.e., EIST and HTST, are
utilized which can enable keeping the therapist in the loop
of robotic rehabilitation. In the next phase (i.e., RTM), the
distribution of the therapeutic intensity/strategy are modeled
using a Neural Network (NN) algorithm. The learned kines-
thetic behavior of the therapist will then be regenerated for the
patient while the therapist can use his/her time to work with
another patient. These steps can be repeated as many time as
needed and the therapist can change the strategy repetitively.
This architecture is an alternative to tuning the intensity and
strategy of the therapy and brings back the conventionally-
absent kinesthetic supervision of a human therapist during
robotic therapy (the challenge that is mentioned in Section
I.A). Another outcome of the framework is a new visualization
technique that can provide a heat map of the intensity of
the delivered therapy by the therapist for each session. The
map can be used by clinicians for monitoring progress of
a patient over several sessions of therapy. The schematic
of the proposed framework is shown in Fig. 1(a). In Fig.
1(a), HTST and EIST are the platforms (introduced below),
using which (a) the kinesthetic therapy is generated by the
therapist and is delivered to the patient while the therapeutic
behavior of the therapist is registered; and (b) proper real-
time feedback is provided to make the therapist aware of the
forces being applied on the patient’s limb. The therapist uses
force information to decide about the sensorimotor needs of
the patient. The two platforms are described below:

A) Haptics-enabled Teleoperated Supervised Training
(HTST): This platform is a telerobotic system, whose feasi-
bility and implementation were studied recently by the authors
[21], [22], [23], [24]. The system is composed of two force-
enabled robotic devices, one at the therapist’s side and the
other at the patient’s side. The control algorithm provides vir-
tual viscoelastic coupling between the motions of the therapist
and those of the patient. This architecture allows the therapist
to (a) directly tune the intensity and strategy of therapy, and
(b) directly receive kinesthetic forces that brings the therapist
awareness of the forces applied to the patient.

(a)

(b)
Fig. 1. (a) Schematic diagram of the Proposed Framework. (b) The workspace
of the robot that corresponds to the VR environment.

B) EMG-based Indirect Supervised Training (EIST):
This is a new platform proposed in this paper, which is
composed of two wearable wireless armbands to be used
by the therapist. The armbands can measure EMG activities
of the therapist for detecting his/her posture to be used for
tuning the strategy and intensity of the therapy (as explained
later). In addition, the armbands can provide vibrotactile cues
to the arms of the therapist. The EIST platform does not
enable direct kinesthetic awareness for the therapist during
the STD phase. Instead the architecture provides vibrotactile
feedback for the therapist which brings him indirect awareness
of the forces applied to the patient’s hand. The indirect haptic
awareness used here is motivated by the literature on sensory
substitution used for telerobotic surgical systems (e.g., [25],
[26]). Although, indirect force feedback is not as intuitive and
informative as direct kinesthetic feedback realized by HTST,
there are specific benefits with the use of EIST such as (a)
lower cost, (b) guaranteed stability due to elimination of the
need for closed-loop force feedback, and (c) better portability.
The EIST platform still allows to keep the therapist in the loop
of robotic rehabilitation and makes it possible for the therapist
to tune the strategy and intensity of the therapy in real-time
based on awareness of the forces applied to the patient’s hand.

Remark 1. In the design of both EIST and HTST platforms
a VR environment is used which is shared between the
therapist and the patient. Two different objects (e.g., two
circles) in VR are assigned to the motions of the therapist and
those of the patient. The motion of the patient is measured
by the robot and is mapped to the corresponding object. For
HTST, the motion of the robot on the therapist’s side is also
measured and mapped to the corresponding object while in the
EIST platform, the posture of the therapist is used. The above-
mentioned two objects are coupled using a virtual viscoelastic
band. As a result, the therapist can change the characteristics
of the forces applied to the patient’s hand (amplitude and
direction) by moving (changing the position of) the object
assigned to him/her. In fact, the therapist can assist the patient
by leading his/her motion towards the target in the shared
VR environment, or can resist the patient’s movements thus,



(a)

(b)
Fig. 2. (a) A schematic of the implemented HTST platform. The VR
environment is shared between the therapist and the patient where the orange
and yellow circles correspond to the patient’s and therapist’s movements
respectively. The red line is the virtual viscoelastic coupling. (b) A schematic
of the implemented EIST platform. The therapist-side system composed of two
EMG armbands from Thalamic Labs Inc. which measure the muscle activity
of the therapist’s hand and provides vibrotactile cues.

changing the therapy strategy. With the proposed viscoelastic
coupling, the patient is allowed to make mistakes in tracking
the target while performing motor tasks. This is an important
factor for motor learning [7], as opposed to rigidly controlling
the patient’s motions. The intensity of the therapy can be tuned
by the therapist based on the distance between his/her position
and that of the patient in the shared VR. The schematics of
the implemented platforms are shown in Fig. 2 . •

Remark 2. The Major contributions of this paper:
1) Designing a new neural-network-based therapy-
regeneration-through-demonstration framework to learn
the kinesthetic supervision of a therapist in the loop of
robotic rehabilitation and replicate this behavior for longer
periods when the therapist is not in the loop. The work is
motivated by extending the time of exposure to interactive
robotic therapies for patients, while minimizing the time
during which the therapist should be directly involved with
the patient; and maximizing the use of the time of therapists
by modeling their kinesthetic supervision over the therapy
delivered during a session. The proposed framework is
implemented on two platforms (EIST and HTST).
2) Designing a new platform (i.e., EIST) using which a thera-
pist can tune the strategy and intensity of robotic therapy while
receiving vibration feedback according to the forces applied
to the patient’s limb. In addition to EIST, the HTST platform
is suggested to register the intentions of a therapist. EIST is
designed in this paper, while HTST is a subcategory of a more
general technology that was recently developed by the authors
[21], [22], [27]. Both platforms fuse the advantages of using
HRR systems and having a therapist in the loop. The common
goal is to provide patients with an “augmented” therapeutic
environment that incorporates the therapist’s expertise instead
of conventional “virtual” therapy. •

III. METHOD

In this section, the design of the proposed framework is
described. As mentioned earlier, the framework consists of
two separate phases STD, and RTM. STD is conducted using
the two different platforms, namely HTST and EIST, while
the second phase is the same for both platforms.

A. Phase A: Supervised Therapy Demonstration

During the first phase, the therapist provides rehabilitation
and tunes the intensity and strategy of therapy based on her/his
knowledge regarding the needs of the patient. For this purpose,
two alternative platforms are proposed, as explained below.

Platform #1: Haptics-enabled Teleoperated Supervised
Training: The first platform is a haptics-enabled telerobotic
system that enables the therapist to directly interact with the
patient and feel the kinesthetics of rehabilitation during task
performance. In other words, this platform can provide the
therapist with direct haptic awareness of interaction. A Two-
channel Haptics-enabled Architecture (THA) [22] is consid-
ered to design the telerobotic architecture. For this, the patient
is placed at the conventionally-called “master” console of the
telerobotic system, where she/he can provide the required
motion to perform a task in the shared VR environment. The
therapist is placed at the “slave” console where she/he can feel
the motions generated by the patient and can provide forces
to be reflected back to and felt by the patient.

Modeling: To investigate the performance, first, the haptic
interaction models at the therapist’s side and the patient’s side
are explained. The patient-robot haptic interaction model is:

δm(t)∗ vp(t) = ucm(t)+ fp(t). (1)

In (1), δm(t) is the impulse response of the linearized model of
the master robot, ∗ is the convolution operator, ucm(t) is the
control input to deliver the therapy (the design of ucm(t) is
explained later), vp(t) is the patient’s hand velocity, and fp(t)
is the force applied by the patient to robot. The force felt by
the patient f r

p(t) is in the opposite direction to fp(t), so f r
p(t)=

− fp(t). For fp(t), we have the following decomposition:

fp(t) = f ∗p(t)−ζp(vp, t). (2)

In (2), f ∗p(t) is the voluntary component of the force applied
by the patient to perform the task and ζp(vp, t) is the non-
linear reactive component of the force which results from the
biomechanical response of the patient’s hand to the movement
applied by the robot. Similar to the above, the therapist-robot
haptic interaction model can be described by

δs(t)∗ vth(t) = ucs(t)+ fth(t),
fth(t) = f ∗th(t)+ zth(vth(t), t).

(3)

In (3), δs(t) is the impulse response of the linearized model of
the slave robot, ucs(t) is the control input (the design of ucs(t)
is explained later), vth(t) is the therapist’s hand velocity, and
fth(t) is the force applied by the therapist to the slave robot
to administer the therapy. In addition, zth(vth(t), t) denotes the
nonlinear reaction dynamics of the therapist’s hand and f ∗th is
the exogenous force applied by the therapist to generate the
haptic therapeutic response based on the patient’s need.



Visoelastic Coupling: After developing the local mod-
els, control signals ucm(t) and ucs(t) should be designed to
complete the telerobotic loop and generate the viscoelastic
coupling between the therapist’s and the patient’s movements.
The proposed designs are explained below. A block-diagram
of the closed-loop telerobotic system can be seen in Fig. 3(a).

ucm(t) = c1(t)∗ vp(t)+ f̂th(t) where c1(t) = δm(t); (4)

ucs(t) =−γ(t)∗ (v̂p(t)− vth(t))+ c2(t)∗ v̂p(t)
where c2(t) = δs(t).

(5)

In (4) and (5), f̂th(s) is the therapeutic force, received at the
patient’s side; and v̂p(t) is the patient’s hand velocity, received
at the therapist’s side. In this paper, particular attention is
paid to the design of γ(t). In fact, γ(t) makes the mentioned
viscoelastic coupling. Note that γ(t) = L −1[Γ(s)

]
, where

L (·) denotes the Laplace transform, and Γ(s) is designed as

Γ(s) = ∆s(s)−
Kv +θv s

s
where ∆s(s) = L [δs(t)]. (6)

In (6), Kv is the stiffness constant and θv is the viscosity
constant of the viscoelastic coupling provided by the proposed
telerobotic system between the motions of the patient and
those of the therapist. To clarify how this design generates
viscoelastic coupling, we combine (1) to (6). The result is:

Fr
p(s) = F̂th(s);

Fth(s) = (Kv +θv s) · (Pth(s)− P̂p(s)
)
.

(7)

The first equation in (7) states that the force felt by the patient,
Fr

p(s), is equal to the force generated by the therapist, Fth(s).
The second equation indicates that the therapeutic force,
Fth(s), is the output of the viscoelastic dynamics (Kv +θv s)
where the stiffness and viscous parameters are Kv, θv. The in-
put signal to the dynamics is the position error, Pth(s)− P̂p(s),
generated by the therapist between his/her movements and
those of the patient. Thus, the therapist can assist or resist the
patient’s movement by providing various error profiles. The
HTST system gives both users the feel of haptic interaction
through the coupling. Allowing the therapist to directly feel
the coupling forces enables haptic awareness for him/her.

Remark 3. Considering (7), the therapist can stretch the
software-generated viscoelastic coupling to produce higher
forces. In other words, the therapist can change Pth(s) that
results in changing the intensity of the therapy by modifying
the magnitude of the position error (i.e., Pth(s)− P̂p(s)). Also,
the therapist can change the strategy (assistive versus resistive)
by changing the direction (sign) of the error. This error-based
therapist-in-the-loop force generation approach that uses the
viscoelastic coupling between the therapist and the patient
is used in both HTST and EIST platforms. The design is
motivated by the accepted need for providing freedom during
interaction to accommodate motor learning [7].•

Platform #2: EMG-based Indirect Supervised Training:
The second platform is a new architecture which can also
keep the therapist in the loop of robotic rehabilitation. It
is proposed to log the therapist’s intention in changing the
intensity and strategy of therapy through the therapist’s hand
posture. Using this indirect strategy, the therapist is mainly
free to move his/her hand and body because the therapist can

tune the therapy by distinct or continuous posture-based inputs
(not movement-based inputs). In this paper, the fist posture is
considered as the posture of interest. The platform is shown
in Fig. 2(b). The utilized armband and an example of one out
of eight available EMG readings are shown in Fig. 3(b).

Two EMG armbands are utilized in the implemented EIST
platform. The use of the wearable wireless armbands provides
movement freedom for the therapist. This (portability) is one
advantage of the EIST system over HTST. As mentioned, the
EIST platform is not capable of providing the therapist with
direct kinesthetic awareness. Instead, vibrotactile feedback is
provided according to the amount of force applied to the
patient’s hand to indirectly make the therapist aware of the
forces. The sensory substitution, is not as intuitive as directly
reflecting back the kinesthetic forces, but it eliminates con-
cerns regarding stability and safety of a closed-loop telerobotic
rehabilitation architecture [21], [27]. In addition, currently
each armband costs about US $ 200. Consequently, at the
therapist’s side the EIST setup costs about US $ 400. However,
the cost of having a second robot (considering the workspace
and the required forces), can be several orders of magnitude
higher. As a result, the design of the EIST system is cost-
effective which is an advantage of this platform over HTST.

To implement the EIST platform, a three-step protocol is
designed. The goal of the first step is to collect enough data
which is then used in the second step to learn (for detection)
the posture of interest to be used in the third step. The third
step maps the detected posture of interest to the intended
therapy which will then be provided to the patient using the
rehabilitation robot. The steps are described below.

Step #1) The therapist wears the two EMG armbands below
his/her elbow joints. There is no need for accurate placement
of the armbands. The therapist will be asked to perform
the following postures: (a) waving out, (b) waving in, (c)
expanding fingers, (d) making a fist, and (e) four finger-to-
thumb touching postures. The postures are shown in Fig. 3(c).
In this protocol, each one of the postures needs to be kept for 5
seconds while having 2 seconds rest in between. The posture of
interest should be kept for 15 seconds. The setup is equipped
with a binary foot pedal. The pedal needs to be pushed by
the therapist during the posture of interest. As mentioned,
we chose the making fist posture to register the therapist’s
intention for tuning the therapy. The output of the pedal is a
binary value that is used to distinguish the posture of interest
from other postures. This value is “1” during the posture of
interest and is “0” during other postures. This procedure forms
step #1 of the protocol and the time needed to run this step is
about 1 minute for each arm (i.e., 2 minutes in total). •

Step #2) The goal of the second step is to find a mapping
between the 8-dimensional space of the EMG measurements
(provided by each armband) and the 1-dimensional space of
the detected posture of interest (given by the foot pedal).
The mapping is named EMG Analyzer. The EMG Analyzer
should have high sensitivity to the specified posture of interest
and close-to-zero sensitivity to all other postures. Based on
our observations and to find an appropriate mapping, we
considered the history of measurements and some dynamical
features as well. For this purpose, two digital low-pass filters
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Fig. 3. (a) Block diagram of the HTST system (Zm(s), Zs(s), Zth(s), Zp(s)
are Laplace transformations of δm, δs, ζp and zth respectivelu ). (b) Placement
of the the EMG armband (from Thalamic Labs Inc., Canada) and a sample of
the recording during the fist-and-relax task. (c) Calibrating Postures. (d) The
neural network used and the corresponding inputs and output. Evaluation of
the trained NN: (e) the eight raw EMG measurements, and (f) the NN output
for detecting the fist posture. The time episodes of different postures can be
seen in (f).

have been applied in the pre-processing step. The Z-transform
of the filters are 0.01

(z−0.99) and 0.002
(z−0.998) , when the sampling

frequency is 1KHz. The first filter provides short-term memory
for the posture identification procedure and the second filter
provides longer-term memory. As a result, 24 signals (8 raw
plus 16 filtered signals) are considered to find the mentioned
mapping. A feed-forward NN is utilized that is composed
of three hidden layers. The first and the third layers have
5 perceptrons and the second layer has 15 perceptrons. A
linear transfer function is considered for the first and third
layers while a log-sigmoid function is considered for the
second layer. The training algorithm is Levenberg-Marquardt.
A schematic of the NN and the inputs and outputs are shown
in Fig. 3(d). To represent the functionality of the proposed
procedure, the result for one arm is discussed below when after
eleven iterations, the NN converges to the mean-square error
of 0.0001. After training the NN, its performance is evaluated
for various postures including a new one (i.e., arm pronation-
supination). The results are shown in Figs. 3(e) and 3(f) where
the raw EMG measurement is given in Fig. 3(e) and the output
of the trained NN is given in Fig. 3(f). As can be seen in the
figures, the trained NN is capable of detecting the fist posture
and distinguishing it from other postures. It should be noted
that any other tool that can be trained and used to accurately
and in real-time detect and distinguish the posture of interest
based on the EMG data can be used as the “EMG Analyzer”
in place of the tool explained in this step.•

Step #3) The third step is denoted as EIST-based Therapy
Production. The main purpose of this step is to map the
detected posture of interest to an intended therapeutic behavior
for applying various forces and tuning the therapy’s strategy
and intensity. In other words, this step maps the identified
posture of interest to a kinesthetic stimulus, which will then be
delivered to the patient’s hand by the robot. For this purpose,
first the following dynamics are defined:

Eth(n) = Sat
[−Em, Em]

{
η · εth(n)

}
, where

εth(n) = α · εth(n−1)+β

(
EMGNR(n)−EMGNL(n)

) (8)

The dynamics given by (8) define the position error Eth(t) to
be delivered through the viscoelastic constraint in the proposed
VR environment (please refer to (7) for definition of position
error and the resulting force). In (8), Sat{·} is the saturation
function whose limits are [−Em, Em], and n represents the time
samples. In addition, η is a scaling factor for normalization to
cover the range of position error to be used in the VR envi-
ronment. Also, EMGNR(n) is the output of the NN trained for
the right arm, and EMGNL(n) is the output of the NN trained
for the left arm. Accordingly, (EMGNR(n)−EMGNL(n)) is
termed differential muscle activity factor provided by the
therapist. Let us initially assume α = β = 1. The functionality
of α and β is explained latter. Based on the above definitions,
the therapeutic force generated by the EIST platform is

Fth(s) = (Kv +θv s)Ξth(s), where Ξth(s) = L [Eth(t)]. (9)

In other words, using (8), in order to generate the supervised
therapeutic forces, the therapist can tune the position of the



object (corresponding to his/her motion) in the VR environ-
ment (like the yellow circle of the shared VR shown in Fig.
2) through providing various formats of posture of interest
for his/her right and left arms. In this way, the therapist can
tune the intensity and strategy of therapy based on his/her
intention. As a result, the patient will feel the kinesthetic
forces generated by the virtual viscoelastic constraint, which is
stimulated through the existence of E(t). Accordingly, positive
values for E(t) result in generation of assistive therapeutic
forces and negative values for E(t) result in resistive forces.
Here, the position of the therapist in the VR is calculated as

pth(t) = pp(t)+Eth(t) ·Q(t)

where Q(t) =
(

pp(t)−pT (t)
||pp(t)−pT (t)||2

)
.

(10)

In (10), pp(t) is the position of the patient, Eth(t) is the
position error generated by the therapist to provide therapeutic
forces through the viscoelastic constraint, pT (t) is the position
of the target, and Q(t) is the normalized unit vector that
connects the position of the patient to the one for the target.

Note that in (8), Em is a positive value considered to provide
the maximum and minimum limits for delivery of the position
error by the therapist. This can be tuned based on the size of
the robot’s workspace. The right and left arms of the therapist
are considered to identify his/her intention for delivering
assistance and resistance, respectively. As a result, considering
(8), when the output of the NN trained for detecting the
therapist’s right fist increases, the E(t) will gradually increase.
When the output of the NN trained for detecting the therapist’s
left fist increases, the E(t) will gradually decrease. Continuous
reduction in E(t) value can make it negative. As a result, the
therapist is able to tune the intensity and strategy of therapy
by providing various formats of posture of interest (in terms
of timing of initiation together with the duration of keeping
the posture) in left and right arms. •

Remark 4. Parameter α works like a forgetting factor and
should be chosen as 0 ≤ α ≤ 1. As a result, if α = 0, no
memory is considered for the generated therapeutic behavior.
This means that once the therapist provides the posture of
interest, the resulting position error in the VR will change
correspondingly and when the therapist stops the posture, the
position error in the VR will become zero. As a result, the
therapist needs to keep the posture to deliver the intended ther-
apeutic forces. However, for α = 1 the therapist can provide
the intended therapy through a “pumping-like” motion. Once
the therapist provides the posture of interest, a position error
will be set for the patient even if the therapist relaxes his/her
hand. The therapist can still decrease/increase the position
error using his/her arm postures. As a result, the therapist
can “pump-in” and “pump-out” the position error. An α value
close (but not equal) to unity results in a similar behavior for
the system; however, it introduces a leakage of error in the
VR environment. As a result, if the therapist stops providing
the posture, the position error will gradually converge to zero.
The leakage rate correlates with the choice of α (the lower
the α value, the faster will be the leakage). This can help the
therapist in tuning the required assistance/resistance. •

Remark 5. Parameter β works like a responsiveness factor
that increases the sensitivity to the differential muscle activity

Fig. 4. EMG-based motion tracking in the VR environment.

provided by the therapist. The higher this parameter, the faster
the position error will grow in response to (EMGNR(n)−
EMGNL(n)). By increasing this parameter, the therapist can
quickly change the strategy and intensity of the intended
therapy while providing less differential muscle activity. α and
β are also useful for novice therapists who are not familiar
with the operation of this system. As a result, lower values of
β provide more control since it reduces the sensitivity; also
lower values of α enhance the forgetting feature so that an
erroneous input from the therapist will be forgotten even if
the therapist does not correct it. •

To evaluate the behavior of the design proposed in (9), the
following experiment was conducted. The user was required to
follow a desired trajectory of an object in the VR environment.
The trajectory was a periodic triangle wave signal with a
frequency of 0.2Hz and an amplitude of 6 cm. The user was
required to perform the task by tuning the differential muscle
activity. The goal was (a) to show that using the proposed
EIST platform it is possible to accurately provide varying
position trajectory in the VR environment, and (b) to find
default values for α and β which result in an appropriate
control of the therapy. The results are shown in Fig. 4, where
the solid red line shows the required trajectory and the solid
blue line shows the position generated by the user. The chosen
default values for α and β are 0.999 and 0.1, respectively.
As can be seen in Fig. 4, the user was capable of accurately
tracking the corresponding position of the moving object in
the VR environment. It should be noted that in practical
situations, the therapist usually does not change the strategy
(which corresponds to the sign of the trajectory) and intensity
(which corresponds to the amplitude) as frequently. Here, we
showed that using this new platform it is possible to map the
intention of the user to track the required behavior in the VR
environment through providing differential muscle activities.
This can then be used for tuning the intensity and strategy of
the intended therapy (as explained before).

Remark 6. It should be noted that in both platforms, in-
creasing the stiffness and viscosity of the coupling reduces the
position-dependent and velocity-dependent error between the
motions of the therapist’s and the one allowed for the patient.
The stronger the viscoelastic coupling, the less freedom will
be provided for the patient. The amount of θv and Kv are fixed
and should be defined by the therapist in the first session of
therapy, taking into account the performance of the patient.
We have demonstrated the system for a group of therapists
and based on our observation θv value of 20 N.s/m and Kv
value of 100 N/m can be considered as default. •

Remark 7. It should be also noted that for the EIST
platform, there is no need for accurate placement of the arm-
bands or for a biomechanical model for the musculoskeletal
system of the therapist arms, because (a) an array of the EMG



measurements (collected by the armbands) is used, and (b) a
NN-based posture identification is implemented (which is a
black-box modeling scheme). •

B. Phase B: Regeneration Through Modeling

During the second phase of the proposed framework, first
the behavior of the therapist, which is registered during the first
phase (using either the EIST or HTST platform) in connection
with adjusting the strategy and the intensity is modeled in
the workspace of the therapy. Then, the modeled therapeutic
behavior is regenerated for the patient when the therapist is
not engaged. The therapist can assign a duration for therapy
regeneration through the RTM phase so that she/he can work
with another patient. In summary, during the second phase, the
framework learns the behavior of the therapist, then regenerate
the learned behavior during a specific amount of time. In this
way, the therapist does not need to spend all of his/her time
with one patient and can share it between several patients.
This addresses an essential need of under-resourced healthcare
systems. In addition, this allows the therapist to intuitively tune
the therapy delivered by an HRR system. The second phase
is composed of the following two steps.

STEP 1) The first step is to model the therapeutic behavior
delivered by the therapist whose corresponding data is logged
during the first phase. For this purpose, first, the distribution
of the therapeutic position error delivered over the workspace
by the therapist is calculated. The distribution represents the
therapist’s intention in tuning the strategy and intensity of the
therapy. Then, the calculated distribution is fed to the therapy
modeling module. The module is responsible for fitting an NN
representation of the therapy, which can be saved and used in
the second step where the therapeutic behavior is regenerated.
The NN used in this part is composed of three hidden layers
where the first and the third layers have 5 perceptrons and the
second layer has 15 perceptrons. A linear transfer function
is considered for the first and the third layers while a log-
sigmoid function is considered for the second layer. The
training algorithm is Levenberg-Marquardt. It should be noted
that the output of the NN over the workspace of the therapy
can be graphically plotted as a heat map. The plot is denoted
as Therapeutic Intensity Map (TIM). This can be used as a
graphical representation of the therapy in follow-up sessions,
which intuitively informs the therapist about the therapeutic
behavior delivered in the last session. Comparing several TIMs
of consecutive sessions can be a useful tool for therapists to
monitor the progress of motor performance. In Section IV,
examples of the TIM are shown. •

STEP 2) The second step is when the modeled therapeutic
behavior is regenerated and generalized in the workspace of
therapy for the patient. The therapist can leave the patient to
repetitively perform various rehabilitation tasks. During this
step, the trained NN will be utilized to map the current position
of the patient in the workspace of therapy to the modeled
therapeutic intensity and strategy delivered by the therapist
during the first phase. For example, if during the first phase, the
therapist provided higher intensity of assistive therapy in parts
of the workspace (that can be due to high muscle tone of the
patient in that area), the patient will feel more assistive forces

(during the second phase) when her/his motion trajectories
pass through that area. Consequently, the input to the trained
NN is the current position of the patient in the workspace
of the therapy and the output is a therapeutic position error
with respect to the target needed to regenerate the required
therapeutic intensity and the resulting forces (using (9)). •

Remark 8. It should be mentioned that to choose the
parameters of the neural networks (number of layers and
perceptrons), we have conducted several experiments starting
from simpler architectures. The reported architecture is a feed-
forward NN composed of three hidden layers where the first
and the third layers have 5 perceptrons and the second layer
has 15 perceptrons. A linear transfer function is considered
for the first and third layers while a log-sigmoid function
is considered for the second layer. The training algorithm
is Levenberg-Marquardt. This architecture provided accurate
and consistent results and addressed the main goals. Further
modification of the architecture based on patient-based clinical
evaluations is part of our ongoing research. •

IV. RESULTS

In this section, experimental results are given in support of
the proposed framework. For this purpose, both HTST and
EIST platforms are implemented and tested. The software
is implemented on a 64 bit Windows machine. The robots
and the NN are run in MATLAB/Simulink using the QUARC
2.2 real-time environment which is provided by the industrial
partner of this work QUANSER (Markham, ON, Canada). The
VR environment was developed in C++ and communicates
with MATLAB through the UDP protocol. In addition, a
code developed in C++, reads the raw EMG data and send
it through a UDP protocol to MATLAB. The following steps
are implemented to conduct the validation.

A. Virtual Reality Environment and the Task

The VR environment is shown in Fig. 2. Also, the corre-
sponding workspace of the robot is shown in Fig. 1(b), where
the possible positions of the target are the blue stars and the
home position is the red star. The target randomly switches its
location in a sequence with a homing motion after each switch.
An example of the sequence is [Location #1-Home-Location
#4-Location #7-Home-...]. The allowed time for each home-to-
target or target-to-home movement was 3 seconds. The target
switches its position if (a) the elapsed time for each motion
exceeded the 3-second window, or (b) the target was reached
within the time window. The definition of reaching was to
have a targeting error (Euclidean distance) less than 0.5 cm.

B. Simulating Post-stroke and Healthy Users

To provide a comparable and consistent evaluation, motor
behaviors of a healthy user and a stroke patient were simulated
for the robot. The simulated patient was then assisted using
(a) Therapist-In-the-Loop HTST scheme (TIL-HTST),
(b) Therapist-In-the-Loop EIST scheme (TIL-EIST),
(c) NN trained by the HTST scheme (NN-HTST),
(d) NN trained by the EIST scheme (NN-EIST).
In general, computational models of the stroke-related deficits
can allow researchers to design and analyze the performance



of systems implemented to help post-stroke patients before
starting clinical trials [28]. Particularly, in this work, the
simulated model allows us to evaluate different features of
the platforms under similar conditions. For this, the patient-
side robot was programmed to conduct the tracking tasks in
the VR environment using two different control capabilities
(one corresponding to the simulated healthy user and the other
corresponding to the simulated disabled user).

To simulate the behavior of a healthy user, a finely tuned
classical optimal trajectory controller was implemented which
enabled the robot to track the targets within the 3-second
window. To simulate the behavior of a post-stroke patient who
(a) has imbalanced high muscle tone (hypertonia) due to the
stroke and (b) cannot provide enough controlling force to track
the target, the following steps were conducted:

1) First, the control gains of the above-mentioned trajectory
controller considered for tracking the target was reduced
by 70%. This was done since stroke patients usually
represent weak control forces to track an object.

2) Second, to simulate the high muscle tone, a nonlinear
viscous force field was generated in the workspace, as
shown in Fig. 5(a). The post-stroke high tone in muscles
usually restricts movement in one direction or parts of
the workspace. This concept is used to simulate the
imbalanced tone through the viscous force field.

In the next step, the tracking task in the VR environment was
conducted by the simulated healthy user and stroke patient
during two 5-minute experiments. The results can be seen in
Fig. 5. As shown in Figs. 5(b) and 5(d), the simulated healthy
user was capable of tracking the target in various parts of the
workspace, the task was completed properly, the workspace
was covered and the user was capable of reaching all the
targets within the 3-second window for each motion.

In contrast, for the simulated post-stroke patient, the trajec-
tories were not properly tracked. This can be seen in Figs.
5(c) and 5(e). In the right side of the workspace (X ≥ 0), the
length of the trajectories were considerably reduced and none
of the 5 targets in that region were reached. This was due to
the existence of the modeled high muscle tone in that region
(X ≥ 0). In addition, in the left half side of the workspace
(X < 0), although the trajectories were larger than the right
side, still the patient was not able to reach two of the targets
within the 3-second window; in addition, there was high lateral
deviation, which was due to the poor control capability of the
simulated patient. In summary, the simulated patient was not
capable of accurately performing the assigned task.

After confirming that, the simulated patient has poor track-
ing performance in comparison with the simulated healthy
user, the next step was to evaluate the performance of the
defined four schemes (TIL-HTST, TIL-EIST, NN-HTST, NN-
EIST) under similar conditions.

C. Evaluation of the HTST Platform

As mentioned earlier, using the proposed HTST platform,
we can deliver direct kinesthetic supervision of a human
therapist for a stroke patient. In this part, the performance of
the TIL-HTST platform is shown. For this purpose, a human
operator used the HD2 haptic device (therapist-side robot in

(a)

(b) (c)

(d) (e)

Fig. 5. (a) Generated viscous force field; (b) The modeled healthy user (the
resulting overlaid 2D path for task performance); (c) The modeled post-stroke
patient (overlaid 2D path); (d) The modeled healthy user (trajectory over time);
(e) The modeled post-stroke patient (trajectory over time).

the implemented HTST platform) to provide therapeutic forces
in order to recover the target tracking performance of the
modeled stroke patient. Figs. 6(a) and 6(b) show the recovered
path in 2D and the motion trajectory over time respectively.
The experiment was conducted for 5 minutes.

As can be seen in Fig 6, using the implemented HTST
platform, the operator was capable of delivering kinesthetic
assistance that resulted in rectifying the motion trajectories
of the simulated patient. Consequently, using the TIL-HTST
platform, the operator playing the role of the therapist provided
variable coordinative assistive forces to overcome the reduced
control power of the modeled patient and the increased tone
in the right side. The information in this stage is logged and
is utilized in the next section to train the NN, which can learn
and model the assistive behavior of the therapist.

D. Neural Network Training and Therapy Regeneration based
on the HTST Platform

The information logged during rehabilitation using the
HTST platform was utilized to train a NN. Training of the
NN converged (mean square error of 0.00023) after 8 itera-
tions, using Levenberg-Marquardt technique. In this part, the
performance of the trained NN is validated. For this purpose,
the trained NN is used to generate therapeutic forces for
the simulated stroke patient in order to recover the degraded
motion control performance. The result of trajectory tracking
is shown in Figs. 7(a) and 7(b). As can be seen in Figs. 7(a)
and 7(b), the trained NN was capable of properly delivering
the required therapy to rectify the trajectories affected by the
modeled stroke. As a result, the size of the trajectories on
the right side of the workspace is recovered, all the targets
are reached and the deviations are reduced. the trained NN



(a)

(b)

Fig. 6. The capability of the HTST platform in recovering the motion of the
modeled stroke patient: (a) overlaid 2D path, (b) trajectory over time.

(a)

(b)

(c) (d)

(e)

Fig. 7. The capability of the NN-HTST scheme in recovering the motion of
the modeled stroke patient: (a) overlaid 2D path, (b) trajectory over time. (c)
The position error and (d) the therapeutic forces, generated by the NN trained
to deliver therapy based on the logged behavior of the therapist during TIL-
HTST trial. (e) The resulting heat map of the therapy using NN-HTST.

was capable of regenerating and generalizing the kinesthetic
behavior of the therapist to help the patient’s motion tracking
capability using no direct information about the characteristics
of the simulated patient and by only utilizing information
collected during the TIL-HTST trial. The therapeutic position
error created by the NN and the corresponding therapeutic

force profile can be seen in Figs. 7(c) and 7(d) respectively.
As can be seen in Figs. 7(c) and 7(d), in the right side of the
workspace (X ≥ 0) where the simulated patient showed high
muscle tone, the provided therapeutic position error and the
corresponding forces were considerably higher.

As mentioned earlier, the trained NN can be evaluated at
different points of the workspace and the result can be plotted
as a heat map that shows the intensity of the trained therapy.
The resulting map encapsulates information regarding the level
of infirmity and reduced capability of the patient based on
the behavior of the therapist during the TIL-HTST trial. The
clinician can use the resulting heat map as a new image
modality to evaluate the disability of the patient and analyze
improvement by comparing the heat map of consecutive ses-
sions. The resulting heat map of the conducted experiment is
shown in Fig. 7(e). Interestingly, the heat map is in agreement
with the simulated level of disability. As mentioned before,
the simulated patient has high muscle tone on the right side
of the workspace which results in reduced tracking capability
in that region. This can also be interpreted from Fig. 7(e)
which shows that the intensity of the trained therapy delivered
on the right side is higher than the one delivered on the left.

E. Evaluation of the EIST Platform

In this subsection, the performance of the proposed TIL-
EIST platform is shown. For this purpose, a human operator
playing the role of a therapist used the implemented EIST
platform to provide therapeutic forces in order to recover the
target tracking performance of the modeled stroke patient.
Figs. 8(a) and 8(b) show the recovered path in 2D and the
motion trajectory over time, respectively. The experiment was
conducted for 5 minutes. As can be seen in Fig 8, using
the implemented EIST platform, the operator playing the
role of the therapist was capable of delivering kinesthetic
assistance that resulted in rectifying the motion trajectories
of the simulated patient. Consequently, using the TIL-EIST
platform the operator provided variable coordinating forces to
overcome the reduced control power of the modeled patient
and the increased tone in the right side of the workspace. The
information in this stage was logged and is used in the next
section to train the second NN that can learn the therapeutic
behavior delivered by TIL-EIST.

F. NN Training and Therapy Regeneration Based on the EIST

The information logged during rehabilitation using the EIST
platform was utilized to train the second NN. Training of
the NN converged (mean square error of 0.00029) after 10
iterations, using Levenberg-Marquardt technique. In this part,
the performance of the trained NN is validated. For this pur-
pose, the trained NN is used to generate therapeutic forces for
the simulated stroke patient in order to recover the degraded
motion control performance. The result of trajectory tracking
can be found in Figs. 9(a) and 9(b).

As can be seen in the figure, the trained NN was capable
of properly delivering the required therapy to recover the
trajectories affected by the modeled stroke. As a result, the size
of the trajectories on the right side was rectified, all the targets
were reached and the deviations were reduced. In other words,



(a)

(b)

Fig. 8. The capability of the EIST platform in recovering the motion of the
modeled post-stroke patient: (a) overlaid 2D path, (b) trajectory over time.

the trained NN was capable of reproducing the behavior of
the therapist to recover the tracking performance without any
direct information about the characteristics of the simulated
patient and by only using information collected during the
TIL-EIST trial. The generated therapeutic position error in
the VR environment and the corresponding therapeutic force
profile are shown in Figs. 9(c) and 9(d).

As can be seen in Figs. 9(c) and 9(d), in the right side of
the workspace (X ≥ 0) where the simulated patient showed
high muscle tone and less control capability, the provided
therapeutic position error and the corresponding forces were
considerably higher. The designed NN based on the EIST
platform was also utilized to find the therapeutic heat map.
The generated map is shown in Fig. 9(e). The resulting map
encapsulates information regarding the level of infirmity and
reduced capability based on the behavior of the therapist
during the TIL-EIST trial. Similar to the case of the HTST-
based map, the map shown in Fig. 9(e) also matches the
simulated level of disability.

Based on the results shown in this section, both EIST
and HTST platforms were capable of delivering TIL robotic
rehabilitation. The information logged during therapy delivery
by the proposed platforms can be utilized to train neural
networks to regenerate the same therapeutic behavior while
the therapist is outside of the therapy loop. The proposed
training technique can encapsulate the rehabilitative preference
of a skilled human therapist for delivering kinesthetic therapy
and can fill the gap between conventional HRR systems and
standard therapist-in-the-loop hand-over-hand therapy.

V. CONCLUSION

In this paper, a new framework was proposed to tune the
intensity and strategy of haptic rehabilitation systems based on
the registered kinesthetic supervision of a therapist. The pro-
posed framework has two phases, namely: Supervised Therapy
Demonstration (STD) and Regeneration through Modeling
(RTM). Two platforms were considered as alternatives which
can register a therapist’s intention for modifying the therapy
during the STD phase. The platforms were denoted by (a)

(a)

(b)

(c) (d)

(e)

Fig. 9. The capability of the NN-EIST scheme in recovering the motion of
the modeled stroke patient: (a) overlaid 2D path, (b) trajectory over time. (c)
The position error and (d) therapeutic forces, generated by the NN trained
to deliver therapy based on the logged behavior of the therapist during the
TIL-EIST trial. (e) The resulting heat map of the therapy using NN-EIST.

Haptics-enabled Teleoperated Supervised Training (HTST)
and (b) EMG-based Indirect Supervised Training (EIST).
Although in contrast to the EIST platform (proposed in this pa-
per), the HTST platform can provided direct haptic awareness
for the therapist (during the STD phase), the EIST platform
is safer to operate, portable and more cost-effective. Both
platforms are capable of (a) realizing kinesthetic supervision of
a therapist for robotic therapy, and (b) providing the therapist
with some degree of haptic awareness. During the RTM phase,
the registered therapeutic behavior of the therapist is modeled
using a neural network that can then regenerate the behavior
for the patient. As a result, a therapist can demonstrate a brief
session of kinesthetic robotic therapy; then the therapist can set
a length of time for the patient to independently practice based
on the modeled behavior. This saves the therapist’s time, which
is an important benefit to under-resourced healthcare systems.
In this paper, the engineering design of the platform was
presented. It should be noted that the flexible NN-based design
of the proposed framework allows for further extension of the
technique and considering several other features and factors
which have not been considered at this stage. Further analysis
of this will form part of our future work. In the experiments, an
end-point robotic system was utilized, which was developed by



our industrial partner, Quanser Inc. (Markham, ON, Canada).
In this paper, we used position-based therapeutic tasks. To the
best of our knowledge, this paper reports one of the earliest
designs and implementations of a AI-based learning-from-
demonstration strategy for training of rehabilitation robots
under the kinesthetic supervision of a therapist. Our future
work will focus on patient-based studies of the proposed
technology and clinical experiments of the technique. This
paper does not concern about delay-related stability issues.
Discussions about the effects of delay on telerobotic systems
can be found in the literature such as [29], [30], [31], [27].
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