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Abstract—Wheeled mobile manipulators (WMMs) involving a
wheeled mobile platform and a serial manipulator are finding
increasing applications in diverse fields, creating new challenges
in performing high-precision operations in a spacious workspace.
WMMs are challenging to control due to uncertainties in sys-
tem parameters, coupled dynamics, and external disturbances,
which make stability guarantees difficult. This paper proposes
a virtual decomposition control (VDC)-based trajectory tracking
controller for WMMs, addressing joint flexibility, external dis-
turbances, etc. The proposed method uses a VDC-based iterative
approach to manage the complex coupled dynamics and employs
a separate adaptive controller to handle joint flexibility. The
robotic system’s stability is validated using the specific features
of VDC (proof of each subsystem’s virtual stability) according to
the Lyapunov stability theory. The advantages and effectiveness
of the proposed method are demonstrated through experiments.

Note to Practitioners—This paper addresses the challenges
faced in controlling WMMs, which are becoming increasingly
common in various industrial and service applications due to
their ability to perform tasks in large and dynamic environments.
The coupling between the wheeled platform and the manipulator,
as well as uncertainties in system parameters such as joint
flexibility and external disturbances, make precise trajectory
tracking difficult. To address these challenges, this paper presents
a control approach based on VDC, which breaks down the
complex system into manageable subsystems and ensures stability
for each part individually. The control strategy also incorporates
adaptive control to handle joint flexibility and unpredictable
disturbances. The stability of the system is rigorously proven
through Lyapunov theory, ensuring robust performance under
real-world conditions. Practitioners working on autonomous
mobile robots equipped with manipulators may find this ap-
proach useful for improving trajectory tracking performance
in uncertain and dynamic environments. However, the practical
implementation of this method will require careful tuning of
controller parameters and real-time computational capabilities
to ensure seamless operation in real applications.
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I. INTRODUCTION

Wheeled mobile manipulators (WMMs) are gaining popu-
larity for applications such as planetary exploration, disaster
rescue, and construction/service tasks due to their superior
mobility and operational capabilities [1]–[4]. A key component
of the above-mentioned applications is the robot’s accurate
trajectory tracking performance. Even though many powerful
modeling approaches (Lagrangian method [5], Newton–Euler
method [6], Kane’s approach [7]) and many advantageous
control theories (robust control [8], neural networks [9]) have
been developed, it remains challenging for researchers and
scholars to design a practical and efficient tracking controller
for WMMs due to the complex coupled dynamics, uncer-
tainties in the system, and external disturbances. Besides,
the robotic system’s stability and tracking convergence with
environmental disturbances should be guaranteed because the
contact dynamics can be severe if the robot dynamics are not
treated adequately [10].

Two fundamental approaches to kinematic modeling for
WMMs have been employed in many studies. Several authors
have added constraints imposed by a mobile base directly to
the manipulator model, focusing on decoupling the control of
the mobile platform and manipulator. However, these methods
fail to fully control the entire WMM system with a single
controller, leading to suboptimal performance in complex
environments [11]. Picard et al. [12] established the models
and control laws for the two subsystems, respectively, and
designed a coordination paradigm to face the variety of tasks
to be achieved. A different approach explicitly formulates the
admissible motions in relation to the platform constraints [13],
which considers the WMM as a single system, with a dynamic
interaction between the platform and the manipulator. Chen et
al. [14] reported on a matrix transformation-based kinematic
model for a four-wheeled holonomic mobile manipulator, cou-
pled with a redundancy resolution approach to maximize the
WMM’s manipulability. Xing et al. [15] focused on improving
the motion accuracy of WMMs through a kinematics-based
approach that leverages the system’s redundancy.

Robot dynamics also play a significant role in achieving
high operation performance along with kinematics. With a
more accurate dynamic model, the system will be able to
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move more accurately, as well as respond faster to changes
in the external environment. Nader et al. [16] built kinematic
and dynamic modeling for a WMM using Newton–Euler
method, and explained how its end-effector (EE) could track
a desired trajectory while controlling the platform’s motion
over irregular ground surfaces. However, the simulated ma-
nipulator only had two degrees of freedom (DoFs) and no
joint dynamics were considered. Padois et al. [5] established
a WMM dynamic model using Lagrangian method to deal
with complex robotic missions. However, the Lagrangian
method will contain Lagrange multipliers when nonholonomic
constraints are involved, which cannot be eliminated until the
WMM’s motion equation is obtained. To avoid introducing
Lagrange multipliers, Tanner and Kyriakopouos [17] proposed
to built WMMs’ dynamic model using Kane’s approach, yet
no experimental verification was performed. In addition, fuzzy
logic, neural networks, and machine learning-based approach
have been widely used in the field of robot modeling and
control as tools for system estimation or approximation [18]–
[21]. However, these model-free approaches do not explicitly
consider system dynamics and are challenging to implement
to predict future outcomes.

The flexibility of the joints contributes significantly to the
dynamic control of a WMM-mounted manipulator. Ghorbel
et al. [22] assumed that there was weak joint elasticity in a
flexible manipulator and presented the first adaptive control
approach for it. Fateh [23] presented a novel uncertainty
estimation approach to develop a robust tracking controller
for flexible joint manipulators. However, only simulation ver-
ification was provided. It was reported in Ma et al. [24]
that flexible-joint manipulators could benefit from an adaptive
fuzzy control strategy, where a fuzzy-logic algorithm was
used to resolve the nonlinearity. Despite this, this approach
was applicable only to single-link manipulators, and real-
time implementations were not attempted. Ding et al. [25]
presented a separate adaptive controller for the joints of a
flexible manipulator, which decoupled the control of the joints
and the links. In addition, several model-free methods have
been proposed for manipulators with flexible joints [26]–[28].

In general, the trajectory tracking approaches of complex
WMM systems can be divided into decentralized control
and centralized control. Du et al. [29] proposed a dynamic
event-triggered fuzzy control approach for multi-agent systems
with parameter uncertainties, achieving efficient and robust
trajectory tracking control in manipulator-related systems.
Papadopoulos and Poulakakis [30] virtually divided a mobile
manipulator into a holonomic manipulator subsystem and a
nonholonomic mobile platform (MP) subsystem and designed
controllers for each, with system dynamic couplings treated as
external disturbances. Fareh et al. [31] presented a decentral-
ized control method for a mobile manipulator, where the con-
trollers of the MP and the manipulator are separately designed,
and with the consideration of the subsystems’ coupling, the
global stability of the closed-loop system was proved using the
Lyapunov approach. However, joint friction and nonlinearities
were not considered. An approach developed by Yamamoto
and Yun [32] compensated the dynamic coupling of mobile
manipulators by linearizing their dynamic model, but the

decoupling matrix had to be full rank, meaning that the initial
state of the system had to be specified. Galicki [33] addressed
the position control problem for mobile manipulators operating
with state constraints in a task space, however, no experi-
mental verification was provided. Peng et al. [8] proposed
an adaptive sliding mode tracking controller to deal with the
unknown upper bounds of a mobile manipulator’s parameter
uncertainties and external disturbances to achieve accurate
position tracking. Yet, the complicated system dynamics are
difficult to be handled in practical application. Sliding mode
control [34] and adaptive control [35] have also been proposed
to achieve finite-time convergence for robotic systems with
unknown dynamics and disturbances, with their performance
validated through simulation results. However, the tracking
accuracy remains a challenge due to the complexity of the
system dynamics [36].

The above-mentioned control approaches have led to the
employment of nonlinear model-based or model-free tech-
niques, where a well-designed feedforward control term (de-
rived by dynamic model or data-driven model) can partially
address the system’s nonlinearities. However, the exact feed-
forward control term of a WMM system is hard or even
impossible to derive due to the severe joint coupling, non-
linear friction, wheel-ground interaction, etc. [37]. In order
to cope with this challenge, Zhu [38] proposed an adaptive
nonlinear model-based control approach called virtual de-
composition control (VDC) to model and control multi-DoF
robotic systems inspired by the Newton–Euler formulation.
The primary concept of this approach is to virtually decompose
the entire robotic system into several independent subsystems.
Each subsystem is connected with the contiguous subsystem
through the “force” element composed of force/torque (F/T)
and the “velocity” element comprised of linear velocity and
angular velocity. The dynamic interaction between the adjacent
subsystems is described using the unique feature of VDC
called virtual power flow (VPF). Compared with the dynamic
model based on the Lagrangian formulation, this method’s
computation is proportional to the number of the subsystems
(the calculation of the Lagrangian high-order dynamic model
is proportional to the fourth power of the system’s DoF [38]).
Therefore, the computational efficiency improves significantly.

The VDC has demonstrated remarkable performance in han-
dling complex robotic systems, including electrically driven
manipulators [25], [39], mobile manipulators [40], and ex-
oskeleton robots [41]. Based on VDC, Xia et al. [42] devel-
oped a dynamic model of a 6-DoF manipulator considering
joint elasticity and friction. Despite the effectiveness of their
modeling approach being experimentally verified, they failed
to provide a control method to match. Koivumäki and Mattila
[43] developed an impedance control method for multi-DoF
hydraulic manipulators with highly nonlinear dynamics, which
guaranteed the L2 and L∞ stability of the system in both free
space and contact environments. The joint friction term, how-
ever, was not considered. The VDC method was adopted by
Brahmi et al. [44] in order to overcome the parameter coupling
of nonholonomic wheeled mobile manipulators (NWMMs).
This increases the flexibility of the control system when the
configuration of the NWMMs changes. Despite this, no wheel-
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ground interaction was considered. Jafarinasab et al. [40]
developed a model-based adaptive motion control algorithm
followed the VDC method for an underactuated aerial robotic
manipulator, but joint dynamics were not taken into account.
Sun et al. [45] presented a high-performance controller with
L2 and L∞ stability to realize the precise position trajectory
tracking control for exoskeleton robots, while joint flexibility
was not considered.

The dynamic control of complex robotic systems presents
significant challenges, particularly as the number of DoF
increases, leading to a substantial computational burden that
complicates real-time implementation [43], [46]. Furthermore,
the control of WMMs is further complicated by factors such
as unknown dynamic parameters, nonlinear friction effects,
structural elasticity, and wheel-ground interactions [47]. While
adaptive control approaches, including model-based feedback
and model-free methods, have been widely explored for ap-
plications involving robot disturbances, existing studies have
not yet addressed the complete-dynamics-based control of a
multi-DoF WMM coupled with a collaborative manipulator.
Notably, experimental implementation and rigorous stability
validation of such a control framework remain unexplored in
the current literature.

To address the limitations in existing research, this paper
proposes a VDC-based trajectory tracking control approach
for WMMs with flexible joints. The main contributions are as
follows: 1) A stability-guaranteed trajectory tracking control
method is proposed based on the full nonlinear dynamics of
the WMM; 2) The control framework explicitly considers joint
flexibility and wheel-ground interactions to improve model
accuracy; 3) A rigorous stability analysis is conducted, demon-
strating the asymptotic convergence of trajectory tracking
errors for the closed-loop system; 4) The proposed control
approach is experimentally validated on a physical WMM
system comprising an omnidirectional platform and a 7-
DoF serial manipulator, showcasing its practical effectiveness.
These contributions address the absence of experimentally val-
idated, full-dynamics-based control frameworks in the current
literature.

The remainder of this paper is organized as follows. Section
II presents the kinematic and dynamic models of a WMM
based on VDC. The proposed task-space trajectory tracking
method via VDC is described in Section III. Section IV
provides the stability proof of the approach. Experiments that
demonstrate the validity and performance of the proposed
method are presented in Section V. Section VI concludes the
manuscript.

II. VDC-BASED KINEMATICS AND DYNAMICS OF
WHEELED MOBILE MANIPULATORS

In this section, the virtual decomposition schematic, kine-
matic model, and dynamic model of WMMs integrated with a
MP and a multi-DoF manipulator are provided. Section II-A
presents the virtual decomposition schematic of the WMMs,
Section II-B presents their kinematic model, and their dynamic
model is shown in Section II-C.
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Figure 1: Virtual decomposition schematic of an omnidirec-
tional WMM.

A. Virtual Decomposition Schematic of Wheeled Mobile Ma-
nipulators

First, the concept of virtual cutting point (VCP) will be
presented, which is of great importance to the VDC approach
because it can conceptually decompose a complex robotic
system into several subsystems, which is defined in Definition
1.

Definition 1. A cutting point is a directed separation interface
that conceptually cuts through a rigid body. The two parts
caused by the virtual cut share equal pose. The cutting point
is expressed as a driving cutting point by one part and is
simultaneously expressed as a driven cutting point by the
other part. The force/moment vector is exerted from which the
cutting point is expressed as a driving cutting point to which
the cutting point is expressed as a driven cutting point.

Fig. 1 presents the virtual decomposition schematic of an
omnidirectional WMM. The WMM consists of a four-wheel
MP and an m-DoF robotic manipulator. Point Pp is the connec-
tion point between the MP and the manipulator. The manipu-
lator system is virtually decomposed into 2m+1 subsystems,
including n joints, n links, and one EE. As shown in Fig.
1, we denote {Σm} as the manipulator reference frame. 2m
virtual cutting points (VCPs) (B1, · · · ,Bm,T2, · · · ,Tm,TEE)
have been defined (the definition of VCP is shown below).
Frame {TEE} is located at the connection point between the
mth link and the EE. Also, frame {C} is located at the point
where the contact occurs. It should be emphasized that the EE
has only one VCP.

As for the MP in Fig. 1, its detailed virtual decomposition
schematic is shown in Fig. 2. By adding a massless virtual
6-DoF manipulator between the MP body and the ground,
the MP can be regarded as an open-chain system. Then, ten
VCPs are fixed between the system, and the MP is virtually
decomposed into ten subsystems: one MP body, four wheels,
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four wheel joints, and one massless 6-DoF manipulator. Here,
frame {Pp} is attached onto the VCP between the MP and
the manipulator (its z-axis is parallel to the rotation axis of
the manipulator’s first joint); frame {Pc} is attached onto
the central point of the MP (this point is also the location
of the VCP between the MP and the virtual manipulator);
frames {Afl}, {Afr}, {Abl}, and {Abr} are attached onto the
VCP between the MP body and the four wheels, respectively.
Four auxiliary VCPs are set on each of the four wheels to
decompose the wheels and their joints, and then four frames
{Wfl}, {Wfr}, {Wbl}, and {Wbr} are attached onto the four
auxiliary VCPs. It is worth mentioning that the z-axes of the
above eight frames are parallel to their respective wheel joint
rotation axes. Besides, four frames {Cfl}, {Cfr}, {Cbl}, and
{Cbr} are attached respectively onto the contact points between
the four wheels and the ground to describe their interaction
forces.

In summary, combined with Definition 1, the VCPs con-
tained in each MP subsystem can be concluded as follows:

• The left front wheel has only one driven cutting point
associated with frame {Wfl}.
• The right front wheel has only one driven cutting point

associated with frame {Wfr}.
• The left rear wheel has only one driven cutting point

associated with frame {Wbl}.
• The right rear wheel has only one driven cutting point

associated with frame {Wbr}.
• The left front wheel joint has one driving cutting point

associated with frame {Wfl} and one driven cutting point
associated with frame {Afl}.

• The right front wheel joint has one driving cutting point
associated with frame {Wfr} and one driven cutting point
associated with frame {Afr}.
• The left rear wheel joint has one driving cutting point

associated with frame {Wbl} and one driven cutting point
associated with frame {Abl}.
• The right rear wheel joint has one driving cutting point

associated with frame {Wbr} and one driven cutting point
associated with frame {Abr}.
• The MP body has five driving cutting points associated

with frame {Pp}, {Afl}, {Afr}, {Abl}, and {Abr}, respectively,
and one driven cutting point associated with frame {Pc}.
• The massless virtual manipulator has only one driving

cutting point associated with frame {Pc}.
When the manipulator is mounted on the MP, the manipu-

lator will have one more VCP to decompose the manipulator
and the MP, that is, the first joint of the manipulator will have
another driven cutting point associated with frame {Pp}.

B. Kinematic Modeling of Wheeled Mobile Manipulators

In line with the virtual decomposition model of the WMM
described in Section II-A, the kinematics of the WMM can be
derived. We will first present the kinematic model of the MP.
It is assumed that a pure rolling contact exists between the
mobile base’s wheels and the ground (i.e., no slippage). With
this assumption, the kinematics of the MP can be derived as

q̇p = Ψ(qp)vp, (1)
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Figure 2: Virtual decomposition schematic of an MP.

where q̇p ∈ Rnp is the generalized coordinate vector of
the MP with np denoting its dimension, vp ∈ Rp is the
velocity vector of the wheels with p denoting its dimension,
and Ψ(qp) ∈ Rnp×p is the constraint matrix of the MP.

According to Figs. 1 and 2, {Σw} denotes the world
frame, Rw denotes the wheel radius, l1 and l2 denote the
distance between the wheel axis and point Pc, d denotes the
horizontal distance between points Pb and Pc. Here, in Fig.
2, the generalized coordinate vector of the MP is defined
as qp = [xp, yp, θp]

T ∈ R3. Also, the velocity command
of the wheels is defined as vp = [ωfl, ωfr, ωbl, ωbr]

T ∈ R4.
According to the structure of the MP and (1), the constraint
matrix Ψ(qp), which transfers the wheel velocities to the MP’s
generalized velocities, can be expressed as

Ψ(qp) = Jx(qp)(Jy + Jz) (2)

with Jx =

cos θp − sin θp 0
sin θp cos θp 0
0 0 1

, Jy =

Rw

4

 1 1 1 1
−1 1 1 −1
−1

l1+l2
1

l1+l2
−1

l1+l2
1

l1+l2

, and Jz =

Rwd
4

 0 0 0 0
−1

l1+l2
1

l1+l2
−1

l1+l2
1

l1+l2
0 0 0 0

.

Then, the kinematic model of the manipulator will be
established followed by the introduction of the term of lin-
ear/angular velocity and force/torque transformations. Con-
sider {A} as a frame attached to a rigid body. Let Av ∈ R3

and Aω ∈ R3 be the linear and angular velocity vectors of
frame {A}, and the linear/angular velocity vector of frame
{A} is written as AV =

[
AvT, AωT

]T
. Similarly, let

Af ∈ R3 and Am ∈ R3 be the force and torque vectors
of frame {A}, and the F/T vector of frame {A} is written as
AF =

[
AfT, AmT

]T
. Then, consider two frames, expressed

as {A} and {B}, being fixed to a rigid body, no matter whether
it is moving or subject to physical force and torque vectors.
The following relations hold

BV = AUT
B
AV , AF = AUB

BF , (3)

where AUB ∈ R6×6 is an F/T transformation matrix that
transforms the F/T vector expressed in frame {B} to the same
F/T vector expressed in frame {A}.
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Thus, the linear/angular velocity vector of each manipula-
tor’s subsystem in its corresponding frame can be expressed
as

B1V = zq̇m,1, (4a)
TiV = Bi−1UT

Ti

Bi−1V , (4b)
BiV = zq̇m,i +

TiUT
Bi

TiV = zq̇m,i +
Bi−1UT

Bi

Bi−1V ,
(4c)

TEEV = BnUT
TEE

BnV , (4d)
EEV = TEEUT

EE
TEEV , (4e)

CV e =
EEUT

C
EEV , (4f)

where i = 2, 3, . . . ,m, z = [0, 0, 0, 0, 0, 1]T ∈ R6, q̇m,i

represents the angular velocity of the ith joint, and TUB

denotes the force/moment transformation matrix from {B} to
{T} with its definition in (3).

According to (4), the transformation matrix between
CV e ∈ R6 and the generalized joint velocity vector q̇m =
[q̇m,1, q̇m,2, . . . , q̇m,m ]T ∈ Rm, also called the manipulator
Jacobian matrix Jme ∈ R6×m, can be expressed as

CV e = Jmeq̇m =
[
B1UT

Cz,
B2UT

Cz, . . . ,
BmUT

Cz
]
q̇m. (5)

As shown in Fig. 1, we fix the manipulator reference frame
{Σm} with point Pp to set up a WMM, and make sure that
the x-axis of frame {Σm} coincides with the MP’s heading
direction. It should be noted that the reference frame of
Jacobian matrix Jme is frame {C}, if we want to replace it
with the world frame {Σw}, then, the new Jacobian matrix can
be derived as

Jm =

[
ΣwRC 03×3

03×3
ΣwRC

]
Jme, (6)

where Jm ∈ R6×m represents the manipulator’s Jacobian
matrix in {Σw}, and ΣwRC ∈ R3×3 represents the rotation
matrix from {C} to {Σw}.

The generalized velocity vector of the manipulator is se-
lected as its joint velocity vector, which is q̇m = vm,
where vm ∈ Rm denotes the manipulator’s joint velocity
vector. Let us define the configuration vector of the WMM
as q =

[
qT
p, q

T
m

]T ∈ Rn, and its velocity input vector as
v =

[
vT
p, v

T
m

]T ∈ Rn̄, where n = np + m, n̄ = p + m.
The pose of the EE in {Σw} is defined as xe ∈ Rr with
r representing its dimension; then, the forward kinematics at
velocity level of the entire WMM can be expressed as

ẋe =
[
Jp(q), Jm(q)

] [ q̇p
q̇m

]
=

[
Jp(q), Jm(q)

] [Ψ(qp)vp
vm

]
=

[
Jp(q)Ψ(qp), Jm(q)

] [vp
vm

]
= J(q)v,

(7)

where Jp ∈ Rr×np and J ∈ Rr×n̄ denotes the Jacobian
matrices of the MP and WMM in {Σw}, respectively.

C. Dynamic Modeling of Wheeled Mobile Manipulators

Consider a rigid object with frame {A} fixed; then, the
general formulation of its dynamics, in which frame {A} is
used as the reference frame, can be expressed as [38]

MA
d

dt
(AV ) +CA(

Aω)AV +GA = AF ∗, (8)

where MA ∈ R6×6 is the mass matrix, CA(
Aω) ∈ R6×6 is

the matrix of Coriolis and centrifugal terms, GA ∈ R6 is the
gravity term, and AF ∗ ∈ R6 is the net F/T vector of the rigid
body expressed in frame {A}. The aforementioned inertia and
similar parameters are classified as internal and parametric
uncertainties. In the following sections, these parameters will
be estimated using adaptive control with predefined upper and
lower bounds.

According to Fig. 1 and (8), the force resultant equations of
the m links and the EE on the manipulator can be calculated
as

EEF ∗ = EEUTEE

TEEF − EEUC
CF e, (9a)

BmF ∗ = BmF − BmUTEE

TEEF , (9b)
TiF = TiUBi

BiF , i = m, . . . , 2, (9c)
BiF ∗ = BiF − BiUTi+1

Ti+1F , i = m− 1, . . . , 1, (9d)

where (·)F ∗ ∈ R6 is the net F/T vector at frame {(·)},
CF e ∈ R6 is the external F/T vector exerted at the contact
frame {C}, and AF ∈ R6, A ∈ {TEE,Bi ,Ti}, denotes the
driving F/T vector of each link at its corresponding frame. The
external force/torque vector CF e is categorized as an external
and nonparametric uncertainty. In the following sections, it
will be computed using a linearized equation model. The
purpose of (9) is to calculate the driving F/T vector from each
joint to the next link, BiF , according to (8), via an iterative
approach.

The dynamics of the manipulator joints are also considered
to improve the modeling accuracy. For most collaborative
manipulators, their joints are usually mixed with transmis-
sion elasticity, motor inertia, and friction [48], when taking
the friction term on both the motor and link sides and
the joint elasticity into account, the dynamic model of ith

(i = 1, 2, . . . ,m) joint can be presented as [49]

τfq,i(q̇m,i) = τt,i − τa,i , (10a)
τt,i = kf,i(ϕm,i − qm,i), (10b)

Im,i ϕ̈m,i + τfϕ,i(ϕ̇m,i) = τi − τt,i , (10c)
τfq,i(q̇m,i) = fvq,i q̇m,i + fcq,isign(q̇m,i), (10d)

τfϕ,i(ϕ̇m,i) = fvϕ,i ϕ̇m,i + fcϕ,isign(ϕ̇m,i),
(10e)

where τfq,i is the link-side friction torque; τt,i is the effective
transmission input torque; τa,i is the torque output of the
joint toward the corresponding link, which is τa,i = z

T BiF ;
kf,i is the joint stiffness coefficient; ϕm,i is the motor-side
joint position; Im,i is the joint moment of inertia; τfϕ,i is
the motor-side friction torque; τi is the motor control torque;
fvq,i and fcq,i denote the link-side viscous and Coulomb
friction coefficients; fvϕ,i and fcϕ,i represent the motor-side
viscous and Coulomb friction coefficients; and sign(q̇) is
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defined as sign(q̇) =

{
q̇/|q̇|, q̇ ̸= 0

0, q̇ = 0
. Here, joint flexibil-

ity and nonlinear friction effects are categorized as internal
and nonparametric uncertainties. However, suitable linearized
models can be established to describe them.

According to Fig. 1 and (9), the supporting force from the
MP to the manipulator can be exerted through the connection
point Pp, which is expressed as

PpF = PpUB1

B1F , (11)

where PpF ∈ R6 denotes the F/T vector from the MP to the
manipulator expressed in frame {Pp} and PpUB1

∈ R6×6

is the F/T transformation matrix from frame {B1} to frame
{Pp}. Thus, combined with (11), the force applied from the
manipulator to the MP can be presented as −PpF .

Then, the dynamic model of the MP will be presented. In
line with (2), the generalized velocity vector of the wheels is
written as

WiV = zwωi +
AiUT

Wi

AiV , (12)

where i ∈ {fl, fr,bl,br} denotes the wheel ID, ωi denotes the
angular velocity of the wheel joint with ID i, and zw ∈ R6 is a
constant vector, zw = [0, 0, 0, 0, 0, 1]T. Define 0 ⩽ nwg,i < 6
as the constraint number of wheel-ground contact, the velocity
of each wheel-ground contact point in contact frame {Ci} can
be expressed as

CiV wg = WiUT
Ci

WiV = T c,iχi, (13)

where T c,i ∈ R6×(6−nwg,i) denotes a matrix of full column-
rank with each column containing a single one and five zeros
and χi ∈ R6−nwg,i is an independent velocity coordinate vector
of frame {Ci}.

Similar to (9), the force resultant equations of the wheels
can be expressed as

WiF ∗ = WiF − WiUCi

CiFwg, (14a)
WiF = WiUAi

AiF , (14b)

where WiF ∈ R6 and AiF ∈ R6 are the F/T vector from the
wheel joint to the wheel and from the MP body to the wheel
joint expressed in their respective frames, and CiFwg ∈ R6

denotes the wheel-ground contact force vector expressed in
frame {Ci}. Wheel-ground contact is typically unknown and
categorized as an external and stochastic uncertainty. In the
following, it is represented as a combination of components
in the motion and constraint configuration spaces.

Here, CiFwg ∈ R6 in (14a) can be further expressed as

CiFwg = T c,iψi + T f,iφi, (15)

where T f,i ∈ R6×nwg,i denotes a matrix of full column-rank
with each column containing a single one and five zeros, ψi ∈
R6−nwg,i and φi ∈ Rnwg,i represent two coordinate vectors in
the motion and constraint configuration spaces, respectively.
The selection of T c,i ∈ R6×(6−nwg,i) and T f,i ∈ R6×nwg,i

ensures that TT
c,i T c,i = I6−nwg,i , T

T
f,i T f,i = Inwg,i , and

TT
c,i T f,i = 0 hold.

In free-motion space, the independent force coordinate vec-
tor ψi ∈ R6−nwg,i in (15) can also be linearly parameterized
as

ψi = Y c,iθc,i, (16)

where Y c,i is a regression matrix and θc,i denotes the un-
known parameter vector.

Unlike the flexible manipulator joint model expressed in
(10), it is assumed that the wheel joints are rigid, and their
dynamic models can be simplified as [38]

Iiω̇i + fv,iωi + fc,isign(ωi) = τi − τa,i. (17)

In which, for the wheel joint attached with ID i, Ii denotes
its moment of inertia, fv,i and fc,i denote its viscous and
Coulomb friction coefficients, τi is the actual joint driving
torque, and τa,i is the torque output of the joint toward its
corresponding wheel, which is τa,i = z

T
w

WiF .
According to Fig. 2, the velocity vector of the MP body can

be expressed as
PcV = PpUT

Pc

PpV = AiUT
Pc

AiV , (18)

and its dynamic model can be calculated as

PcF ∗ = PcF − PcUPp

PpF −
∑
i

(
PcUAi

AiF
)
, (19)

where PcF ∈ R6 denotes the F/T vector applied from the
virtual manipulator to the MP body, which is obviously PcF =
0.

In summary, the dynamics of the manipulator are shown
in (9) and (10), the dynamics of the MP are presented in
(14)∼(17) and (19), and their dynamics connection can be
resolved by (11).

III. VIRTUAL DECOMPOSITION CONTROL OF WHEELED
MOBILE MANIPULATORS

The main target of this section is to design an appropriate
algorithm to realize task-space trajectory tracking for a com-
plex WMM via the VDC framework. We are starting with
the presentation of controlling the EE in Section III-A. Then,
adaptive controllers of the manipulator (including the links and
joints) and the MP (including the wheels, wheel joints, and MP
body) are designed in Sections III-B and III-C, respectively.

A. Control of End-effector

The linear/angular velocity vector CV e ∈ R6 of the contact
point in frame {C} can be written as

CV e = T ẋe (20)

with T ∈ R6×r denoting a transformation matrix to connect
the velocity of the EE in {Σw} and the velocity of the contact
point in {C}, which can be expressed as T =

[
Ir, 0r×(6−r)

]T
.

Ir denotes the identity matrix of dimension r, and TT T = Ir
is ensured. Then, the velocity vector of the EE in its own frame
can be obtained using (4f).

The F/T vector of the contact point expressed in {C} is
derived as

CF e = Tf e, (21)
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where f e ∈ Rr represents the robot-environment interaction
force vector in the same dimension as ẋe. Thus, the driving
F/T vector of the EE, TEEF , can be derived using (9a). Here,
like (16), let f e be expressed in a linear parameterization form
as f e = Y eθe.

The terminology of required velocity is an essential concept
in the VDC approach, including the desired velocity and one or
more terms related to the control errors, such as position errors
and/or force errors. The control objective of this manuscript is
to make the WMM’s actual position trajectory track its desired
position trajectory.

Then, for the EE, similar to (20), the required velocity of
the contact point in {C} is expressed as

CV r = T ẋr (22)

with ẋr ∈ Rr denoting the required contact point velocity
vector, which is expressed as

ẋr = ẋd +Λ(xd − xe), (23)

where xd ∈ Rr is the desired EE trajectory at the contact
point and Λ ∈ Rr×r is a diagonal positive-definite matrix.
Then, the required velocity of the EE in its own frame is

EEV r =
CUT

EE
CV r. (24)

Similar to (21), the required F/T of the contact point in {C}
can be expressed as

CF r = T f̂ e, (25)

where f̂ e ∈ Rr denotes the desired task-space force vector of
the EE, with

f̂ e = Y eθ̂e. (26)

The following projection function in [38] is utilized for
unknown parameter adaptation.

Definition 2. A projection function P(s(t), k, a(t), b(t), t) ∈
R is a differentiable scalar function defined in t ⩾ 0 such that
its time derivative is governed by

Ṗ = ks(t)κ (27)

with

κ =

 0, if P ⩽ a(t) and s(t) ⩽ 0
0, if P ⩾ b(t) and s(t) ⩾ 0
1, otherwise

where s(t) ∈ R is a scalar variable, k is a positive constant
and a(t) ⩽ b(t) holds.

Consider an arbitrary P function defined in (27), and for
any constant Pc satisfying a(t) ⩽ Pc ⩽ b(t), it follows that

(Pc − P)

(
s(t)− 1

k
Ṗ
)

⩽ 0. (28)

By defining
se = Y

T
e (ẋr − ẋ), (29)

each element of θ̂e in (26) can be updated by employing (27)
as

θ̂eγ = P(seγ , ρeγ , θeγ , θeγ , t), (30)

where θ̂eγ is the γth element of θ̂e, seγ is the γth element of
se, ρeγ > 0 is the update gain, and θeγ and θeγ are the lower
bound and the upper bound of θeγ .

The required net F/T vector of the EE can be expressed as

EEF ∗
r = Y EEθ̂EE +KEE(

EEV r − EEV ) (31)

with

Y EEθEE =MEE
d

dt
(EEV r) +CEE(

EEω)EEV r +GEE,

where Y EE ∈ R6×13 is a regressor matrix, θEE ∈ R13 and
θ̂EE ∈ R13 are the unknown parameter vector and its estimate,
respectively, and KEE ∈ R6×6 is a symmetric positive-
definite matrix, representing the velocity feedback control
gain. Y EE is a function of the known parameters (measured
or calculated), including d

dt (
EEV r), EEV r, and EEV . θEE

denotes a function of the unknown parameters, containing EE’s
mass, position of the mass center, and moment of inertia. The
exact representation of each element of these parameters can
be found in [38].

The estimated parameters of θ̂EE in (31) can be updated
using the parameter adaptation method provided in Definition
2 with

sEE = Y T
EE(

EEV r − EEV ). (32)

Then, each element of θ̂EE can be updated using (27) as

θ̂EEγ = P(sEEγ , ρEEγ , θEEγ , θEEγ , t), ∀γ ∈ [1, 13], (33)

where θ̂EEγ is the γth element of θ̂EE, sEEγ is the γth element
of sEE, ρEEγ > 0 is the update gain, and θEEγ and θEEγ are
the lower bound and the upper bound of θEEγ .

Similar to (9a), the required net F/T vector of the EE can
be calculated as

EEF ∗
r = EEUTEE

TEEF r − EEUC
CF r. (34)

B. Control of Multi-DoF Manipulators

The linear/angular velocity vector of the ith link BiV ∈ R6

can be obtained using (4a)∼(4c), and its F/T vector BiF ∈ R6

can be derived using (9b)∼(9d).
According to (7), the required joint velocity of the manip-

ulator q̇m,ir can be calculated as

vr =
[
vT
p,r, q̇

T
m,r

]T
= J†ẋr, (35)

where (.)† denotes the Moore-Penrose pseudoinverse of a ma-
trix1. The required velocity vector of the ith link BiV r ∈ R6

is expressed as

B1V r = zq̇m,1r, (36a)
TiV r =

Bi−1UT
Ti

Bi−1V r, (36b)
BiV r = zq̇m,ir +

TiUT
Bi

TiV r = zq̇m,ir +
Bi−1UT

Bi

Bi−1V r,
(36c)

1The last m elements of v denote the joint velocities of the manipulator,
and we use q̇m to refer to them, since they are equal to each other.
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The required F/T vector of the ith link BiF ∈ R6 can be
obtained as

BmF ∗
r = BmF r − BmUTEE

TEEF r, (37a)
TiF r =

TiUBi

BiF r, i = m, . . . , 2, (37b)
BiF ∗

r = BiF r − BiUTi+1

Ti+1F r, i = m− 1, . . . , 1,
(37c)

The VDC-based control procedure of the links is the same as
the process of the EE in (31) and (32)∼(34) with appropriate
frame substitutions.

After that, the controller of the manipulator joints is pre-
sented. The relationship between the joint velocity vector and
the linear/angular velocity vector of the adjacent links is shown
in (4a)∼(4c). The dynamics of the ith joint are provided by
(10). Combined with (37), the command joint torque of the
ith manipulator joint is designed as [25]

τt,id = Y qiθ̂qi + z
T BiF r + kvq,i(q̇m,ir − q̇m,i),

ϕm,ir = τt,id/k̂f,i + qm,ir,

τi = τt,id + Y ϕiθ̂ϕi + kvϕ,i(ϕ̇m,ir − ϕ̇m,i),
Y qi =

[
q̇m,ir, sign(q̇m,ir)

]
,

θqi = [fvq,i, fcq,i]
T,

Y ϕi =
[
ϕ̈m,ir, ϕ̇m,ir, sign(ϕ̇m,ir)

]
,

θϕi = [Im,i, fvϕ,i, fcϕ,i]
T,

(38)

where kvq,i and kvϕ,i are two positive constants, representing
the link-side and motor-side control gains of the ith joint,
respectively.

Define
sqi = Y

T
qi(q̇m,ir − q̇m,i),

sϕi = Y
T
ϕi(ϕ̇m,ir − ϕ̇m,i),

skfi =
(
ϕm,ir − qm,ir

)[
(ϕ̇m,ir − ϕ̇m,i)− (q̇m,ir − q̇m,i)

]
,
(39)

then, each element of θ̂qi, θ̂ϕi, and k̂f,i can be updated using
(27), respectively, as

θ̂qiγ = P(sqiγ , ρqiγ , θqiγ , θqiγ , t), ∀γ ∈ {1, 2},
θ̂ϕiγ = P(sϕiγ , ρϕiγ , θϕiγ , θϕiγ , t), ∀γ ∈ {1, 2, 3},
k̂f,i = P(skfi, ρkfi, kf,i, kf,i, t),

(40)

where θ̂qiγ , θ̂ϕiγ , sqiγ , and sϕiγ represent the γth element of
θ̂qi, θ̂ϕi, sqi, and sϕi, respectively; ρqiγ , ρϕiγ , and ρkfi denote
positive parameter update gains; θqiγ and θqiγ denote the lower
and upper bounds of θqiγ ; θϕiγ and θϕiγ represent the lower
and upper bounds of θϕiγ ; and kf,i and kf,i are the lower and
upper bounds of kf,i.

C. Control of Wheeled Mobile Platform

According to Fig. 1, (11) and (37), we can calculate the
required F/T applied to the MP by the manipulator, which is
noted as PpF r.

In line with (12), the required velocity of the wheel with
ID i can be designed as

WiV r = zwωir +
AiUT

Wi

AiV r, (41)

where i ∈ {fl, fr,bl,br} denotes the wheel ID, the required
velocity of the wheels ωir can be obtained via (35), and AiV r

can be derived through matrix transformation using PcV r.
Combined with (13), the required velocity of each wheel at
the contact point can be designed as

CiV wg,r =
WiUT

Ci

WiV r = T c,iχi,r, (42)

here, it is worth mentioning that χi,r ∈ R6−nwg,i is not
necessarily an independent variable, it can also be derived from
the required velocity of the wheel WiV r.

Similar to (31), the net F/T vector of each wheel is designed
as

WiF ∗
r = Y Wi θ̂Wi +KWi(

WiV r − WiV ), (43)

where the calculation of unknown parameter vector θ̂Wi
is

similar to (32) and (33) with appropriate frame substitutions,
and KWi

∈ R6×6 is a symmetric positive-definite matrix,
representing the velocity feedback control gain. Combined
with wheel dynamic model (14), we can derive

WiF r =
WiF ∗

r +
WiUCi

CiFwg,r, (44a)
AiF r =

AiUWi

WiF r. (44b)

Then, the required F/T vector of the contact point should
be calculated. According to (15) and (16), the required F/T
vector of the contact point in frame {C} can be designed as

CiFwg,r = T c,iY c,iθ̂c,i + T f,iφi,d, (45)

where φi,d ∈ Rnwg,i denotes the desired value of the required
F/T vector. To estimate θ̂c,i, we set sc,i = Y T

c,i(χi,r − χi),
and each element of θ̂c,i can be evaluated according to (27).

The joint of the wheel is rigid, and its dynamic model is
shown in (17). Then, combined with (44), the command torque
of the wheel joint with ID i is designed as τi = Y Ai

θ̂Ai
+ zTw

AiF r + kAi
(ωir − ωi),

Y Ai
=

[
ω̇ir, ωir, sign(ωir)

]
,

θAi = [Ii, fv,i, fc,i]
T,

(46)

where kAi
is a positive constant, representing the control gain

of the wheel joint with ID i.
Define

sAi
= Y T

Ai
(ωir − ωi), (47)

then, each element of θ̂Ai
can be updated using (27), respec-

tively, as

θ̂Aiγ = P(sAiγ , ρAiγ , θAiγ
, θAiγ , t), ∀γ ∈ {1, 2, 3}, (48)

where sAiγ represents the γth element of sAi
, ρAiγ denotes

a positive parameter update gain, θAiγ
and θAiγ denote the

lower and upper bounds of θAiγ , respectively.
According to the kinematic model of the MP, as shown in

(18), its required velocity meets the following condition

PcV r =
PpUT

Pc

PpV r =
AiUT

Pc

AiV r. (49)

Then, similar to (31) and (32)∼(34), the required net F/T
vector of the MP PcF ∗

r can be calculated. Combined with
(19), the required F/T vector of the MP can be derived as

PcF r =
PcF ∗

r +
PcUPp

PpF r +
∑
i

(
PcUAi

AiF r

)
. (50)
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The massless virtual manipulator must ensure that its force
vector transmitted to the MP body meets PcF = 0. Thus, the
required F/T vector of the virtual manipulator is designed as

PcF r = −Kvm(
PcV r − PcV ), (51)

where Kvm ∈ R6×6 is a semi-definite matrix, representing
the velocity feedback control gain. It is noteworthy that (51)
contains the condition that PcF r = 0, since Kvm = 0 is
allowed.

The entire control system is shown in Fig. 3.

IV. STABILITY ANALYSIS

We present the stability proof of our control approach in
this section. Sections IV-A, IV-B, and IV-C provide the virtual
stability of the EE, multi-DoF manipulators, and MP, respec-
tively. Section IV-D proves the stability of the entire WMM
system based on the virtual stability of each subsystem. The
computational complexity analysis of the proposed method is
presented in Section IV-E.

In the beginning, the concept of VPF and virtual stability
is presented. One of the unique features of the VDC approach
is the introduction of VPF, which is defined in Definition
3. The VPF describes the dynamic interactions among the
subsystems, which is essential for the proof of virtual stability,
and will be presented in Definition 4.

Definition 3. Consider a rigid body attached with a frame
{A}, with respect to this frame, the VPF is defined as the
inner product of the linear/angular velocity vector error and
the F/T vector error, that is

pA
def
= (AV r − AV )T(AF r − AF ), (52)

where AV r ∈ R6 and AF r ∈ R6 represent the required
vectors of AV ∈ R6 and AF ∈ R6, respectively.

Definition 4. A subsystem with a driven VCP to which frame
{A} is attached and a driving VCP to which frame {C} is
attached is said to be virtually stable with its affiliated vector
x(t) being a virtual function in L∞ and its affiliated vector
y(t) being a virtual function in L2 , if and only if there exists
a nonnegative accompanying function

ν(t) ⩾
1

2
x(t)TPx(t), (53)

such that

ν̇(t) ⩽ −y(t)TQy(t) + pA − pC − s(t), (54)

which is subject to ∫ ∞

0

s(t)dt ⩾ −γs (55)

with 0 ⩽ γs < ∞, where P and Q are two positive-definite
matrices.

A. Virtual Stability of End-effector

Theorem 1. Consider the EE described by (8), (9a), (20), (21),
combined with its respective control equations (22)∼(31), (34),
and with the parameter adaptation algorithms (32) and (33).
Then, the EE is virtually stable.

Proof. Define the nonnegative accompanying function for the
EE νEE as

νEE =
1

2
(EEV r − EEV )TMEE(

EEV r − EEV )+

1

2

13∑
γ=1

(
θEEγ − θ̂EEγ

)2
ρEEγ

,
(56)

then, the time derivative of (56) can be derived as

ν̇EE ⩽ −(EEV r − EEV )TKEE(
EEV r − EEV ) + pTEE − pC,

(57)
where pTEE

is the VPF (defined in Definition 3) at the driven
VCP of the EE, and pC is the VPF between the EE and the
environment.

It should be noted that the EE only has one VCP (shown in
Fig. 1), but two VPFs appear in (57). The VPF pTEE

locates
at the VCP attached to frame {TEE} of the object. Therefore,
for the virtual stability of the EE, the condition to guarantee
that the existence of VPF pC still satisfies Definition 4 must
be found.

According to (20)∼ (26), (29)∼(30), and (52), it yields

pC = (CV r − CV e)
T(CF r − CF e)

= (ẋr − ẋe)
TTTT (f̂e − fe)

= −(ẋr − ẋe)
TY e(θe − θ̂e)

= −
∑
γ

(
θeγ − θ̂eγ

)[
seγ −

˙̂
θeγ
ρeγ

]
−

∑
γ

(
θeγ − θ̂eγ

) ˙̂
θeγ
ρeγ

⩾ −
∑
γ

(
θeγ − θ̂eγ

) ˙̂
θeγ
ρeγ

.

(58)

Then, integrating (58) over time yields

∫ ∞

0

pCdt ⩾
∑
γ

1

2

(
θeγ − θ̂eγ(t)

)2

ρeγ
− 1

2

(
θeγ − θ̂eγ(0)

)2

ρeγ


⩾ −

∑
γ

1

2

(
θeγ − θ̂eγ(0)

)2

ρeγ
.

(59)

Therefore, the following condition∫ ∞

0

pCdt ⩾ −γC (60)

holds with 0 ⩽ γC < ∞. Then, the EE is virtually stable
according to Definition 4.
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Figure 3: Block diagram of the proposed control system.

B. Virtual Stability of Multi-DoF Manipulators

We will first prove the virtual stability of the manipulator
links, and followed by the virtual stability of its joints.

Theorem 2. Consider the manipulator links described by (4),
(8), (9), combined with their respective control equations (36),
(37), and with parameter adaptation algorithms, which are the
same as (32) and (33) with appropriate frame substitutions.
Then, these links are virtually stable.

Proof. Define the nonnegative accompanying function of the
ith link νBi as

νBi
=

1

2
(BiV r − BiV )TMBi

(BiV r − BiV )+

1

2

13∑
γ=1

(
θBiγ − θ̂Biγ

)2
ρBiγ

,
(61)

then, the time derivative of (61) can be derived as

ν̇Bi
⩽ − (BiV r − BiV )TKBi

(BiV r − BiV )+

(BiV r − BiV )T(BiF ∗
r − BiF ∗).

(62)

In view of (9), (37), and Definition 3, it yields

(BmV r − BmV )T(BmF ∗
r − BmF ∗) = pBm

− pTEE
, (63a)

(BiV r − BiV )T(BiF ∗
r − BiF ∗) = pBi

− pTi+1
, (63b)

where i = 1, . . . ,m− 1.

As shown in Fig. 1, the mth link has two cutting points,
one driving cutting point associated with frame {TEE} and one
driven cutting point associated with frame {Bm}; the ith, i ∈
[1,m − 1], link has two cutting points, one driving cutting
point associated with frame {Ti+1} and one driven cutting
point associated with frame {Bi}. Therefore, all the links are
virtually stable in the sense of Definition 4.

Theorem 3. Consider the flexible joints of the manipulator
described by (10), combined with its respective control equa-
tion (38), and with the parameter adaptation algorithms (39)
and (40). These flexible joints are virtually stable.

Proof. Select the nonnegative accompanying function of the
ith manipulator joint as

νfi =
1

2
Im,i(ϕ̇m,ir − ϕ̇m,i)

2 +
1

2

2∑
γ=1

(
θqiγ − θ̂qiγ

)2
ρqiγ

+

1

2

3∑
γ=1

(
θϕiγ − θ̂ϕiγ

)2
ρϕiγ

.

(64)

When considering joint elasticity, combined with (64), the
nonnegative accompanying function can be further designed
as

νai = νfi +
1

2
kf,i

[
(ϕm,ir − ϕm,i)− (qm,ir − qm,i)

]2
+

1

2
(kf,i − k̂f,i)

2/ρkfi.
(65)

According to the third equation of (40) and Definition 2,
we can obtain

(kf,i − k̂f,i)
(
skfi − ˙̂

kf,i/ρkfi

)
⩽ 0. (66)

Combined with (66), the time derivative of (65) can be
derived as

ν̇ai ⩽ − kvq,i(q̇m,ir − q̇m,i)
2 − kvϕ,i(ϕ̇m,ir − ϕ̇m,i)

2−
(q̇m,ir − q̇m,i)z

T(BiF r − BiF ).
(67)

According to (4), (9), (36), (37), and Definition 3, we can
derive

ν̇a1 ⩽ − kvq,1(q̇m,1r − q̇m,1)
2 − kvϕ,1(ϕ̇m,1r − ϕ̇m,1)

2

− pB1
+ pPp

,
(68a)

ν̇ai ⩽ − kvq,i(q̇m,ir − q̇m,i)
2 − kvϕ,i(ϕ̇m,ir − ϕ̇m,i)

2

− pBi
+ pTi

, i = 2, . . . ,m.
(68b)

As shown in Fig. 1, joint 1 has one driving cutting point
associated with frame {B1} and one driven cutting point
associated with frame {Pp}. Joint i, i ∈ [2,m], has two cutting
points, one driving cutting point associated with frame {Bi}
and one driven cutting point associated with frame {Ti}.
Therefore, all the flexible joints are virtually stable in the
sense of Definition 4.
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C. Virtual Stability of Wheeled Mobile Platform

We will first prove the virtual stability of the MP’s wheels,
and followed by the virtual stability of the wheel joints, the
MP body, and the virtual manipulator.

Theorem 4. Consider the MP’s wheels described by
(12)∼(16), combined with their respective control equations
(41)∼(45), and with parameter adaptation approach defined
in Definition 2. Then, these wheels are virtually stable.

Proof. Define the nonnegative accompanying function of the
wheel with ID i, i ∈ {fl, fr,bl,br}, as

νWi
=

1

2
(WiV r − WiV )TMWi

(WiV r − WiV )+

1

2

13∑
γ=1

(
θWiγ − θ̂Wiγ

)2
ρWiγ

,
(69)

then, the time derivative of (69) can be expressed as

ν̇Wi ⩽ −(WiV r −WiV )TKWi(
WiV r −WiV )+ pWi − pCi .

(70)
As shown in Fig. 2, the wheel with ID i only has one

driven cutting point associated with frame {Wi}. Combined
with (13), (15), (42), (45), and Definitions 2 and 3, we can
derive

pCi
= (χi,r − χi)

TY c,i(θ̂c,i − θc,i)

= −
∑
γ

(θc,iγ − θ̂c,iγ)
˙̂
θc,iγ
ρc,iγ

−

∑
γ

{
(θc,iγ − θ̂c,iγ)

[
sc,iγ −

˙̂
θc,iγ
ρc,iγ

]}

⩾ −
∑
γ

(θc,iγ − θ̂c,iγ)
˙̂
θc,iγ
ρc,iγ

,

(71)

then, by integrating (71) with respect to time, it yields∫ t

0

pCidτ ⩾
∑
γ

1

2ρc,iγ

[
θc,iγ − θ̂c,iγ(t)

]2−
∑
γ

1

2ρc,iγ

[
θc,iγ − θ̂c,iγ(0)

]2
⩾ −

∑
γ

1

2ρc,iγ

[
θc,iγ − θ̂c,iγ(0)

]2
.

(72)

Therefore, the MP’s wheels are virtually stable in the
sense of Definition 4.

Theorem 5. Consider the rigid wheel joints of the MP de-
scribed by (17), combined with its respective control equation
(46), and with the parameter adaptation algorithms (47) and
(48). These wheel joints are virtually stable.

Proof. Choose the nonnegative accompanying function of the
wheel joint with ID i, i ∈ {fl, fr,bl,br}, as

νAi =
1

2
Ii(ωir − ωi)

2 +
1

2

3∑
i=1

(
θAiγ − θ̂Aiγ

)2
ρAiγ

, (73)

then, the time derivative of (73) can be expressed as

ν̇Ai ⩽ −kAi(ωir − ωi)
2 − pWi + pAi . (74)

As shown in Fig. 2, the wheel joint with ID i has two
cutting points, one driving cutting point associated with frame
{Wi} and one driven cutting point associated with frame
{Ai}. Thus, all the wheel joints are virtually stable in the
sense of Definition 4.

Theorem 6. Consider the MP body described by (18) and
(19), combined with their respective control equations (49) and
(50), and with parameter adaptation algorithms, which are the
same as (32) and (33) with appropriate frame substitutions.
Then, the MP body is virtually stable.

Proof. Define the nonnegative accompanying function of the
MP body νPc

as

νPc
=

1

2
(PcV r − PcV )TMPc

(PcV r − PcV )+

1

2

13∑
γ=1

(
θPcγ − θ̂Pcγ

)2
ρPcγ

,
(75)

then, the time derivative of (75) can be derived as

ν̇Pc ⩽ − (PcV r − PcV )TKPc
(PcV r − PcV )+

pPc
− pPp

−
∑
i

pAi
, (76)

where i ∈ {fl, fr,bl,br} denotes the wheel ID.
As shown in Fig. 2, the MP body has six cutting points,

five driving cutting points associated with frames {Pp}, {Afl},
{Afr}, {Abl}, {Abr}, respectively, and one driven cutting
point associated with frame {Pc}. Thus, the MP body is
virtually stable in the sense of Definition 4.

Theorem 7. Consider the virtual manipulator described by
PcF = 0, combined with its respective control equation (51).
Then, the virtual manipulator is virtually stable.

Proof. Define the nonnegative accompanying function of the
virtual manipulator as 0, then, combined with (52), we can
obtain

0 ⩽ (PcV r − PcV )TKvm(
PcV r − PcV )

= −(PcV r − PcV )T(PcF r − PcF ) = −pPc
.

(77)

As shown in Fig. 2, the virtual manipulator only has
one driving cutting point associated with frame {Pc}. Thus,
the virtual manipulator is virtually stable in the sense of
Definition 4.

D. Stability of Wheeled Mobile Manipulator System

First, we will provide the following important lemmas,
which play an important role in proving the L2 and L∞
stability of the WMM system [25].

Lemma 1. Consider a non-negative piecewise continuous
function ξ(t) described as

ξ(t) ⩾
1

2
xT(t)Px(t), (78)
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where x(t) ∈ Rn, n ⩾ 1, and P ∈ Rn×n is a symmet-
ric positive-definite matrix. If the time derivative of ξ(t) is
Lebesgue integrable and subject to

ξ̇(t) ⩽ −yT(t)Qy(t)− s(t) (79)

with y(t) ∈ Rm, m ⩾ 1, and Q ∈ Rm×m being a symmetric
positive-definite matrix, and s(t) is governed by

∫ ∞

0

s(t)dt ⩾ −γ0 (80)

with 0 ⩽ γ0 < ∞, then it follows that ξ(t) ∈ L∞, x(t) ∈ L∞,
and y(t) ∈ L2 hold.

Lemma 2. Consider a multiple-input-multiple-output first-
order system described by

ẋ(t) +Kx(t) = u(t), (81)

where x(t) ∈ Rn, u(t) ∈ Rn, and K ∈ Rn×n is a
symmetrical and positive-definite matrix. If u(t) ∈ L2 ∩ L∞,
then, x(t) ∈ L2 ∩ L∞ and ẋ(t) ∈ L2 ∩ L∞.

Lemma 3. Consider a multiple-input-multiple-output second-
order system described by

Mẍ(t) +Dẋ(t) +Kx(t) = u(t), (82)

where x(t) ∈ Rn, u(t) ∈ Rn, M ∈ Rn×n, D ∈ Rn×n, and
K ∈ Rn×n are symmetrical and positive-definite matrices. If
u(t) ∈ L2 ∩L∞, then, x(t) ∈ L2 ∩L∞ and ẋ(t) ∈ L2 ∩L∞.

Lemma 4. If e(t) ∈ L2 and ė(t) ∈ L∞, then, limt→∞ e(t) =
0.

It is worth mentioning that Lemma 4 is important in
demonstrating asymptotic convergence of an error signal e(t).

Theorem 8. Consider the entire WMM, which is shown in
Fig. 1. If its dynamic interaction with the external environment
satisfies (58) and (72). Furthermore, let the results in (57),
(63), (68), (70), (74), (76), and (77) hold. Then, the stability
of the WMM can be ensured.

Proof. Select the nonnegative accompanying function of the
WMM as

ν = νEE+

m∑
i=1

νBi
+

m∑
i=1

νai+
∑
j

νWj
+
∑
j

νAj
+νPc

, (83)

where i and j represent the number of the manipulator joints
and the ID of the MP’s wheels, respectively.

According to the results in Theorems 1∼7, the time deriva-
tive of (83) can be derived as

ν̇ ⩽− (EEV r − EEV )TKEE(
EEV r − EEV )

−
m∑
i=1

(BiV r − BiV )TKBi
(BiV r − BiV )

− (PcV r − PcV )TKPc(
PcV r − PcV )

−
∑
j

(WjV r − WjV )TKWj (
WjV r − WjV )

−
m∑
i=1

[
kvq,i(q̇m,ir − q̇m,i)

2 + kvϕ,i(ϕ̇m,ir − ϕ̇m,i)
2
]

−
∑
j

kAj
(ωjr − ωj)

2 − pC −
∑
j

pCj
.

(84)

According to (58)∼(60), (71)∼(72), and Lemma 1, it can
be concluded that

EEV r − EEV ∈ L2 ∩ L∞,
BiV r − BiV ∈ L2 ∩ L∞,
PcV r − PcV ∈ L2 ∩ L∞,

WjV r − WjV ∈ L2 ∩ L∞,
q̇m,ir − q̇m,i ∈ L2 ∩ L∞,

ϕ̇m,ir − ϕ̇m,i ∈ L2 ∩ L∞,
ωjr − ωj ∈ L2 ∩ L∞.

(85)

Take the ith manipulator link for example, if its required
acceleration is bounded, that is, BiV̇ r ∈ L∞. Then, its
required net F/T vector meets the condition BiF ∗

r ∈ L∞.
According to these results, we can conclude that BiF r ∈ L∞
and τi ∈ L∞. Further, combined with link dynamic model (9),
joint dynamic model (10), and Lemmas 2 and 3, it derives
BiV̇ ∈ L∞. Therefore, if the required acceleration of each
subsystem is bounded, in line with (85) and Lemma 4, it
derives 

EEV r − EEV → 0,
BiV r − BiV → 0,
PcV r − PcV → 0,

WjV r − WjV → 0,
q̇m,ir − q̇m,i → 0,

ϕ̇m,ir − ϕ̇m,i → 0,
ωjr − ωj → 0.

(86)

E. Computational Complexity Analysis

The VDC-based trajectory tracking control method pro-
posed in this paper is an iterative algorithm, and its compu-
tational complexity significantly impacts the performance of
the control system. Therefore, this subsection will focus on its
discussion.

Here, we can classify the computations as follows:
(1) The computational complexity of the coefficients in the

dynamic equations of the rigid body (using the end-effector as
an example) and the joint (including the manipulator’s flexible
joint and the wheel’s rigid joint) subsystems is analyzed, as
represented by (8), (10), and (17), respectively.
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(2) The computational complexity of the required velocities
of the rigid body (using the end-effector as an example) and
the joint (including the manipulator’s flexible joint and the
wheel’s rigid joint) subsystems is analyzed, as represented by
(22), (23), (24), and (35), respectively.

(3) The computational complexity of the update adaptive
laws of the rigid body (using the end-effector as an example)
and the joint (including the manipulator’s flexible joint and
the wheel’s rigid joint) subsystems is analyzed, as represented
by (33), (40), and (48), respectively.

(4) The computational complexity of the adaptive con-
trollers of the rigid body (using the end-effector as an example)
and the joint (including the manipulator’s flexible joint and the
wheel’s rigid joint) subsystems is analyzed, as represented by
(31), (38), and (46), respectively.

(5) The computational complexity of the external forces
of the end-effector-environment and the wheel-ground subsys-
tems is analyzed, as represented by (25), and (45), respectively.

Remark 1: In the computational complexity analysis pre-
sented above, we considered only the computations associated
with a single rigid body or joint within the algorithm. The
iterative processes involving velocity or force interactions
between joints and links, such as those described by (36),
(37), and (44), were excluded from the analysis. Nonetheless,
it is evident that the computational complexity increases
proportionally with the number of subsystems considered.

Remark 2: The adaptation gains in (30), (33), (40), (48),
etc., are consistently treated as diagonal matrices. This as-
sumption helps to simplify and reduce the computational
burden.

Table I presents the computational complexities associated
with the VDC-based adaptive control of rigid body and joint
subsystems. In this context, n̄ represents the total number of
joints in the system, while r denotes the dimension of the end-
effector, with r ⩽ 6. Accordingly, the computational costs of
the multiplication and addition operations can be considered
linear functions of the robot’s DoFs. Furthermore, the itera-
tive process’s computational cost is also proportional to the
number of DoFs. Thus, the algorithm’s overall computational
complexity is proportional to the number of DoFs, aligning
with the findings in [38].

V. EXPERIMENTAL RESULTS

Several experiments have been performed to verify the
effectiveness of the proposed control approach for WMMs.
Section V-A presents the experimental setup. Experimental
verification of joint trajectory and EE trajectory is presented in
Sections V-B and V-C, respectively. Section V-D demonstrates
the performance of the proposed method in simultaneously
tracking two trajectories from the MP and the EE.

A. Experimental Setup

The experiments were performed with a custom-built om-
nidirectional WMM, which is the sum of a 4-wheel mobile
platform equipped with two pairs of Mecanum wheels and a
7-DoF ultra-lightweight robotic Gen3 arm (Kinova Robotics,
Canada), as shown in Fig. 4. The Gen3 employs series elastic

elements to sense joint torques. The control system operates
at a frequency of 1000 Hz, corresponding to a loop period of
1 ms. It is important to note that in our experiments, the MP
can only be actuated through joint velocity control rather than
joint torque control. Consequently, an admittance interface is
employed, as described in [50].

7-DOF

Manipulator

Mobile 

Platform

J1

J2

J3

J4

J5

J6

J7

Figure 4: Experimental setup.

The admittance interface for each joint of the wheels is
defined by the equation τmp =Mmpv̇mp +Dmpvmp, where
τmp ∈ Rp represents the resultant joint torque vector for the
MP as specified in (46). The matrices Mmp ∈ Rp×p and
Dmp ∈ Rp×p are diagonal, positive-definite matrices that
represent the virtual inertia and damping of the interface,
respectively. In the experimental setup, these matrices are
chosen as Mmp = 0.75I4×4 Nm·s2 and Dmp = 2.4I4×4

Nm·s. The manipulator joint stiffness coefficients, as given
in (10), are sourced from Kinova Robotics and are specified
as kf = [16, 16, 16, 16, 7.1, 7.1, 7.1]T kN·m/rad. Additionally,
to mitigate the effect of measurement noise, a fourth-order
Butterworth low-pass filter is applied to the joint acceleration,
with a cutoff frequency set at 3 Hz. The control parameters
implemented in the following experiments are listed in Table
II. The control parameters listed in Table II are determined
through trial and error during the experiments. While selecting
appropriate values can achieve desirable tracking performance,
excessively large values may introduce instability to the
WMM. In this study, parameter sensitivity is not considered, as
various parameter combinations can yield comparable tracking
performance. For methods to optimize these values, readers
may refer to [51]. In the experiments, the parameters were
chosen such that the trajectory tracking errors remained mini-
mal while ensuring the stable operation of the robotic system.

B. Experiment on Joint Trajectory Tracking

In this experiment, the VDC-based approach in tracking
joint-space trajectories is verified. To validate the advantages
of the VDC method, we conducted experimental comparisons
against a PID controller, an adaptive sliding mode controller
(ASMC) [52], and a neural network-based SMC (NNSMC)
[53], where the nonlinearities of the robot dynamics were
approximated using a NN. These approaches were selected due
to their relevance in handling uncertainties and disturbances
in dynamic systems. While both baseline methods were im-
plemented with carefully tuned parameters to ensure optimal
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Table I: Computational complexities of the proposed method.

Control steps Multiplication flops Addition flops

1. Dynamic equations denoted by (8), (10), and (17). 72 + 6 + 3 72 + 6 + 3
2. Required velocity vectors denoted by (22), (23), (24), and (35). 6r + r2 + 216 + n̄r2 0 + 2r + 180 + n̄r(r − 1)
3. Update adaptive laws denoted by (33), (40), and (48). 470 + 11 + 5 6 + 0 + 0
4. Adaptive controllers denoted by (31), (38), and (46). 1050 + 14 + 10 972 + 16 + 10
5. External forces denoted by (25), and (45). 6r + 36 6r + 18
Total (n̄+ 1)r2 + 12r + 1893 n̄r2 + (8− n̄)r + 1283

Table II: Control parameters adopted in the experiment.

Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value

KEE 3I6×6 KB6
3I6×6 kvq5 4.5 kvϕ4 40 KWbl

5I4×4

KB1 3I6×6 KB7 3I6×6 kvq6 4.5 kvϕ5 40 KWbr
5I4×4

KB2 20I6×6 kvq1 4.5 kvq7 4.5 kvϕ6 40 kAfl
8

KB3
3I6×6 kvq2 18 kvϕ1 40 kvϕ7 40 kAfr

8
KB4

3I6×6 kvq3 4.5 kvϕ2 200 KWfl
5I4×4 kAbl

8
KB5

3I6×6 kvq4 4.5 kvϕ3 40 KWfr
5I4×4 kAbr

8
Kvm 12I6×6 KPc 6I6×6

performance, the detailed parameter configurations are omitted
here for brevity. It should be noted that the baselines used in
this study were adapted to the specific structure of WMMs,
differing slightly from their standard forms as described in
the literature. Instead, we focus on the experimental results,
which demonstrate that the proposed method achieves superior
trajectory tracking accuracy. Experiments were carried out
using the x-axis motion of the MP and the 2nd, 4th, and 6th

joints of the manipulator as examples. The desired trajectories
for each joint were defined as:

qdi(t) = qfi

[
t

T
− 1

2π
sin(

2πt

T
)

]
+ q0i, (87)

where i ∈ {1, 5, 7, 9} denotes the joint number, i = 1
represents the x-axis of the MP, and the others correspond
to the joints of the manipulator; q0i and qfi denotes the initial
and final positions of the ith joint, respectively; and T denotes
the joint motion period.

In the joint trajectory tracking experiments, the motion
period was set to T = 20 s. The initial position for the x-
axis of the MP and the manipulator joints were 0 m, π/6 rad,
π/2 rad, and −π/6 rad, respectively. And the corresponding
final position were 0.5 m, 0 rad, π/6 rad, and π/3 rad,
respectively. The desired trajectories for the manipulator joints
and the MP are illustrated in Fig. 5. Specifically, Fig. 5a shows
the desired trajectories for Joint 2, Joint 4, and Joint 6, while
Fig. 5b depicts the desired trajectory for the MP’s motion
along the x-axis.

The joint trajectory tracking performance is illustrated in
Fig. 6. For the manipulator, the results are depicted in Figs.
6a–6c, while Fig. 6d presents the results for the MP. Further-
more, Table III provides the root mean square (RMS) errors
obtained using the PID, ASMC, NNSMC, and the proposed
VDC methods.

From the figures and Table III, it can be easily seen that
the system converges to the desired trajectories and achieves
good steady-state tracking performances by using the proposed
VDC scheme. Using the PID method, the maximum tracking
errors for Joint 2, Joint 4, Joint 6, and x-axis motion were
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Figure 5: The desired trajectory of the tested manipulator joints
and the MP.
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Figure 6: Experimental results of WMM’s joint trajectory
tracking.

1.35 × 10−2 rad, 5.9 × 10−3 rad, 6.1 × 10−3 rad, and 1.95
mm, respectively. In contrast, with the proposed VDC method,
the maximum tracking errors were reduced to 1.5×10−3 rad,
1.8 × 10−3 rad, 2.1 × 10−3 rad, and 1.22 mm, accounting
for only 11.1%, 30.5%, 34.4%, and 62.6% of the errors
observed with PID control. Additionally, the RMS error results
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Table III: Comparison of RMS errors in joint trajectory
tracking.

Methods Joint 2 (rad) Joint 4 (rad) Joint 6 (rad) x-axis (mm)

PID 4.2× 10−3 1.8× 10−3 3.2× 10−3 1.13
ASMC 1.7× 10−3 1.3× 10−3 1.4× 10−3 0.88

NNSMC 1.6× 10−3 8× 10−4 1.0× 10−3 0.79
VDC 1.2× 10−3 7× 10−4 9× 10−4 0.71

in Table III further demonstrate that the proposed VDC method
outperformed the other three comparison methods in terms
of tracking performance. These experimental findings clearly
highlight that the proposed adaptive control method based
on VDC offers significantly superior joint trajectory tracking
performance compared to the PID and ASMC methods. This
improvement stems from the incorporation of the system’s
nominal model into the VDC scheme, which enables online
parameter adjustments based on the tracking error output.

C. Experiment on End-Effector Trajectory Tracking

The performance of the proposed approach in tracking an
EE trajectory is verified in this section. Here, we selected
the NNSMC method, which demonstrated strong performance
in Section V-B, as a baseline for comparison to validate
the advantages of the VDC method in tracking the EE
trajectory of the WMM. Define the required EE trajectory
as xee,r(t) = xee0 + [0, Ree sin(π/15t), Ree/2 sin(2π/15t)]

T

with Ree = 0.2 m, where xee0 denotes the initial position
of the EE. In the subsequent task-space trajectory tracking
experiments, the initial generalized coordinate vector of the
WMM is denoted as q0 = [0, 0, 0, 0, π/6, 0, π/2, 0,−π/6, 0]T,
where the first three parameters correspond to the MP. Us-
ing the WMM forward kinematics, the initial positions of
both the EE and the MP are derived and represented as
xee0 = [0.8435,−0.0246, 0.4921]T m and xmp0 = [0, 0]T m.
The experimental results are shown in Figs. 7 and 8. Here,
Figs. 7b and 7c respectively show the configurations of the
WMM at the positive y-axis limit and the negative y-axis limit.

Σw

x
y
z

(a) Initial configuration (b) Right limit (c) Left limit (d) Final configuration

Figure 7: Sequence diagram of EE’s motion process.

Fig. 8a illustrates the trajectory of the EE. As the desired
trajectory lay in the y − z plane of the world frame, the x-
axis trajectory was not provided. From Fig. 8b, the maximum
tracking errors in the y and z directions based on the NNSMC
method were 2.01 mm and 4.82 mm, respectively, while
the corresponding errors using the proposed VDC method
were reduced to 1.51 mm and 3.02 mm, representing de-
creases of 24.9% and 37.3%, respectively. This result strongly
demonstrates the effectiveness of the VDC-based adaptive
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Figure 8: Trajectory tracking results of the EE.

method in tracking an task-space trajectory. This conclusion
is expected because the desired end-effector trajectory was
calculated through inverse kinematics to obtain the desired
joint trajectories, which were then sent to the WMM.

D. Experiment on Dual Trajectory Tracking

As demonstrated in (86), a key strength of the proposed
approach is its ability to guarantee trajectory tracking stability
in both joint space and task space. This capability is of
great importance in controlling multi-DoF robots, including
redundant robotic systems.

In this study, we designed a dual-trajectory tracking frame-
work for redundant WMM systems using a task-priority-
based redundancy resolution approach. Unlike the method
in (35), this framework simultaneously tracks two task-space
trajectories by utilizing the redundancy of the robotic system:
one for the EE and the other for the MP, with priority assigned
to the EE. It is noteworthy that this method merely employs
a different approach to generate the required joint velocity
vector for the WMM, and thus does not affect the system’s
stability.

Here, the dual-trajectory tracking approach is designed as
vr = J†ẋee,r + N 1(J2N 1)

†(ẋmp,r − J2J
†ẋee,r), where

ẋee,r represents the required EE’s velocity, ẋmp,r denotes the
required MP’s velocity. The matrix N 1 = I−J†J represents
the orthogonal projector in the J ’s null space, J2 is the
extended Jacobian of the MP for the following controller
design. For additional details, please refer to our previous
research [10].

Two scenarios with trajectories of different scales for the
EE and the MP are considered. The first scenario is both
two trajectories can be tracked. The second scenario is to
track the EE trajectory at the expense of the MP trajectory
tracking accuracy. To further analyze the performance of the
controller, we defined three performance indexes to verify the
quality of the proposed control. (1) eM = max0≤t≤T |e(t)|:
The maximum absolute tracking error for the WMM, which
can be viewed as a measure of the worst tracking accuracy.
(2) L1[e] = (1/T )

∫ T

0
|e|dt: The integral mean of the tracking

error for the WMM. (3) L2[e] =
(
(1/T )

∫ T

0
|e|2dt

)1/2

: The
RMS of the tracking error for the WMM. In the above indexes,
e denotes the tracking error and T represents the entire running
time.

The desired trajectories are defined as follows: for the
EE, xee,r(t) = xee0+[Ree sin(π/10t),−Ree/2 sin(π/5t), 0]

T,
and for the MP, xmp,r(t) = xmp0 + [−Rmp cos(π/10t) +
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Table IV: The performance indexes of the WMM.

x-direction (mm) y-direction (mm)
eM L1[e] L2[e] eM L1[e] L2[e]

Scenario 1 EE 2.56 0.65 0.77 1.08 0.42 0.48
MP 1.89 1.06 1.13 1.57 0.75 0.83

Scenario 2 EE 4.74 0.64 0.99 0.95 0.32 0.39
MP 257.05 82.79 128.83 41.49 9.05 16.08

Rmp,−Rmp sin(π/10t)]
T. The trajectory parameters for the

two scenarios are as follows: Scenario 1: Ree = 0.2m,
Rmp = 0.2m; Scenario 2: Ree = 0.2m, Rmp = −0.2m.
Table IV shows the control performance of the proposed
approach in the two scenarios.

The experimental results of Scenario 1 are shown in Table
IV and Figs. 9-12. It is obvious that in this scenario, both
of the EE and MP trajectories could be tracked. Notably, the
desired trajectory for the EE is confined to the x − y plane,
and thus, tracking results for the z direction are not provided.
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Figure 9: Trajectory of the EE in Scenario 1.
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Figure 11: Tracking error of the WMM in Scenario 1.

The trajectory tracking results of the EE in this scenario
are shown in Figs. 9 and 11a. An “8”-shaped trajectory was
provided for the EE. The maximum tracking error occurred
at 0.39 s in the x-direction, measuring 2.56 mm, which
corresponded to 0.64% of its total motion range. The L2[e]
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Figure 12: Joint position of the WMM in Scenario 1.

values of the tracking errors in the x-axis and y-axis were
0.77 mm and 0.48 mm, respectively. These values accounted
for only 0.19% and 0.21% of their respective displacements.

The trajectory tracking results of the MP are shown in
Figs. 10 and 11b. In contrast to the EE, the desired trajectory
for the MP was a circle with a radius of 0.2 m. The x-axis
exhibited the maximum tracking error, which was 1.89 mm,
, accounting for no more than 0.47% of the displacement in
the corresponding direction. The L1[e] values of the tracking
errors reached their maximum in the x-direction, but this was
only about 0.27% of the total displacement.

The joint position of the manipulator in the experiment is
presented in Fig. 12. It is evident that during the dual trajectory
tracking process of the EE and the MP, the movement of the
manipulator’s joints was smooth, with no abrupt changes in
position.

Based on the experimental results, it can be concluded that
when the trajectories of the EE and the MP did not interfere
with each other, the proposed dynamic control method based
on VDC effectively tracked both trajectories without compro-
mising the stability at the joint level of the entire system.

The experimental results of Scenario 2 are shown in Table
IV and Figs. 13-16. Under this scenario, due to the workspace
limitations of the WMM, the desired trajectories of the EE and
MP could not be simultaneously satisfied. Here, the designed
dual-trajectory tracking approach was employed, prioritizing
the EE trajectory tracking.
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Figure 13: Trajectory of the EE in Scenario 2.

Figs. 13 and 15a present the tracking error of the EE. An
“8”-shaped trajectory, identical to that in Scenario 1, was set
for the EE. The maximum tracking error, which was 4.74 mm
and corresponded to 1.19% of the total motion range, occurred
in the x-direction, while the L2[e] values in both axes remained
below 1 mm.

The experimental results of the MP are shown in Figs. 14
and 15b. Here, the maximum tracking errors were 257.05 mm
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Figure 14: Trajectory of the MP in Scenario 2.
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Figure 15: Tracking error of the WMM in Scenario 2.

in the x-axis and 41.49 mm in the y-axis, which correspond
to 64.26% and 20.75% of their respective motion ranges.
These values significantly exceed the acceptable error limits
for trajectory tracking. It should be noted, however, that these
errors arose from the inability of the EE and MP to track
both trajectories simultaneously and were due to the task
prioritization setup. They were unavoidable errors and not a
result of the adaptive controller proposed in this study.

The joint position curves of the manipulator under this
scenario are shown in Fig. 16. As with Scenario 1, the joint
position variations of the manipulator remained smooth, which
demonstrated that the proposed trajectory tracking method
maintained joint movement stability even when the EE and
MP trajectories could not be tracked simultaneously.

In addition, during the experiment, we measured the time re-
quired for a single control loop. On the experimental hardware
used, the average duration of a single loop was approximately
0.78 ms, meeting the real-time requirements of the experiment.

Although the experimental results demonstrate the effective-
ness of the proposed method, certain aspects require further
refinement for real-time applications. The VDC-based algo-
rithm, which incorporates the full nonlinear dynamics of the
WMM, can impose a substantial computational burden on
systems with limited onboard processing power, highlighting
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Figure 16: Joint position of the WMM in Scenario 2.

the need for optimization techniques such as real-time effi-
cient solvers. Mechanical constraints, including joint elasticity,
friction, and wheel-ground interactions, also affect system
behavior. While these factors are considered in the control
framework to enhance robustness, extreme conditions like se-
vere terrain unevenness or high joint compliance may demand
additional parameter tuning. Electrical challenges, such as
actuator saturation and sensor noise, are common in real-world
systems. Although the control approach adaptively addresses
external disturbances, sudden power interruptions or excessive
noise may still impact performance, requiring hardware-level
solutions. Environmental factors, such as uneven terrain, dust,
and moisture, pose further challenges by affecting stability,
wheel-ground interactions, and sensor reliability. While the
framework is robust against moderate disturbances, extreme
conditions may necessitate measures like sensor sealing and
dynamic terrain adaptation strategies to ensure reliable opera-
tion.

VI. CONCLUSIONS

In this paper, we present a novel trajectory tracking control
method in Cartesian space for wheeled mobile manipula-
tors (WMMs). To achieve high-bandwidth closed-loop per-
formance, the internal control of the WMM was designed
using the subsystem-dynamics-based virtual decomposition
control (VDC) approach. This design explicitly accounts for
the manipulator’s joint flexibility and external disturbances,
significantly enhancing trajectory tracking accuracy. The L2

and L∞ stability of the proposed VDC-based controller is
rigorously proven for both the subsystems and the overall
WMM. Additionally, the asymptotic convergence of the joints’
and end-effector’s trajectory tracking has been proved.

The effectiveness of the proposed approach was experi-
mentally proven on a custom-built WMM, and comparative
experiments were conducted with three different methods.
The proposed method demonstrated high accuracy for joint
trajectory tracking, with a maximum tracking error not ex-
ceeding 2.1 × 10−3 rad. The maximum tracking error of
the proposed method for end-effector trajectory tracking was
approximately 3.02 mm. In the case of dual-trajectory tracking
for both the end-effector and the mobile platform, when the
given trajectories were compatible with the redundancy of the
WMM, the RMS tracking errors were limited to 0.77 mm for
the end-effector and 1.13 mm for the mobile platform.

While this study focuses on WMMs, the developed VDC-
based control approach is extendable to systems involving
other robotic configurations. Its ability to rigorously address
nonlinear dynamic behavior makes it applicable to dynami-
cally complex tasks, such as bipedal locomotion and manipu-
lation under constrained conditions.

Despite the promising results, certain limitations exist in
the current study. (1) Theoretical Limitations: The analysis
assumes ideal sensor feedback, which may not hold under
uncertainties and noise. Additionally, the model does not
address the identification of external disturbances, such as
dynamic loads, which are frequently encountered in real-world
applications. (2) Practical Limitations: Experiments were con-
ducted in structured, static environments on a custom-built
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WMM. Performance in dynamic, unstructured terrains and
under payload variations remains untested.

Our future work will focus on enhancing the control
framework’s robustness to uncertainties, unmodeled dynamics,
and external disturbances. We will explore its scalability to
systems with reduced redundancy or increased complexity.
Practical validation will be extended to dynamic and unstruc-
tured environments, with the integration of advanced state
estimation and sensor fusion techniques. By addressing these
limitations, the proposed approach has the potential to evolve
into a robust control framework applicable to a wide range of
robotic systems, including aerospace, industrial automation,
and bipedal locomotion.
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