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Abstract—In robot-assisted needle insertion procedures, in
order to steer a beveled-tip needle toward a target location, the
needle tip pose is required to be used as feedback. Mathematically,
the needle tip pose can be expressed as a position vector
and a rotation matrix that represents the orientation of the
needle. Using the traditional two dimensional (2D) ultrasound
imaging modality, since the images are low in resolution and the
needles are small in diameter, only the position of the needle
tip can be measured, and the orientation information cannot
be directly extracted. This paper presents a nonlinear observer
for estimating the needle tip orientation based on needle three
dimensional (3D) kinematic equations and the position data
measured from ultrasound images. Assuming bounded inputs for
the needle model, it is shown that the observation error remains
bounded. The performance of the observer is shown in an ob-
server/controller feedback loop. The stability and convergence of
the observer/controller combination are shown by solving Linear
Matrix Inequality (LMI) optimizations. Experiments performed
for different tissue types and different needle insertion goals verify
the effectiveness of our method.
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I. INTRODUCTION

Needle insertion procedures are used in many minimally
invasive surgeries to access a target organ for diagnosis, sample
removal or drug delivery. In these procedures, the needle tip
positioning accuracy is a crucial factor in determining surgical
outcomes. Using beveled-tip needles, due to the asymmetric
interaction forces acting at the tip, the needles bend during
the insertion. Manipulating the needle base outside the body
provides a means to change the needle path and to steer it
towards the desired location inside the tissue.

In robot-assisted needle insertion procedures, controllers
are designed to produce necessary control actions using the
needle’s current states. Needle tracking inside the tissue can be
performed using different measurement methods such as fiber
Bragg grating sensors [1], different imaging modalities [2], [3],
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and electromagnetic tracking [4], [5]. In general, for clinical
applications, it is preferred to use measurements performed
from outside of the body as they impose least limitations on
measurement equipment dimension and sterilization issues. In
this regard, force measurements at the needle base and imaging
modalities such as ultrasound and Computed Tomography (CT)
are suitable methods which provide estimates of the needle
shape and tip position. In [6], the needle base force data
is combined with mathematical models to find the needle
tip position. Obviously, having access to the needle states
simplifies the controller design and improves the performance
of the system.

During the insertion, the needle moves on a 3D curved path.
There have been many different motion planners proposed for
needle steering. In these methods, the needle tip information
is combined with mathematical models and re-planning is
performed to find the required action at the current moment and
the future times to reach the desired position [7], [8]. In [9], a
two-body rigid/flexible model for the needle is proposed and
used for steering the needle in soft tissue. In other methods,
the steering problem is based on a feedback control loop where
the controller calculates the control action just for the current
time for making the tip positioning error small [4], [10]–[12].
In [10] the needle’s tip planar motion is controlled using only
the information about the tip position as the feedback signal.
In [4], the needle tip orientation is found using a five-degree-
of-freedom (DOF) sensor and used in calculating the control
signals.

B-mode ultrasound images with 1D transducers are very
common and cost-effective methods for tracking instruments
and tissue in clinical settings, using which the needle tip
position can be extracted from 2D images [13]. However,
ultrasound images can only provide the needle tip position in
Cartesian space as due to the low-resolution ultrasound images
and the small diameter of the needle, the bevel orientation
cannot be detected in the images. In such cases, model-based
observers can be designed to estimate the non-measurable
system states. In [11], state transformations are used to form a
set of linear equations for which a linear observer is developed
and used with a linear controller to keep the needle in one
plane. Later, this observer is used in many other works.
Authors in [14] employed the linear observer to estimate the
needle tip orientation and used the estimated variables in a
low-level controller, which works along with a high level
2D planner to steer the needle on the optimal path. In [12],
the same transformation is used, and a nonlinear observer is
designed to be used with an adaptive controller. In [15] this
linear observer is designed for the reduced configuration space
and is fed to the fiber space observer to estimate the full system
states for a planar task. In [16] a model for torsional dynamics
of the needle is presented and augmented with planar variables.
The system is then linearized and a Kalman filter is employed



2

to estimate the system states and apply a state feedback control.
Usign Kalman filters, in [5], multiple sensor information is
used along with a Kalman filter. Authors in [17] employed
an unscented Kalman filter and 3D ultrasound images. In this
work, one of the orientation angles is considered to be known
as a measurement using a simplifying assumption. In [18], we
designed a nonlinear observer to partially estimate the needle
tip orientation. In this work, the stability and convergence of
the observer were only guaranteed for a limited workspace.

In the current work, an approximate high-gain observer is
used to estimate the rotation matrix representing the needle
tip orientation. Considering an upper-bounded input signal for
the needle model, the proposed observer is shown to be stable
even at singularities, which guarantees the boundedness of
the observation error. As we will see later, the needle model
inputs comprise of needle insertion velocity and needle base
rotational velocity. Moreover, the upper bound of the error can
be obtained in terms of the observer gain, system parameters
and the input upper bound.

II. CONTRIBUTIONS

The needle steering problem involves finding algorithms for
rotating the needle at its base during the insertion to reach
the desired deflection. Due to the asymmetry of the forces at
the beveled tip, rotating the needle and changing the bevel
orientation affects the needle path inside the tissue. Since this
path depends on the tip orientation, having access to the needle
tip pose information, i.e., its Cartesian position and orientation
will be helpful for accurate needle steering. The needle tip
pose can be measured using different methods; however, these
methods should satisfy the clinical requirements. Ultrasound
imaging is a low-cost non-invasive imaging modality, which
has been widely used in clinical applications. Image processing
techniques can be applied on the ultrasound images to provide
measurements of the needle tip position; however, since the ul-
trasound images fail to provide high-resolution images and the
needles used in needle insertion procedures are also very small
in diameter, the needle tip orientation cannot be measured
using this imaging modality. Moreover, due to the sterilization
issues, the use of needle-mounted sensors is not clinically
feasible. Alternatively, using the measured variables, i.e., the
position data and the mathematical models for the needle-tissue
interaction, state observers provide a method to get an estimate
of the needle tip orientation [11], [18], [19]. In this paper, the
3D unicycle equations [20] are used. It is shown that without
any state transformations the needle kinematics can be written
as three subsystems including linear terms. Although these
equations are simple, they fail to meet the Lipschitz continuity
condition, which makes the observer design more challenging.
To overcome this limitation, the method introduced in [21]
is used which deals with non-Lipschitz systems. This method
uses 2D ultrasound images and compared with other observers
mentioned in Section I, does not impose any limitation on the
operation region as it deals with the singularities. However, this
method can only guarantee the boundedness of the observation
error, i.e., the difference between the actual and the estimated
needle tip orientation. The observer gain can be selected

properly to achieve the desired error bound. When combined
with a closed-loop controller, this is sufficient for satisfactory
needle tip positioning performance.

Remembering the main goal of designing an observer,
the estimated states should be used in a properly designed
controller to compensate for the positioning errors. The ob-
server/controller combination, however, should be designed
such that the stability and performance of both the controller
and the observer are guaranteed. As with any observer, a
requirement of the proposed observer is to have a bounded
input signal for the system, or equivalently a bounded control
input in a feedback configuration. This leads to the idea of
limiting the control signal before applying to the system and
designing the controller accordingly. This assumption is not
very limiting as in practice eventually the actuators saturate,
which can be considered as having an upper-bounded control
signal. Nevertheless, saturation should be considered in the
controller design to ensure the stability and performance of
the observer-based controller.

The observation error and the introduced saturation on the
control signal are considered as an additive uncertainty. Taking
the uncertainty into account, a parametrized state feedback
controller is designed using pole placement method and is an-
alyzed using LMI optimizations to find the region of attraction
for the tracking error.

In this paper, the stability of the whole system is guaran-
teed by stabilization of the observer and designing a stable
controller such that the observer requirements are met. To
this end, the paper is divided into two parts. The first part
overviews the state observer for estimating the needle tip
states and the second part is devoted to designing a controller,
which acts along with the designed observer. The paper is
organized as follow. Section III presents a review of the needle
model. Section IV provides the observer structure and its proof
of stability. In Section V the controller design and analysis
procedure are presented, and in Section VI the proposed
observer/controller structure is validated using experiments.

III. NONHOLONOMIC MODELING OF NEEDLE MOTION

During the insertion of beveled-tip needles, the asymmetric
interaction forces acting at the needle tip cause the needle to
bend toward the bevel orientation. Axially rotating the needle
base changes the bevel orientation making the needle follow
a 3D curved trajectory. The needle motion can be presented
by the pose of the frame {B} with respect to the fixed frame
{A}, as shown in Fig. 1. Frame {B} is the moving frame
attached to the needle tip, and its position and orientation are
representatives of the needle motion. Using this configuration,
in [20] the needle is modeled as a 3D unicycle and its
kinematics are expressed using coordinate free representation
as

ṗ = R

[
0
0
v

]
(1a)

Ṙ = R

[
0 −u 0
u 0 −kv
0 kv 0

]
(1b)
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Fig. 1. The needle shown in 3D space. The frame {A} is the fixed frame
and the moving frame {B} is attached to the needle tip.

in which the vector p = [x y z]
T is the needle tip position

and the 3×3 rotation matrix R represents the orientation of the
frame {B} with respect to the frame {A}, respectively, and ˙(.)
denotes the time derivative. k and v are the curvature of the
needle path and the insertion velocity, respectively. u denotes
the needle base axial rotational velocity, which is assumed to
be upper bounded by ū and is the primary factor in determining
the needle tip path. The insertion velocity v has minimal effect
on the tip path [22] and is therefore assumed to be constant
in this paper.

Remark 1. As shown in [15], from (1a), it is easy to see that
the vector ṗ is the last column of matrix R multiplied by v. By
expanding (1b), the second column of R can also be presented
by second time derivative of the position vector multiplied by
1/k. Moreover, representing the ijth element of the rotation
matrix with rij , from the orthogonality property of the rotation
matrix, the elements ri1, i = 1, 2, 3, can be written as

ri1 = ±
√

1− (r2
i2 + r2

i3) (2)

The needle is inserted continuously in the Z direction
without retractions until it reaches the final depth. In this
case, x and y determine the needle deflection at each inser-
tion depth. As explained in [13], the 3D needle tip position
vector p = [x y z]

T can be found using 2D transverse
ultrasound images and the image processing techniques. The
3D needle position can be projected into X − Z and Y − Z
planes, forming 2D maps of needle deflection. Using (1)
and defining the new vector si =

[
p(i) vri3 (−kv2)ri2

]
,

the needle motion in the X − Z plane for i = 1 with
s1 =

[
x vr13 (−kv2)r12

]
, and in the Y − Z plane for

i = 2 with s2 =
[
y vr23 (−kv2)r22

]
can be expressed in

state space as

ṡi = Asi +Bφ(si) (3a)
ysi = Csi (3b)

with

A =

[
0 1 0
0 0 1
0 0 0

]
(4a)

B = [0 0 1]
T (4b)

C = [1 0 0] (4c)

φ(si) = −(kv)2si(2)︸ ︷︷ ︸
φL

± kv2

√
1−

(
si(2)

v

)2

+

(
si(3)

kv2

)2

)︸ ︷︷ ︸
φ∆

u

(4d)

Since the equations representing the planar motion have the
same form for i = 1, 2, in the sequel, the index i is omitted
for simplicity.

The new state vector s is related to the needle tip pose.
Whereas the first element in s, i.e., s(1) is directly measured
from images, the second and third element in s, which are
related to rotation matrix elements, need to be estimated.

The state observer is a computer-implemented system,
which runs concurrently to the real system and we have access
to all its states. The observer equations are formed using the
system equations (3)-(4) and an additional corrective term. If
we can show the convergence of the observer, the observer
states can be used as the estimated states. However, since
φ∆ does not satisfy the Lipschitz continuity condition, it is
not possible to design a convergent observer and instead an
approximate observer is used. The following section is devoted
to the observer design process for the 2D case. As explained
before, the 3D observation problem can be resolved to two 2D
problems. Later in Section V, a controller is designed.

IV. NEEDLE ORIENTATION OBSERVER

For the observable system (3)-(4), the main challenge in
designing a state observer for (3) is the nonlinear term φ(s)
as the function φ∆ = kv2

√
1− ((s(2)/v)2 + (s(3)/kv2)2) is

both continuous and bounded but does not satisfy the Lipschitz
continuity condition when ((s(2)/v)2 +(s(3)/kv2)2)→ 1. To
deal with this constraint, the following high-gain approximate
observer is used [21]

˙̂s = Aŝ +Bφ(ŝ) +
1

2
M−1
θ CT (ys − Cŝ) (5a)

ŷs = Cŝ (5b)

where A, B, C and φ are defined in (4) and ŝ is the estimated
state vector. Mθ is a positive-definite matrix that satisfies the
algebraic Lyapunov equation

−θMθ −ATMθ −MθA+ CTC = 0 (6)

with θ > 1. For a fixed value of θ, this equation can be
rewritten as −(I+(1/θ)AT )Mθ−Mθ(1/θ)A+1/θCTC = 0,
which can be solved using the lyap function in Matlab.
The last term on the right-hand side of (5) is the corrective
term added to compensate for estimation errors. Defining the
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estimation error as e = ŝ − s and the Lyapunov function
V (e) = eTMθe, the time derivative of V (e) is obtained as

V̇ (e) = −θeTMθe+ 2eTMθ (φ(u, ŝ)− φ(u, s)) (7)

Since φL in (4) is a Lipschitz function with some Lipschitz
constant ` and the non-Lipschitz term involving φ∆ to be
bounded by some sup |uφ∆| = δ/2, in [21] it is shown that
the observation error is upper-bounded as

‖e‖ ≤ θ2

(
c2
c1

)
‖e(0)‖ exp(−µt)+

δM̄

c1µ
(1− exp(−µt)) (8)

In this equation, c1 =
√
|λmin(M1)|, c2 =

√
|λmax(M1)|,

in which λ denotes the eigenvalue of the matrix and M̄ =√
M13,3

, where M1 is the solution of (6) for θ = 1 and
M13,3

is (3,3) element of M1 . Also, µ = 1
2θ − (`/c1)M̄

and θ is chosen such that µ > 0. In this equation, the first
term exponentially approaches zero; however, the second term
increases exponentially to the value δM̄/c1µ. Therefore, there
exists some T ≥ 0 such that the observation error is upper
bounded by

‖e(t)‖ ≤ β̄ δM̄
c1µ

, t ≥ T (9)

in which β̄ is slightly greater than one.

V. CONTROLLER

A. Controller Structure
In this section, the introduced observer is combined and used

with a controller to control the needle tip position in a plane.
As stated in the previous section, assuming that the input signal
u is bounded, the designed observer ensures the boundedness
of the estimation error. In this section, the designed controller
is nonlinear state feedback. By redefining the nonlinear term
φ(s) = Ω, (3) turns to a linear system with Ω as its input.
Using this definition the control input u is found by

u =
Ω− φL
φ∆

(10)

Remark 2. The above equation can be used for finding the
control signal u when φ∆ 6= 0. However, if φ∆ → 0, using (10)
is not practical as it will yield an unbounded control signal.
To overcome this problem, φ∆ can be replaced by φ′∆ defined
as

φ′∆ =

{
φ∆ |φ∆| > φ0

φ0 |φ∆| ≤ φ0
(11)

where φ0 is a small positive number.

If Ω is bounded, (11) ensures the control signal u is
bounded. In this case, the closed-loop system equation can
be written as

ṡ = As +B
φ∆

φ̂′∆
Ω +B(φ̂L −

φ∆φL

φ̂′∆
) (12)

where (̂.) represents evaluation at estimated values ŝ. Assum-
ing φ∆

φ̂′
∆

→ 1, the above equation can be written as

ṡ = As +BΩ̄σ(Ω/Ω̄) + Ew(t) (13)

where Ω̄ > 0 is the upper bound of Ω. The saturation
function is defined as σ(t) = sign(t)min(1, |t|) and w(t) is a
disturbance term, which can include modelling and parameter
uncertainty, noise and estimation error.

Remark 3. Since the system state vector s is estimated using
the observer introduced in the previous chapter, as long as
the input signal to the system is bounded, the estimation error
remains bounded. Remembering that the columns of a rotation
matrix are unit vectors, using the assumptions |ŝ2| ≤ 1 + ē,
where ē is the upper bound for the observation error, the upper
bound on the disturbance term can be found as

|w(t)| ≤ (kv)2(1 + ē) (14)

Here, the state feedback control law Ω = F ŝ should be
designed considering the saturation function and the bounded
disturbance w(t). Using equations (10) and (4), and substitut-
ing the state vector s with the estimated vector ŝ, the control
signal u is calculated as

u =
F ŝ + (kv)2ŝ(2)

φ̂′∆
(15)

In (5), θ is the design parameter which determines the
observer gain. From (9) it is clear that larger values of θ lead to
smaller estimation error bound. Therefore, by proper selection
of θ to be sufficiently large, the controller can be designed
to yield a negligible tracking error. Still, it is important to
remember the effect of the saturation on the state feedback
should be taken into account in the controller design process.

B. Controller Design
The state feedback gain F should be designed to ensure

the convergence of the response in the presence of the input
saturation. The following notations are used in the sequel to
re-formulate the design problem [23].

Notation. Denoting the system trajectories starting from initial
condition x0 by ψ(t, x0), the domain of attraction of the origin
(DOA) is defined as J = {x0 ∈ R3 : limt→∞ ψ(t, x0) = 0}.
If w(t) = 0, an ellipsoid E(P, ρ) = {x ∈ R3 : xTPx ≤ ρ}
with P being a positive-definite matrix is contractively invari-
ant if the time derivative of V (x) = xTPx is negative-definite
for all x ∈ E(P, ρ). If w(t) 6= 0, an ellipsoid E(P, ρ) is
called strictly invariant if the time derivative of V (x) = xTPx
is negative-definite for all w(t) with |w(t)| < 1 and all
x ∈ ∂E(P, ρ), the boundary of E(P, ρ). A set is called invariant
if all the trajectories starting from this set remain inside it for
all times, regardless of the disturbance w(t).

Using the above notations, when w(t) = 0, the response
convergence can be expressed as ensuring for the desired set,
all the trajectories starting from this set converge to zero. The
problem is then defined as designing the state feedback gain
F such that a pre-defined set resides in the DOA. Moreover,
in order to have some control over the convergence rate, the
controller gain F = [f1 f2 f3] is designed using pole
placement method. For simplicity, the feedback gain F is
parameterized by a control design parameter ε to shift the
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closed-loop eigenvalues by −2ε. For the matrices A and B
defined in (4) the characteristic equation of the closed-loop
system A+BF can be found as λ3−f3λ

2−f2λ−f1 = 0. This
equation is solved to place the eigenvalues of the closed-loop
system at −2ε, and find the state feedback gain Fε elements
as

Fε =
[
−8ε3 −12ε2 −6ε

]
(16)

Since in reality w(t) 6= 0, the state feedback control
gain should be designed to ensure disturbance rejection. The
problem here will be to ensure that for the designed state
feedback gain, there exist two invariant sets E(P, ρ1) and
E(P, ρ2) with ρ1 < ρ2 and ρ1 small enough such that the
system trajectories starting from E(P, ρ2) enter the smaller
invariant set E(P, ρ1).

Lemma. [23] Consider the system of the form (13) and set
B′ = BΩ̄ and F ′ = F/Ω̄. Given two ellipsoids E(P, ρ1) and
E(P, ρ2) with ρ2 > ρ1 > 0, if there exist H1, H2 ∈ R1×n and
a positive number η such that

(A+B′M(F ′, Hi))
TP + P (A+B′M(F ′, Hi))

+
1

η
PEETP +

η

ρi
P < 0

i = 1, 2

(17)

and E(P, ρi) ⊂ L(Hi), where M(F ′, H) = {H,F ′} and
L(H) = {x ∈ Rn : |Hx| ≤ 1} then for every ρ ∈ [ρ1, ρ2],
there exist an H such that (17) is satisfied and E(P, ρ) ⊂ L(H)
which is equivalent to E(P, ρ) being strictly invariant.

In order to guarantee that the designed controller is conver-
gent in presence of non-zero disturbance, it is only required
to find two invariant ellipsoids E(P, ρ1) and E(P, ρ2) with
ρ1 < ρ2 and ρ1 small enough satisfying the conditions of the
lemma. This can be expressed as the following optimization
problem with LMI constraints [23]:

inf
Q>0,g1,g2

δ (18a)

s.t. (a)

[
XR2 I
∗ ρ2Q

]
≥ 0 (18b)

(b)

[
Q/ρ1 Q
∗ δX−1

R1

]
≥ 0 (18c)

(c)
QAT +AQ+M(F ′Q, gi)

TB′T

+B′M(F ′Q, gi) +
1

η
EET +

η

ρi
Q < 0

(18d)

(d)

[
1 gi
∗ ρiQ

]
≥ 0 (18e)

where B′ and F ′ are defined as in (17) and i = 1, 2. XR2

and XR1 are estimations of the DOA and the guaranteed
convergence area, respectively. For simplicity and in order to
have a convex optimization, it is possible to assume ρ2 = 1
and fix ρ1 and η. Changing ρ1 from 0 to 1 and η from 0 to
∞, the infimum δ∗ can be found. This optimization, gives the
positive definite matrix Q, from which the matrix P defining
the two ellipsoids can be obtained by P = Q−1.

VI. EVALUATION

A. Controller Implementation and Simulations

The block diagram of the system and the proposed observer
is shown in Fig. 2. In this figure, the feedback linearization
is the technique used for transforming the nonlinear system
into an equivalent linear system through a control input and
a change of variables. In (10), Ω serves as the new input to
the linearized system and is replaced with a state feedback
control law in (15). According to the rotational behavior of
the system, the closed-loop system acts differently from usual
control systems causing the designed controller not working
properly. In a usual state feedback control loop, larger errors
lead to a larger control signal to put the maximum effort
to compensate the error. Here, since the system states, i.e.,
velocity and acceleration, are related to the rotation matrix
entries, their maximum and minimum are defined in a full
2π rotation, and any excessive 2π rotations cause the states
to oscillate between their maximum and minimum values. To
compensate this, the rotations should be limited to 2π, and
large control inputs should be interpreted as maximum effort
or the maximum acceleration. In the planar case, if the needle
is rotated by 180◦, the bevel and consequently the needle path
is flipped. This can also be seen from the ± sign in (4). From
here it can be seen that in order to apply the maximum effort,
the bevel should be kept in one half-plane. As shown in Fig.
2, this can be done by keeping the needle base angle θb in one
half-plane by multiplying the control input u by sgn(cos(θb)).
Whenever the bevel passes one half-plane, u is reversed to
bring it back. Also, the chattering caused by the sign function
can be reduced by replacing this function with a hysteresis
block.

Note that since φ∆(s) is derived from the orthonormality
property of the rotation matrix, it has real values. However,
this might not be true for φ∆(ŝ), as ŝ is the estimated vector.
To deal with this, whenever (ŝ(2)/v)2 + (ŝ(3)/kv2)2 > 1,
we replace φ∆(ŝ) with zero. This will not affect any of the
analysis performed in the previous sections as φ∆(ŝ) is still
upper bounded, which can be used to show the boundedness
of the error.

The block diagram of the system and the proposed observer
is shown in Fig. 2. Using Matlab/Simulink the simulations
are presented for the constant insertion velocity of 2 mm/sec,
the curvature of 0.0014 mm−1, and the upper bound for the
rotational velocity of ū = 3π. The insertion velocity in clinical
needle insertions vary between 5 and 50 mm/sec [24]. How-
ever, compensating the deflection error using axial rotations
can only be effective if the commanded rotations are performed
accurately at each insertion depth, which requires the rotations
to be fast enough with respect to the insertion velocity. Due to
the limit on the needle axial rotational velocity, we selected the
insertion velocity slightly lower than the clinically used values
both in simulations and experiments. The needle curvature
is also chosen from previous works on the needle deflection
modelling, which have experimentally reported a mean radius
of curvature of 650 mm for 18G brachytherapy needles [25],
[26]. Using these values the observer parameter θ is selected
as 15 for which using (9), the upper bound of error norm is
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State

Feedback

Feedback

Linearization (15)

Observer (5)

Needle

Driving 

System

Ultrasound

Imaging

Saturation

Fig. 2. The block diagram of the observer/controller loop.

obtained as 0.03.
To find the state feedback gain F and the guaranteed DOA

and the disturbance rejection area, ρ1 is fixed to 0.03 and F
is found by varying ε in (16) and solving the optimization
(18) for XR1 = I3×3, XR2 = diag(0.1, 1, 50) and different
values of η such that the LMI constraints are feasible. The
results are shown in Fig. 3(a). The value of ε which gives
the minimum value of δ∗ is selected for finding the controller
gain. Fig. 3(b) and 3(d) also represent the guaranteed DOA
and the disturbance rejection area. Note that these results
show the conservative guaranteed convergence region. Before
proceeding to experiments, in order to see the performance of
the observer/controller structure, simulations are presented for
different values ε to steer the needle along the x-axis with the
desired value of xd = 3 mm. The value of the curvature used
in the observer equations is considered with 10% uncertainty.
In real applications, there might be a difference between the
initial values of the needle and the observer. Since the needle
is inserted without any initial bending, the initial conditions
are selected as x0 = −0.5 mm and θb0 = 10◦ for the needle,
and zero for the observer. The results in Fig. 3(c) shows that
for different values of ε the needle position moves towards the
desired value and increasing the gain leads to a faster response.
It should be noted that in simulations the rotations are ideal
and the signals are noise-free.

B. Experiments
In this section, the proposed observer and controller are

implemented in real-time for estimating the needle tip states
and controlling the out-of-plane deflection of the needle tip.
The experimental setup used for conducting the experiments
is a 2-DOF prismatic-revolute robotic system shown in Fig.
4. A DC motor actuates the translational carriage, and the
rotational stage is actuated by a second DC motor to perform
needle base axial rotations. A proportional-integral-derivative
(PID) controller is used to control the position of this sec-
ond motor. Considering the physical system limitations, the
control input u is bounded to π/2. The needles used in
the experiments are standard 18-gauge brachytherapy needles
(Eckert & Ziegler BEBIG Inc., Oxford, CT, USA) made of
stainless steel, with an outer diameter of 1.27 mm, an inner
diameter of 1 mm, and a bevel angle of approximately 20◦.
During the insertion, the ultrasound probe tracks the needle
tip and acquires 2D transverse images of the needle. The 3D
needle tip position is then obtained from partial observations
in 2D ultrasound transverse images using the random sample
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Fig. 3. State feedback design and its effect on DOA. (a): The effect of
different values of ε on δ∗ for different values of η. (b),(d): The 2D projection
of the DOA and the guaranteed disturbance rejection area for ε = 0.11. (c):
Simulation results for desired value xd = 3 mm and different values of ε

consensus (RANSAC) technique [13]. Moreover, since the
obtained position data are noisy, the position data is filtered
before applying to the observer. The needle path curvature
k is 0.002 mm−1 which is obtained by inserting the needle
into tissue without any axial rotations and by fitting a circle
to the tip deflection data. The needles are inserted with a
constant velocity of 2 mm/sec and to the maximum insertion
depth of 120 mm. Two different goals are considered, and for
each goal, eight trials are performed. The first goal involves
keeping the needle deflection equal to zero or keeping the
needle in one plane. The second goal is to steer the needle
to the desired deflection of 3 mm, which can be interpreted
as compensating the initial insertion error. Both cases are
implemented using two different tissues. The first tissue is
plastisol phantom tissue, which is the combination of 80%
liquid plastic and 20% plastic softner (M-F Manufacturing Co.,
Fort Worth, TX, USA). The Young’s modulus of elasticity of
the tissue is 40 kPa. Both cases are also implemented on the
biological tissue (beef) embedded into 15% gelatin mixture
to simulate a 2-layer non-homogeneous tissue. Fig. 5(a)-5(l)
present the experimental results. These figures show the planar
deflection error for eight trials, the real needle position, the
estimated position, and the needle base angel for one trial as
an example. Though other states estimated by the observer
are used in calculating the control signal, the responses are
not shown here as there are no ground truth measurements
available for comparison. The summary of the results is shown
in table I. As the results show, the mean final deflection error
and the maximum final error are 0.73 mm and 1.24 mm,
respectively. In this application, the acceptable error range is
selected as 2 mm, which is the size of the smallest lesion that
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Fig. 4. Experimental setup used for implementing the needle insertion
experiments. The ultrasound probe (SonixTouch, Ultrasonix, BC, Canada)
tracks the needle as inserted into the tissue.

TABLE I. SUMMARY OF THE EXPERIMENTAL RESULTS

Tissue xd

[mm]

Mean
Absolute

Error
[mm]

Standard
Deviation

σ

Root
Mean

Square
Error

Mean
Final
Error
[mm]

Max
Final
Error
[mm]

Phantom
Tissue

0 0.27 0.44 0.5 0.49 0.71
3 1.58 1.05 1.8 0.36 0.99

Biological
Tissue

0 0.51 0.43 0.62 0.73 1.24
3 1.6 1.01 1.9 0.53 1.22

can be detected by ultrasound images [27]. Using the multi-
layer biological tissue, due to the higher parametric uncertainty
cause by tissue non-homogeneity, the errors are slightly higher
than errors obtained from the phantom tissues. However, the
errors are still in the acceptable range.

The average seed placement error in manual insertions
performed by expert surgeons is the order of 5-6.3 mm [28],
[29]. Comparing these values with the results obtained in this
work, shows the ability of the proposed method in improving
the needle tip positioning.

C. Comparison

In this section, we provide a comparison of the proposed
method with other methods in the literature. The linear ob-
server, which is mostly used in the other works, is found by
linearizing the system equations and is combined with different
planning and control methods as explained in section I. The
linear observer is locally convergent, and its application is
limited to stabilizing the motion in one plane. Our observer,
on the other hand, does not impose such a limitation on
the needle workspace at the expense of just bounding the
observation error and imposing bounds on the control input.
However, this is not very limiting as due to the actuator
saturation, bounding the control input is acceptable. Moreover,
the bounds on the estimation error depend on the observer
gain and can be made small by proper selection of the design
parameter θ. In addition, comparing the results from the
observer/controller structure with other methods proposed in
the literature indicates that the results are in the same range
obtained in other studies, reporting a maximum final error of
1.3 mm in [4], where the orientation information is obtained
using a 5DOF sensor.

VII. CONCLUDING REMARKS

In this work, 3D unicycle needle equations are used, and it is
shown that without any change in the variables, the equations
represent partially linear sets of equations, which incorporate
both position and orientation data. Using this format, a high
gain observer is designed to deal with the non-Lipschitz
property of the equations and estimate the needle tip pose.
Using LMI optimizations, the 2D controller is designed for
compensating the out-of-plane deflection. The performance of
the proposed observer/controller combination is verified using
simulations and experiments for different cases. The controller
proposed in this paper only considers the out-of-plane motion
of the needle. Since using observers in a controller loop
requires stability proof of the whole loop, further studies are
required to combine this structure with 3D needle controllers.
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Fig. 5. Experimental results for insertion velocity of 2 mm and insertion depth of 120 mm in different tissues and different cases. (a), (b), (c): Inserting the
needle into phantom tissue with xd = 0 mm, representing the average deflection for different trials, one sample trial and the needle base angle, respectively.
(d), (e), (f): Inserting the needle into phantom tissue with xd = 3 mm, representing the average deflection for trials, one sample trial and the needle base angle,
respectively. (g), (h), (i):Inserting the needle into biological tissue with xd = 0 mm, representing the average deflection for different trials, one sample trial and
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