
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

Learning Autonomous Surgical Irrigation and
Suction with the da Vinci Research Kit Using

Reinforcement Learning
Yafei Ou1, Graduate Student Member, IEEE, Mahdi Tavakoli1,2, Senior Member, IEEE

Abstract—The irrigation-suction process is a common pro-
cedure to rinse and clean up the surgical field in minimally
invasive surgery (MIS). In this process, surgeons first irrigate
liquid, typically saline, into the surgical scene for rinsing and
diluting the contaminant, and then suction the liquid out of
the surgical field. While recent advances have shown promising
results in the application of reinforcement learning (RL) for
automating surgical subtasks, fewer studies have explored the
automation of fluid-related tasks. In this work, we explore the
automation of both steps in the irrigation-suction procedure and
train two vision-based RL agents to complete irrigation and
suction autonomously. To achieve this, a platform is developed
for creating simulated surgical robot learning environments and
for training agents, and two simulated learning environments
are built for irrigation and suction with visually plausible fluid
rendering capabilities. With techniques such as domain ran-
domization (DR) and imitation learning, two agents are trained
in the simulator and transferred to the real world. Individual
evaluations of both agents show satisfactory real-world results.
With an initial amount of around 5 grams of contaminants, the
irrigation agent ultimately achieved an average of 2.21 grams
remaining after a manual suction. As a comparison, fully manual
operation by a human results in 1.90 grams remaining. The
suction agent achieved 2.64 and 2.24 grams of liquid remaining
across two trial groups with more than 20 and 30 grams of
initial liquid in the container. Fully autonomous irrigation-suction
trials reduce the contaminant in the container from around
5 grams to an average of 2.42 grams, although yielding a
higher total weight remaining (4.40) due to residual liquid not
suctioned. Further information about the project is available at
https://tbs-ualberta.github.io/CRESSim/.

Note to Practitioners—The irrigation-suction process is a sur-
gical procedure for rinsing and cleaning surgical fields. This
work tackles automating the process to reduce the workload
for surgeons. Our approach is based on two customized simu-
lation environments that can simulate the irrigation and suction
process realistically. Two autonomous agents are trained using
robot learning approaches in the environments for completing
irrigation and suction, respectively, and then transferred to the
real world. The agents autonomously control the surgical robot
by interpreting the images captured from an RGB camera and
the robot’s current state, and generate joint movements of the
robot. This approach has been tested in physical settings, showing
promising results in terms of the individual and combined
performance of the agents in executing the full irrigation-suction

This research was supported by the Canada Foundation for Innovation
(CFI), the Natural Sciences and Engineering Research Council (NSERC)
of Canada, the Canadian Institutes of Health Research (CIHR), Alberta
Innovates, the China Scholarship Council (CSC), and Alberta Advanced
Education. (Corresponding author: Yafei Ou.)

1Yafei Ou and Mahdi Tavakoli are with the Department of Electrical and
Computer Engineering, University of Alberta, Edmonton, Alberta, Canada (e-
mail: {yafei.ou, mahdi.tavakoli}@ualberta.ca).

2Mahdi Tavakoli is also with the Department of Biomedical Engineering,
University of Alberta, Edmonton, Alberta, Canada.

process. Future work is needed to extend the approach to
more practical surgical settings, evaluate the performance under
diverse conditions, and enhance integration with existing surgical
robot platforms.

Index Terms—Medical robots and systems, surgical robotics,
fluid simulation, reinforcement learning.

I. INTRODUCTION

AGrowing interest has been shown in recent years in
achieving autonomous or semi-autonomous subtask ex-

ecution in surgeries using surgical robotic systems. These
include tissue cutting [1]–[3], tissue manipulation [4]–[7],
suturing [8]–[10], and others, with the overall goal of reducing
the workload and enhancing surgeons’ skills when performing
specific subtasks, achieving what is termed augmented dex-
terity—the enhancement of a surgeon’s capabilities through
robotic assistance under supervision [11]. Increasing numbers
of these studies are utilizing machine learning approaches,
particularly robot learning techniques such as reinforcement
learning (RL) and imitation learning (IL), due to their gen-
eralizability and reduced manual effort when compared with
traditional motion planning algorithms, thanks to their data-
driven nature.

While these studies show promising results, many rely on
manually extracted feature vectors from images as input to
the policy, such as tooltip positions and key point locations
extracted from markers placed on the surgical instrument or
tissue. Although technically feasible, this can be less robust
in realistic surgical scenarios, such as when the lighting
conditions change and when smoke is present due to energy-
based operations. Therefore, relying directly on the raw visual
observation captured from the endoscopic camera as input to
the policy is usually more desirable, due to the elimination
of manual feature extraction and the potential of obtaining an
end-to-end policy that takes the sensory input (e.g., image and
sensor reading) and directly produces the desired actions.

Training vision-based agents that take image observations
has been extensively explored in general robot manipulation
and navigation. A number of these studies rely on a simulation-
to-reality (sim-to-real, sim2real) approach, where the agent is
first trained in a simulated environment that synthesizes the
image observation, and then transferred to the real world.
Several recent studies in surgical robotics have focused on
this aspect as well. In [12], an agent is trained to roll a
block using the surgical robot in a simulator that synthesizes
64× 64 RGB image observations with domain randomization

https://doi.org/10.1109/TASE.2025.3576731

https://tbs-ualberta.github.io/CRESSim/


2 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

(DR), where the environment parameters such as lighting and
camera positions are randomized, and then transferred to the
real world directly. Using a similar approach, Haiderbhai et
al. obtained a vision-based policy for rope cutting [13]. In [5],
the authors achieved sim-to-real transfer for autonomous tissue
manipulation by utilizing domain adaptation (DA) using a
contrastive generative adversarial network (GAN).

However, one major challenge when applying sim-to-real
approaches to surgical task automation is the need to simulate
realistic surgical scenes and operations. Unlike simulators
for everyday and industrial robotic tasks, which typically
involve mostly rigid objects governed by basic principles
of mechanics, surgical simulations require a higher level
of complexity to accurately model soft tissues, fluids, and
dynamic interactions such as cutting and cauterization. The
simulation of such physical models and behaviors is already a
considerable challenge involving computational solid and fluid
mechanics, but rendering visually realistic images for fluid in
the simulator to support the training of vision-based agents
adds an additional layer of complexity.

These complexities are particularly evident in the underex-
plored area of surgical irrigation and suction. During surgery,
blood, debris, and other contaminants are frequently present
as a result of procedures like cutting, cauterization, and tissue
manipulation [14]. To maintain a clear surgical field, surgeons
may follow a two-step process: first, they irrigate the area
with a sterile solution, typically saline, to rinse or dilute the
contaminants; then, suction is used to remove the fluid along
with any remaining debris. This process is usually carried
out using an irrigation-suction instrument in robotic surgery,
which allows the surgeon to both introduce and remove fluids.
However, this usually involves a considerable amount of time
and effort [15], and automating this process may help reduce
the workload of surgeons.

Developing simulated learning environments for the task is
challenging, as it involves fluid dynamics, which is more com-
putationally complex than rigid body dynamics, and the corre-
sponding interactions for irrigating and suctioning fluids. Fluid
mixing should also be considered, as the irrigated solution
will be mixed with the existing contaminants. Additionally,
developing a vision-based policy involves a greater degree of
complexity since the rendering of fluids while mixing them is
also required to synthesize visually plausible images.

Existing studies that attempt to automate this task primarily
focus on the suction phase, particularly blood suction [16]–
[20]. In [17], the authors employ optical flow to track blood
flow in real-time and generate a suction trajectory using a
computational motion planner to efficiently remove blood
while moving upstream toward the bleeding point. Huang
et al. implemented a differentiable position-based fluids (PBF)
model of the blood and used model predictive control (MPC)
to generate a suction trajectory. In [19], a simulated blood
suction environment is built based on PBF and is used to train
an RL agent that takes a binary image mask of the blood
region as input, and outputs the 2D motion of the suction
tool. However, manual feature extraction is still needed to
obtain a binary mask representing the area of the blood. To the
best of the authors’ knowledge, none of the existing studies

have developed an agent relying on raw RGB images without
manual feature extraction, and the automation of irrigation has
not been explored in the literature.

In this work, we develop vision-based agents that au-
tonomously complete both steps during surgical irrigation and
suction. To achieve this, we build a novel surgical robot
learning platform for the da Vinci Research Kit (dVRK) [21]
that integrates robot learning capabilities and visually realistic
fluid simulations and rendering. We design irrigation and
suction learning environments in the simulator that resemble
the real-world setup. Vision-based agents are trained in the
simulator with domain-randomized parameters and carefully
designed rewards, learning curricula, and human demonstra-
tions, and are then transferred to the real world. This approach
is similar to the one used in [13], where a vision-based rope-
cutting model is obtained in a sim-to-real manner. The main
contributions of this work are as follows:

• We propose CRESSim-ML, a surgical robot learning
platform for the dVRK. Built on our previous work
(CRESSim) [22], the platform additionally incorporates
parallel training environment capabilities, and allows
collecting human demonstrations through teleoperation
using the actual dVRK Master Tool Manipulator (MTM).

• Based on CRESSim-ML and Unity’s ML-Agents, simu-
lated learning environments are created for irrigation and
suction using the Patient Side Manipulator (PSM) from
the dVRK and the EndoWrist Suction/Irrigator. Screen-
space fluid rendering is implemented and adapted to
simulate realistic visual effects, including fluid mixing.

• With hand-crafted reward functions, DR, curriculum
learning (CL), and IL, two vision-based agents for ir-
rigation and suction are trained in the simulator for
controlling the robot in joint space to complete the tasks.

• We conduct real-world experiments to validate the sim-
to-real transfer of the trained agents and analyze their
performance quantitatively.

To the best of the authors’ knowledge, this is the first study
to investigate the automation of the two-step irrigation and
suction processes. It is also one of the few studies that use a
learning-based approach to automate the motion of the surgical
robot in joint space based on RGB image observations without
additional feature extraction. The overall framework is shown
in Fig. 1.

II. RELATED WORK

A. Surgical Subtask Automation and Augmented Dexterity

A large number of recent studies aim to achieve subtask
automation in surgeries using surgical robotic systems, with
a long-term goal of increasing the level of autonomy in
surgeries, similar to autonomous vehicles. The concept where
surgical subtasks are controlled by a robot under surgeons’
supervision is recently referred to as augmented dexterity [11].
Examples of these studies include tissue cutting [1]–[3], tissue
manipulation [5]–[7], suturing [8]–[10], blood suction [16]–
[20], and vessel manipulation [23]. Numerous studies have
also focused on the navigation and control of endoscopes



OU AND TAVAKOLI: LEARNING AUTONOMOUS SURGICAL IRRIGATION AND SUCTION 3

Unity
PhysX 5 for 

Unity

ROS-Unity 

Integration

PhysX 5 

SDK

Robot 

Utilities

Native APIs
Physics 

results

dVRK ROS
ROS 

messages

dVRK MTM 

Robots

ML-Agents

PhysX 5 Native Plugin

Simulation
Demonstrations

Training Environments Real-world Evaluation

Suction

Irrigation sim2real

Training

Suction

Irrigation

Reality

Fig. 1. Overall framework.

[24]–[26]. Many of these studies leverage RL approaches [1]–
[3], [5]–[10], [19]. However, applying RL to surgical tasks
involving fluid manipulation, such as irrigation and suction,
remains relatively underexplored due to the challenges and
limited software tools for simulating fluid dynamics.

B. Surgical Simulation and Sim-to-Real Transfer

Surgical task simulation is challenging compared with daily
tasks, due to the multiple types of objects and manipula-
tions involved, such as soft bodies (e.g., soft tissue), fluids
(e.g., blood and other body fluids), burning, and cutting.
Nevertheless, its applications have been important in two
major domains. The traditional usage is for training surgeons,
where trainees operate in a simulated surgical environment
to improve their skills. Examples of such systems include da
Vinci SimNow1, VirtaMed LaproS2, and iMSTK3.

A more emerging application of surgical simulation is for
training autonomous agents using robot learning methods,
where agents are trained in the simulator and transferred to
the real world. Studies of this type include [4], [7], [9], [10],
[13], [19]. While it is ideal to use commercial simulators such
as the da Vinci SimNow for building training environments
for robot learning, it is challenging in practice due to the
proprietary nature of these software systems. Many recent
studies have proposed open-source simulation environments
for surgical robot learning, including dVRL [27], AMBF-RL
[28], UnityFlexML [4], SurRoL [29], [30], LapGym [31],
Surgical Gym [32], and ORBIT-Surgical [33]. Among them, a
number of recent studies consider GPU-accelerated simulation,
which allows large-scale parallel training and significantly
boosts training efficiency and performance. However, they are
generally inferior to the commercial ones in terms of the types
of objects that they can simulate. For instance, AMBF-RL is
mainly used for simulating rigid bodies and some soft bodies,
without the capability for simulating fluids. Nevertheless,
achieving sim-to-real transfer for irrigation-suction requires
the simulation of visually plausible fluids. There are also

1www.intuitive.com/en-us/products-and-services/da-vinci/learning/simnow
2www.virtamed.com/en/products-and-solutions/simulators/laparos
3www.imstk.org

studies that build task-specific simulation environments, such
as [12], [13].

C. Fluid Simulation and Manipulation

This work is also related to recent advancements in robotic
manipulation involving fluids, as well as the development of
fluid simulation environments for robot learning [34]–[36]. In
[34], the Navier–Stokes equation is used for simulating 2D
fluid flow, and an RL model is trained to learn to manipulate
a rigid object using a water jet. Babaians et al. used PBF for
simulating fluids [35], which is used to train a robot to pour a
glass of liquid. Authors of [36] considered a number of fluid
manipulation tasks, such as fluid mixing and drawing latte art.
Most of these studies focus on daily tasks such as pouring and
beverage mixing, which is different from surgical irrigation or
suction in terms of manipulation contact. For instance, daily
tasks rarely involve fluid suction that requires the simulation
of a suction force.

There are a number of real-time fluid simulation and ani-
mation techniques, such as smoothed-particle hydrodynamics
(SPH), material point method (MPM), fluid implicit particle
(FLIP), and PBF [37]. Among these methods, PBF is one of
the most computationally efficient and numerically stable ones
due to its consideration of positional constraints instead of
relying on force integration. This makes it particularly well-
suited for large-scale trial-and-error learning, enabling massive
parallel training, such as in [35], while avoiding pauses or time
rewinds caused by numerical instability. For fluid rendering,
there are two main technical approaches: (a) mesh-based
surface reconstruction, and (b) screen-space rendering. The
first approach reconstructs a surface mesh from fluid particles
or level sets using techniques such as marching cubes [38].
However, this approach is generally more computationally
expensive than the screen-space method, which approximates
the fluid surface directly in image space using depth maps
or normal reconstruction techniques [39]–[41]. This is widely
used in real-time applications, often in combination with PBF
to achieve visually plausible results with less computation.

www.intuitive.com/en-us/products-and-services/da-vinci/learning/simnow
www.virtamed.com/en/products-and-solutions/simulators/laparos
www.imstk.org


4 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

(a) (b)

Fig. 2. Particle color diffusion. (a) Initial colors; (b) Colors after 10 steps.

III. SIMULATED LEARNING ENVIRONMENTS FOR
IRRIGATION AND SUCTION

A. Fluid Simulation and Rendering

1) Fluid Simulation With Color Diffusion: To simulate
irrigation and suction, fluid behavior must be simulated and
rendered with visual plausibility. PhysX 5 SDK provides the
feature of simulating fluid particles on GPU using position-
based dynamics (PBD), and more specifically, position-based
fluids (PBF) [42]. Although PhysX 5 includes an existing PBF
implementation, it focuses solely on numerical computation
without rendering considerations. In this work, we further
introduce a straightforward approach to fluid color mixing
when using PhysX’s PBF.

In PBF, fluid is modeled by small particles with positions xi

and velocities vi. During each simulation step, the velocities
of the particles are first predicted based on the external forces
fext(xi), such as gravity:

vi ← vi +∆τ fext(xi), (1)

where ∆τ is the simulation time step. The next-step positions
can thus be predicted by pi = xi+∆τvi. pi is then iteratively
corrected by solving positional constraints, such as collision.
Finally, the velocities are updated based on the predicted
position change of the particles, and the positions are set to
the predicted ones:

vi ← (pi − xi)/∆τ, xi ← pi.

As we would like to mix two types of fluids with different
colors when simulating irrigation, the simulation should in-
clude color mixing and changes. It is therefore straightforward
to label each particle with a color and diffuse the colors
between particles based on their spatial proximity. To achieve
this, each particle is assigned to a cell in a 3D grid with
uniform discrete cells based on its position, also known as
spatial hashing. For each particle, all particles in a neighboring
region are evaluated, and the weighted average of the particle
colors is computed to update the particle’s color. Therefore,
for each particle i with color ci,

ci =

∑
j wij ∗ cj∑

j wij
. (2)

Weighting can be done based on the distance between two
particles, with wij = exp(−∥pi − pj∥ /2σ2), similar to
applying a Gaussian filter. Particle velocity can be considered
as an additional factor, assuming that particles with higher
speed should contribute more during color diffusion:

wij = exp(−∥pi − pj∥ /2σ2) · c · ∥vj∥ , (i ̸= j),

where c is a constant. In this way, particles that are closer
to one another and have a higher velocity can influence each
other’s color more significantly. This process is repeated at
each step using a compute shader on the GPU. An example
is shown in Fig. 2.

2) Fluid Rendering: To render the particles as fluid, one
common approach is screen-space fluid rendering [39], [40],
where the fluid surface is reconstructed from the particles in
the view space with depth values and surface normals, and
then rendered directly in the screen space with per-fragment
lighting. However, in its most simplistic form, this approach
does not consider multiphase fluid particles, such as with
different materials and colors.

However, rendering should account for the different colors
of each particle in our case. To achieve this, an additional color
extraction pass is added to the regular screen-space rendering
scheme after the surface depth texture is extracted, which
simply extracts the colors of particles that are closest to the
fluid surface. This process is similar to [43], where the authors
propose using a separate pass to extract the colors based on
the thickness of the fluid. The difference is that we do not
consider any particle colors apart from the surface ones. This
eliminates the need for a thickness pass to extract the fluid
thickness and is a valid simplification without losing much
visual plausibility, thanks to the previously discussed color
diffusion scheme.

We use anisotropy ellipsoids discussed in [41] when recon-
structing the fluid surface and a narrow range filter [44] to
smooth it. An example fluid simulation and rendering scene
is shown in Fig. III-A2. The overall fluid rendering steps
are shown in Fig. 3. In a stress test scene with two large
mixing fluid blocks of different colors, each containing 125
thousand particles, the average render time is approximately
7.5 ms per frame (measured over multiple frames). The physics
computation is the primary bottleneck, requiring an average
of 24.1 ms per physics step. Considering task parallelism and
all other operations, the frame rate can generally be achieved
around 30 Hz. This test was conducted with an Nvidia RTX
4070, a mid-tier consumer GPU. As a comparison, a scene
with 20 robots takes less than 3 ms for physics computation
per step.

B. A Surgical Robot Learning Framework for the dVRK

In our previous work [22], a general surgical simulation
platform (CRESSim) has been built by leveraging PhysX 5
and Unity, where the dVRK PSM robot is simulated and
the real-world dVRK MTM robot is used for teleoperating
the simulated PSM. The PSM is a robot with a mechanical
remote center of motion (RCM). The robot, together with the
EndoWrist One Suction/Irrigator, is simulated as a kinematic
tree with multiple articulation joints, as shown in Fig. 4. It is
worth noting that the Suction/Irrigator has only two degrees
of freedom (DoF), making the entire PSM a 5-DoF robot.

Based on this, we are able to further implement a robot
learning framework by incorporating the Unity Machine
Learning Agents Toolkit (ML-Agents) [45] into the existing
software. To allow parallel training environments, additional



OU AND TAVAKOLI: LEARNING AUTONOMOUS SURGICAL IRRIGATION AND SUCTION 5

(a) (b) (c) (d)
A

sequence of screenshots from a demonstration scene illustrating the simulation’s capability in fluid physics and rendering.
The images showcase the interaction between two flowing fluids, their mixing behavior, and visual effects.

Particle data Color texture

Background

Final frame

Depth texture Smoothed depth texture

Narrow range 

filter

Fig. 3. Fluid surface rendering procedure.

(a) (b) (c)

Fig. 4. (a) Simulated PSM with the EndoWrist One Suction/Irrigator; (b)
Simulated Suction/Irrigator tooltip; (c) Real Suction/Irrigator tooltip.

modifications were made for long-term episodic resetting of
the environments, such as fluid particle and material property
resetting. Additional features are introduced, such as shared
object meshes and shapes between duplicate training areas,
which can potentially save memory usage for large-scale train-
ing. Human demonstrations for completing simulated tasks
can then be collected while using the real-world MTM to
teleoperate the PSM in the simulated learning scene, as shown
in Fig 5. The procedures for collecting demonstrations will be
further discussed in Section IV-B.

Based on this platform, two simulated learning scenes for
irrigation and suction are developed, which will be discussed
in the following section. While we only consider irrigation and
suction in this work, the platform can be generally used for
building various surgical robot learning tasks for the dVRK,
including those that use different instruments such as the
Large Needle Driver. Previous work has shown its capability
to simulate a number of surgical tasks, such as tissue cutting
and manipulation [22]. As the proposed platform combines
CRESSim with ML-Agents, we refer to it as CRESSim-ML.

Simulated Learning Scene

ROS-Unity 

Integration
dVRK ROS

ROS 

messages

dVRK MTM

ML-Agents

Demonstrations

Human Operation

Actions

Observations

IL

RL

AgentAgentAgent

Demo BufferDemo Buffer

Fig. 5. A surgical robot learning platform for the dVRK with Unity, ML-
Agents, and PhysX 5. The human operator sees the simulated camera in the
console and teleoperates the simulated robot for collection demonstrations.

C. Learning Environments for Irrigation and Suction

Based on CRESSim-ML, two simulated learning scenes are
built for training agents to complete the irrigation and suction
tasks autonomously and to achieve sim-to-real transfer. The
overall configurations of both scenes are similar, consisting
of a PSM robot with the Suction/Irrigator, a tissue container
where fluids are present, a camera for generating image
observations, and a background tabletop, as shown in Fig. 6a.
To ensure the trained policy can be applied to the real-world
setup, the simulated scenes are designed to resemble the real
world, as will be discussed in Section V. It is worth noting
that the environment setup is not intended to realistically
represent a specific surgical procedure but rather to validate
the automation of the surgical task considered in this work.

(a) (b)

(c)

Fig. 6. Simulated training environments. (a) Overview of the scene setup; (b)
Irrigation learning environment; (c) Suction learning environment.

In this work, we treat irrigation and suction as two sub-
tasks completed by two separate agents, instead of training a
unified agent that completes the full process. A key challenge
in training a unified agent is defining an effective reward



6 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

function. While the purpose of suction is well-understood,
the goal of irrigation is usually ambiguous when described
mathematically. If the reward is based solely on complete
contaminant removal, the agent will learn to prioritize suc-
tion alone, even though irrigation is beneficial for making
the contaminant less sticky. In fact, without irrigation, it is
still possible to suction and remove most contaminants in
practice, as long as the Suction/Irrigator is in close contact
with the contaminant. However, irrigation not only aids in
dilution but also prevents contaminants from sticking within
the Suction/Irrigator. Therefore, considering two separate sub-
tasks is a more natural choice. Moreover, separating the agents
provides practical flexibility. For instance, in applications like
blood suction (as explored in previous studies, e.g., [17]–[19]),
our suction agent could be deployed independently without the
irrigation phase.

It is also worth noting that in general, we consider models
that observe a vision input from the camera and a vector
input of the robot joint, and output the joint-space position
increment. Since the action is in the joint space, the obser-
vation of the current joint positions is needed. This allows
direct mapping to low-level controller commands in the joint
space without requiring an inverse kinematic solver. In this
work, using Cartesian end-effector (EE) position increments
as agent actions is also impractical, as the PSM combined
with the Suction/Irrigator has only 5 DoFs. A Cartesian
space action requires 6-DoF position increments, but since
the robot is kinematically constrained, it lacks the necessary
DoFs to support this approach. For example, if the agent’s
output specifies pure translation of the end-effector along
the X-axis while keeping all other DoFs at zero, the system
will typically introduce an unintended rotational component.
This occurs because the robot has only 5 DoFs, making it
kinematically impossible to achieve arbitrary 6-DoF Cartesian
motion. As a result, the robot moves in a way that satis-
fies its own constraints, violating the agent’s intended zero-
motion in other DoFs. Ideally, there should be no significant
performance difference between joint-space and Cartesian
actions, provided the current robot position is included in
the observation. Furthermore, we employ incremental actions
rather than absolute joint positions, as is common in RL-
based control work, such as in [3], [4], [29], [36]. Incremental
actions mitigate training challenges caused by absolute-value
scaling, where small workspace variations become difficult to
learn. Additionally, they help maintain consistent execution
timing, preventing large, stepwise motions that could disrupt
inference-time control consistency.

1) Irrigation Learning Environment: In this task, we con-
sider the problem of diluting condensed contaminants, such as
clotted blood, by irrigating liquid from the Suction/Irrigator.
While transparent saline is generally used in practice, we
consider irrigating a red-colored liquid as a simplification. This
ensures all liquid added into the container is distinguishable
from the tissue and can be further suctioned by the suction
agent in real-world experiments. The simplification is reason-
able since saline usually turns red instantly in practice after
being irrigated due to the presence of blood.

In each episode, a random tissue shape is generated in the

container, as will be elaborated in Section IV-A. A random
amount of fluid block with high cohesion and friction and a
dark red color that simulates a clotted blood area is dropped
onto the tissue. The goal is for the agent to control the
PSM’s joint-space motion, move the EE toward the dense
blood area, and irrigate with liquid of lighter color and less
dense fluid properties. When both types of liquid mix with
each other, colors diffuse between particles as discussed in
Section III-A. Additionally, each particle is initially assigned
a value indicating whether it belongs to the clotted blood
or the irrigation liquid. This value is also diffused across
particles, providing information on the number of particles
affected by irrigation. A threshold is used when determining
whether the dense blood particles have been affected. Particles
that spill outside of the tissue container will be removed and
not considered, as they are set as inactive. After enough blood
particles are affected, the task is considered completed. A
screenshot from the irrigation environment is shown in Fig. 6b.

Observations and actions The observation consists of both
visual and vector parts. The visual component includes an
RGB image from the camera at each step, as well as an initial
frame captured at the beginning of the episode. The initial
frame provides implicit information about the dense blood’s
starting location. This is crucial because, as more liquid is
added, it becomes difficult to determine where the dense blood
was initially, as the liquid spreads and covers the area. The
vector observation includes current robot joint positions and
a number indicating whether the robot is in contact with the
tissue, which is decided by measuring the EE link’s incoming
joint force and torque. The vector observation is stacked with
values from the previous 3 steps to include historical motion
data. The actions are the incremental movements of the robot
joints, along with a control signal to toggle the irrigation on
and off. The action frequency is 10 Hz.

Reward function The reward function is composed of
several parts, including a reward proportional to the number of
particles affected by irrigation at each step, a reward when the
EE moves horizontally closer to the blood, and a completion
reward. A reward is also given for activating irrigation when
the EE is close to the blood, and deactivating it when they are
not close. Conversely, it penalizes activating irrigation when
distant or deactivating it when near. This encourages the agent
to only turn on the irrigation while the EE is close to the
blood. Without these, the agent can easily learn a suboptimal
solution of always turning on irrigation, which is not a desired
behavior in practice. Additionally, penalties are given when the
EE’s orientation deviates from being vertical, and when the EE
is in contact with the tissue, to encourage safer behavior of
the agent in the real world. While the penalty related to EE’s
orientation is always assigned, the joint limits of the robot are
implemented and respected according to the real-world robot
configuration, and may prevent the EE from achieving a fully
vertical orientation in certain configurations. For clarity, the
reward function can be expressed by the summation of the
reward features ψr

i multiplied by their weights wr
i :

r =
∑
i

ψr
iw

r
i , (3)



OU AND TAVAKOLI: LEARNING AUTONOMOUS SURGICAL IRRIGATION AND SUCTION 7

TABLE I
REWARD FUNCTION COMPONENTS.

Reward feature ψr
i Weight wr

i

Irrigation
Particles affected by irrigation since last step 0.2
Task completion 5
Change in EE’s horizontal distance to dense blood 10
Irrigation activated near blood, deactivated when distant 0.02
Irrigation deactivated near blood, activated when distant −0.05
Deviation of EE orientation from being vertical −0.00005
EE in contact with the tissue −0.001

Suction
Particles suctioned since last step 0.03
Task completion 5
Change in EE’s horizontal distance to nearest liquid 5
Deviation of EE orientation from being vertical −0.0001
EE in contact with the tissue −0.03

as listed in Table I. These weighting values are selected based
on the scale of the features, and training trials are conducted
to tune them for ideal performance.

2) Suction Learning Environment: The suction task con-
siders removing the liquid from the container using the
Suction/Irrigator, a step typically following irrigation. In the
simulated learning environment, similar configurations to the
irrigation environment are used. In each episode, a random
number of fluid blocks with various amounts of liquid are
dropped from different locations into the tissue container,
forming a variety of initial liquid areas that simulate a mixture
of blood, saline, and other possible contaminants. The goal
is for the agent to control the PSM’s EE to suction all
liquid in the container away. The suction model follows the
implementation of [19], where a cone-shaped force field is
applied around the EE of the PSM to move all particles in the
region close to the force center. While it may be appropriate to
use the terminal states of the irrigation task as the starting point
for the suction task, this approach could limit the range of
scenarios the suction agent can handle. As mentioned earlier,
our goal is to develop a general suction agent that is less
dependent on the irrigation process. Particles that are close
enough to the force center are removed from the scene. In this
task, suction is always turned on and is not controlled by the
agent for simplicity. A snapshot from the suction environment
is shown in Fig. 6c.

Observations and actions The observations and actions
are very similar to those in the irrigation environment. The
observation includes the RGB image from the camera and
the stacked vector observation of current robot joint positions,
along with a number indicating whether the robot is in contact
with the tissue. As the initial camera frame is, in principle, not
necessary for making a decision, it is not provided as part of
the observation in this task. The actions are the incremental
movements of the robot joints without any additional control
signals, as suction is always turned on.

Reward function Same as in [19], the agent is rewarded
when particles are removed from the tissue container. How-
ever, it is challenging to train the agent using this reward
alone due to the sparsity of the reward, as it is likely that
no liquid particles are removed most of the time. As more

Fig. 7. Examples of training environments with domain randomization for
irrigation (upper row) and suction (lower row).

liquid is already removed, it is increasingly challenging for
the agent to explore successful particle removal due to the
few number left. This issue is signified by the existence of
multiple different liquid areas caused by various tissue shapes
and multiple random initial liquid blocks. To overcome this
issue, the reward function also includes a reward when the
EE is approaching the nearest liquid region. Task completion
reward, EE orientation penalty, and contact penalty are also
included, similar to the irrigation task. The reward components
are listed in Table I.

IV. TRAINING IN THE SIMULATOR

A. Environment Randomization and Curriculum Learning

Domain randomization (DR) [46] is a common approach to
obtaining a transferrable policy. Similar to [12], [13], [19], a
number of aspects of the simulation are randomized during
training to adapt the agent to diverse visual representations
and various types of environments. Examples of randomized
environments are shown in Fig. 7.

Visual appearance Visual aspects, including object colors,
lighting, and camera pose, are randomized in the simulation.
After setting up the real-world configuration, as will be
discussed in Section V, camera images are obtained from the
real world. Based on the real-world images, the initial colors
of various simulated objects are decided. During training, the
object colors are randomly chosen from a range centered on
the initial values in the HSV color space. The objects with
randomized colors include the Suction/Irrigator, the tissue in
the container, the fluid, and the background tabletop. Similarly,
an estimation of the camera pose in the real world is used
to provide an initial value in the simulator, based on which
randomness is added to the 3D position and 3 rotational angles
during training. A directional light is used in the simulator, and
its pose is randomized in a similar manner. The intensity and
shadow strength of the light are also uniformly randomized
within a specified range.

Task variation Moreover, we would like the agent to be
able to handle a wide variety of task variations, such as with
different tissue shapes and different blood locations. Following
previous work [19], the tissue shape is randomly generated
using a Bézier surface by manipulating the control point
locations. The robot’s initial joint positions are randomized
according to a pre-defined range that roughly places the EE
randomly above the container. For both irrigation and suction
tasks, we randomize the initial amount of blood or liquid added



8 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

to the scene. As discussed in Section III-C, the blood is split
into different blocks dropped from different initial locations
for the suction task.

Physics Similar to [19], we additionally randomize the
physics properties, such as the cohesion and viscosity parame-
ters of the irrigation liquid in the irrigation task and the liquid
in the suction task. This provides diverse fluid behavior when
irrigating and suctioning, and helps bridge the gap between
simulation and real-world dynamics.

Curriculum learning (CL) is a common technique to break
down a complex task into simpler, more manageable stages
and is a well-established method in RL [47]. We further utilize
CL when training the irrigation agent by designing a two-
lesson curriculum. In the first lesson, the irrigation reward is
turned off, and the agent only learns to approach the blood area
without turning on the irrigation, and then turns it on when the
EE is close enough to the blood. Additionally, we do not end
the episode when enough particles are affected by irrigation,
and no task completion reward is provided. In the second
lesson, we restore the original task rewards to let the agent
learn the actual task. Between these two lessons, we include
transitional lessons where both task configurations (with and
without the irrigation reward) are randomly sampled according
to a proportion. Overall, the proportion of the actual task
increases, gradually guiding the agent toward mastering the
complete task through CL. Its effectiveness will be discussed
in Section VI-A.

B. Learning from Demonstration

We further investigate the effectiveness of leveraging expert
demonstrations during training. Two IL methods are used,
including behavior cloning (BC) and generative adversarial
imitation learning (GAIL). BC is applied by adding an ad-
ditional policy loss during training to encourage generating
actions close to the demonstrations:

LBC = E(s,a)∼DE
[ℓ (π(s), a)] , (4)

where DE is the expert demonstration dataset, s and a are
the state and action, respectively. ℓ (π(s), a) is a discrepancy
measure between the policy-predicted action π(s) and the
expert action a. A mean squared error (MSE) loss is used
for continuous actions, and a cross-entropy loss is used for
discrete actions.

GAIL is used together with RL to provide additional reward
signals that encourage the agent to behave similarly to the
demonstrations. A discriminator network D is trained to
distinguish expert and agent trajectories during training:

LGAIL = E(s,a)∼DE
[logD(s,a)] +

E(s,a)∼DA
[log(1−D(s,a))] ,

(5)

where DA is the agent-generated trajectory buffer. The output
of the discriminator is then used as an auxiliary reward
in addition to the actual environment reward renv with a
weighting factor w:

r = renv − w log(1−D(s,a)). (6)

A variation of GAIL is used in this study, where only the
current observation is used by the discriminator, as it tends to
result in more stable training.

Both BC and GAIL are commonly used with RL to take
advantage of expert demonstrations and are implemented as
part of ML-Agents. During the initial stage of training, regular
RL optimization steps are followed by additional BC steps
using LBC with a separate optimizer. The learning rate decays
linearly to zero, after which no BC steps will be carried out.
The auxiliary reward from GAIL is added to the environment
reward throughout training. A similar approach has been pre-
viously investigated and shown success on tissue manipulation
in [48].

To collect demonstrations with different characteristics and
to reduce human effort, two types of demonstrations are col-
lected through both scripted policies and human teleoperation
in the simulated environment. When implementing the scripted
policies, the actual particle states are used, although they are
not observed by the agent. For irrigation, all dense blood
particles are looped over to find the horizontal center of the
blood region, and the target position of the PSM’s EE is set
to a point higher than that. Irrigation is turned off if they
are not close enough, otherwise, it is turned on. For suction,
all particles in the container are clustered into a few regions
by building a spatial hash grid, similar to that discussed in
Section III-A. The EE’s target position is set to a point higher
than the medoid of the nearest blood cluster. For both scripted
policies, the target orientation of the EE is always vertical.
After obtaining the target EE pose, the Jacobian-based iterative
inverse kinematics method is used to calculate the current-step
joint-space action.

Similarly, when collecting human demonstrations, the pose
of the real-world MTM robot’s EE is captured and set as the
target EE pose of the PSM, from which the per-step joint-space
actions are calculated using inverse kinematics. In addition,
the MTM gripper pinch signal is used to indicate whether
irrigation is on or off for the irrigation task.

For both irrigation and suction tasks, 50,000 steps of
demonstration are collected, with half generated from scripted
policies and the other half from human teleoperation.

C. Training Configurations

The physics simulation (environment) step size is 0.02
seconds. However, the decision (action) frequency is lower
than the simulation steps at once per 0.1 seconds, resulting
in a decision frequency of 10 Hz. In the initial stage of each
episode, the PSM robot is driven to a random initial position,
and the fluids are dropped from a height into the container,
during which no actions will be taken. The maximum number
of allowed environment steps is 1,000 and 2,000 for irrigation
and suction tasks, respectively. The episode terminates early if
the task is considered complete, as described in Section III-C.

Proximal policy optimization (PPO) is used to train agents.
Training hyperparameters are listed in Table II. Training
utilizes 4 Unity processes, each containing 16 parallel training
areas (Fig. 8), totaling 64 parallel training environments. The
simulation runs at a higher speed than the actual clock time



OU AND TAVAKOLI: LEARNING AUTONOMOUS SURGICAL IRRIGATION AND SUCTION 9

Fig. 8. Unity scene consisting of 16 training areas with random parameters.

TABLE II
TRAINING HYPERPARAMETERS.

Hyperparameter Value

Common
Rollout buffer size 32768
Batch size 2048
Learning rate (linear decay) 3e-4
Entropy regularization β 1e-2
Clipping parameter ϵ (linear decay) 0.2
Generalized advantage estimation λ 0.95
Epochs per update 3
Visual encoder type simple (2 layers of CNN)
MLP layers 3
MLP hidden units 128

Imitation learning (if applicable)
BC loss strength (linear decay) 0.2
BC steps 1e4
GAIL reward strength 5e-2

at a time scale of 2. Training and evaluations are run on a PC
with an Intel Core i9-14900K and an Nvidia RTX 4090. The
irrigation agent is trained for 10 million environment steps
(approximately 7 hours), and the suction agent is trained for
20 million environment steps (approximately 13 hours).

V. EXPERIMENTAL SETUP

As discussed in Section III-C, the real-world setup shown in
Fig. 9a is visually similar to the one in the simulator, allowing
for direct sim-to-real transfer after training the agents in the
simulator. Different tissue shapes can be emulated using a flat
piece of playdough placed over various small polymeric foams,
as shown in Fig. 9b. Changing the foam’s positions results
in different surface shapes of the playdough. A baking pan
(15 × 15 cm2) serves as the base container holding all the
components within it.

In the experiments, we first evaluate the performance of
the irrigation and suction agents separately on their respective
tasks. Then, we assess the overall performance of the complete
two-step task, which involves irrigating first and then suction-
ing. The robot is controlled at around 5 to 10 Hz in the real
world, varying due to robot motion execution time at each step.
We intentionally keep the robot motion slower than in training
for safety. The obtained model is converted into the ONNX
format with default optimizations by ML-Agents and inferred
on Intel(R) Core(TM) i7-9700K. Image frames are captured
from the webcam at each step in an asynchronous manner
and fed into the model with the current robot joint state. The
output actions are set as an incremental joint position target
and sent to the dVRK software through its ROS package.

PSM

Suction/Irrigator

Webcam

Container

(a)

Playdough 

Polymeric foams

Baking pan

(b)

Fig. 9. (a) Real-world setup with the PSM, a webcam, and a container; (b)
The container for emulating soft tissue with different shapes.

A. Irrigation Only

To evaluate the performance of the irrigation agent, a certain
amount (more than 5 grams) of watered-down tomato ketchup
is added to the container before running autonomous irrigation.
Since the goal of irrigation is to rinse and dilute the contami-
nants, and the amount of ketchup being affected by irrigation
cannot be measured directly, assessing its performance can be
challenging in the real world. As a workaround, because the
irrigation performance ultimately affects how much ketchup
can be removed after suction, a manual suction is conducted
by the human after each autonomous irrigation trial, assuming
that the manual suction is optimal and can remove as much
fluid as possible. We measure the weights before and after
the irrigation-suction process, and the change in weight is
considered as the irrigation performance. A total of 10 trials
are conducted.

B. Suction Only

To individually evaluate the suction agent, we manually
add red-colored fluid that emulates liquid with diluted blood
into the container and let the suction agent remove the fluid
autonomously. The tissue shape is varied for each trial, with a
total of 20 trials conducted. Of these, 10 trials are initialized
with a liquid volume of more than 20 grams, while the other
10 trials begin with more than 30 grams of liquid. Before and
after suction, we measure the weight of the fluid in the tissue
container to evaluate the amount of fluid removed.

C. Combined Irrigation and Suction

Further experiments are conducted with the agents perform-
ing irrigation first and then suctioning autonomously, yielding
a complete autonomous irrigation-suction process. Similar to
the irrigation-only experiments, tomato ketchup is added to
the container, after which irrigation is performed by the agent
autonomously, followed by suction. To evaluate the overall
performance, the weights inside the container are measured
before and after the whole procedure. We further conduct
an additional manual suction after the autonomous suction,
which clears any remaining fluids that can be suctioned, and
record the final weight in the container. In general, the final



10 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00
55

00
60

00
65

00
70

00
75

00
80

00
85

00
90

00
95

00
10

00
0

Thousand steps

-5

0

5

10

15

20

25

A
ve

ra
ge

 c
um

m
ul

at
iv

e 
re

w
ar

d

Curriculum
Curriculum + imitation
No curriculum
No curriculum + imitation
Human baseline

(a)

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
10

00
0
11

00
0
12

00
0
13

00
0
14

00
0
15

00
0
16

00
0
17

00
0
18

00
0
19

00
0
20

00
0

Thousand steps

0

5

10

15

20

25

30

A
ve

ra
ge

 c
um

m
ul

at
iv

e 
re

w
ar

d

No imitation
With imitation
Human baseline

(b)

Fig. 10. Learning curves for (a) irrigation and (b) suction. Exponentially
smoothed with a window size of 4.

weight reflects the irrigation performance, and the difference
between the final weight and the weight after autonomous
suction reflects the performance of the suction agent. A total
of 10 trials are conducted.

VI. RESULTS

A. Training Results

For irrigation, we conduct training in four distinct configura-
tions: with and without the curriculum, and with and without
IL. This allows us to compare the impact of both CL and
IL individually and in combination. In the case of suction,
we only train the agent in two different settings: with and
without IL. Fig. 10 shows the learning curves. It is noticed
that for irrigation, the designed curriculum helps achieve better
training performance. Conversely, IL does not help the training
process for irrigation, in both cases with and without using
CL. Instead, adding IL resulted in a counter-effect on training.
However, adding IL resulted in a better learning curve for
suction. The negative effect of IL for irrigation suggests that
the reward inferred by GAIL does not fully align with the main
RL objective. This misalignment may arise because the learned
GAIL reward signal may not fully guide toward the task-
specific objective, or because the agent model cannot capture
all of the required features, potentially leading to different
optimization directions.

We select the two agents with the highest training return
for irrigation and suction, respectively, and evaluate their
final performance in the simulator. A total of 100 trials are
conducted for both tasks. For irrigation, the average return
during evaluation is 23.90, and the completion rate is 65%.
Numerous particles can still be affected by irrigation even if
the task is not fully complete. For suction, the average return
during evaluation is 26.24, and the completion rate is 85%.

4 5 6 7
Initial weight (g)

0

0.5

1

1.5

2

2.5

3

3.5

4

Fi
na

l w
ei

gh
t (

g)

(a)

20 25 30 35
Initial weight (g)

0

1

2

3

4

5

6

7

Fi
na

l w
ei

gh
t (

g)

(b)

Fig. 11. Results from real-world trials for (a) irrigation only and (b) suction
only. The two sets of suction trials are grouped by color.

On average, around 5.52 particles remain in the container after
suction. This number is much higher in a few failure cases,
reaching more than 100.

B. Real-World Performance of Irrigation Only

The recorded data for the real-world irrigation trials are
plotted in Fig. 11a. Most of the trials are completed within 5
seconds. On average, 5.53 grams of tomato ketchup is added
before irrigation, and after autonomous irrigation and manual
suction, the average remaining weight is 2.11 (± 0.80)4 grams.
As a comparison, manual irrigation by a human operator
followed by the same suction step results in an average
remaining weight of 1.90 (± 0.49), indicating that the agent’s
performance is close to that of a human. Although irrigation is
intended to dilute all ketchup in most cases, this is not always
possible and typically more than 1 gram of ketchup will remain
even in the best-case scenario. In contrast, if irrigation is not
effective and the EE does not aim at the ketchup, much less
ketchup will be diluted, leading to a high amount of ketchup
remaining. In reality, surgeons may do irrigation and suction
multiple times to ensure that the surgical field is completely
cleaned. However, we only consider the performance of a
single irrigation and suction cycle here for simplicity.

We are not able to directly compare the real-world per-
formance with the evaluation results in the simulator, as we
cannot measure the true amount of ketchup being affected by
irrigation. However, it appears that the real-world performance
is slightly inferior to the one in the simulator in terms of ac-
curately targeting the EE toward the ketchup before irrigation.
Snapshots from autonomous irrigation are shown in Fig. 13.

C. Real-World Performance of Suction Only

The recorded data for the real-world suction trials are shown
in Fig. 11b. Most of the trials are completed within 30 seconds.
The two groups of trials are represented by blue and orange
colors on the plot. The average initial fluid weights are 21.85
grams for the first group and 31.49 grams for the second.
After suctioning, the average final weights are reduced to 2.64
(± 1.87) grams and 2.24 (± 2.24) grams for the two groups,
respectively. We observe a similar distribution for the final

4Standard deviation



OU AND TAVAKOLI: LEARNING AUTONOMOUS SURGICAL IRRIGATION AND SUCTION 11

Irrigation 
(Agent)

Suction 
(Agent)

Suction 
(Manual)

Contaminant Diluted contaminant

Irrigated liquid

(a)
Initial weight After irrigation-suction After manual cleanup

0

1

2

3

4

5

6

7

8

9

10

W
ei

gh
t (

g)

(b)

Fig. 12. (a) Experimental procedure and (b) results for real-world combined
irrigation-suction. Lines of different colors in (b) represent individual trials.

weights across the two groups, suggesting that the agent works
consistently for different amounts of initial fluid. However,
within each group, there are trials where a substantial amount
of fluid remains after suctioning, which is barely seen when
evaluating the agent in the simulator. This is most likely due
to the sim-to-real gap, as will be discussed in Section VII-A.
Snapshots from suction-only experiments are shown in Fig. 14.

D. Real-World Performance of Combined Irrigation-Suction

As discussed in Section V-C, during the complete au-
tonomous irrigation-suction experiments, the weight of the
contents inside the container is measured three times: the
initial weight, the weight after autonomous irrigation and
suction, and the weight after an additional manual suction
for cleanup, as shown in Fig. 12a. The results are shown in
Fig. 12b. Snapshots from the experiments are shown in Fig. 15.

On average, the final remaining weight after manual cleanup
is 1.98 (± 0.82) grams on average. Since all liquid is removed
at this stage, this value reflects the irrigation performance
similar to the irrigation-only trials. The result is consistent
with the one from the irrigation-only trials. However, it can
be noticed that the actual remaining weight after autonomous
irrigation-suction results is higher (4.40 ± 1.97 grams) due to
residual liquid not being suctioned.

We further calculate the difference between the weight
after autonomous irrigation-suction and the one after manual
cleanup, resulting in an average value of 2.42 (± 2.04). This
value represents the amount of liquid that can be suctioned but
is not actually removed during autonomous suction, reflecting
the autonomous suction performance, which is similar to the
results obtained from the suction-only trials. An ANOVA test
does not find a significant statistical difference between the
three groups (combined suction-irrigation, suction-only with
around 20 grams of initial weight, and suction-only with
around 30 grams of initial weight), with a p-value of 0.89.
Since the p-value is high, there is insufficient evidence to
suggest that suction performance differs across these scenarios,
implying that it may be relatively stable. There is also no
strong statistical evidence of correlation between the irrigation
and the suction performances, based on the Pearson correlation
coefficient and Spearman’s ρ (−0.2953 and −0.3939) and their
p-values (0.4075 and 0.2629), between (1) the final weight
after manual cleanup and (2) the weight difference before

and after manual cleanup. However, we observe more back-
and-forth motion during suction this time, compared to the
suction-only trials, likely due to the presence of the dark-
colored ketchup that is not fully diluted.

E. Suboptimal Outcomes

A typical suboptimal outcome during irrigation is that the
robot’s EE does not always aim at the ketchup, leading to some
parts of the ketchup not being affected by the irrigation. One
example is shown in Fig. 16a. In this trial, the EE correctly
aimed for the ketchup region initially but failed to continue to
target the upper part after irrigation started, leaving the part
not irrigated.

For suction, the typical failure case is that the agent fails
to navigate the EE to a pool of liquid, which is more likely
to occur when the pool is small. In the example shown in
Fig. 16b, the EE was navigated to the top-left side initially but
continued to move to the lower-right before removing all liquid
on the top-left side. The agent eventually attempted to move
the EE back to the top-left but failed due to the EE touching
the container and violating the force constraint, as will be
discussed in Section VII-C. In the trial shown in Fig. 16c,
no attempt was even made to guide the EE to the remaining
liquid pool. This is barely seen during the evaluation in the
simulator, but is more frequent in the real world. One possible
reason is the sim-to-real gap, as discussed in Section VII-A.

VII. DISCUSSION

A. Sim-to-Real Gap

There are various discrepancies between the real-world en-
vironment and the simulated one. Since the RGB image is used
in this work, one major discrepancy is the difference between
the real-world image and the rendered image in the simulator.
Fig. 17 shows a rendered image from the simulator and one
from a real-world trial, in the actual observation size (84 ×
84). Although the colors and the camera pose are randomized
during training, there are uncaptured discrepancies between
simulation and reality, such as bright reflections. Additionally,
the liquid color inside the tissue may not be uniform after
irrigation, while our suction training environment starts with
uniform liquid color in each episode due to implementation
simplicity. The simulated fluid color mixing effect may also
not fully emulate that in the real world. These factors can cause
agents to perform worse in the real world compared to their
simulation performance. Certain factors, like reflections, could
be better simulated and considered during training to obtain
agents more capable of handling or inferring such information.
Otherwise, techniques such as image-to-image translation and
domain adaptation (DA) could be explored in future training.

The difference in physics can also enlarge the sim-to-real
gap. For example, suction is simulated by a cone-shaped force
field, whereas it is achieved primarily by pressure differences
in reality. In practice, the EE has to be in contact with the
liquid surface to suction it, while in the simulator, particles
can be pulled toward the EE even if there is a distance
between them. In addition, a rigid body is used to simulate
the tissue, whereas the tissue is emulated using playdough and



12 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

T = 0 T = 4 T = 6 T = 9 T = 12 T = 15

T = 0 T = 4 T = 10 T = 14 T = 15 T = 17

(a)

(c)

T = 0 T = 2 T = 4 T = 9 T = 11 T = 13

(b)

Fig. 13. Representative snapshots selected at different action steps from real-world irrigation experiments.

T = 0 T = 10 T = 20 T = 30 T = 40 T = 48

T = 0 T = 40 T = 50 T = 60 T = 70 T = 90

T = 0 T = 10 T = 20 T = 40 T = 50 T = 92

(a)

(c)

(b)

Fig. 14. Representative snapshots selected at different action steps from real-world suction experiments.

is soft in reality. The choice of using a rigid body is related
to the computational performance considerations, as will be
discussed in the following section.

We did not perform a quantitative analysis of sim-to-real
transfer performance, including experiments on how well the
model generalizes to different camera poses, lighting con-
ditions, and object colors in the real world. Additionally,
control frequency and latency, while not strictly part of the
sim-to-real gap, can further impact real-world performance.
To better understand the sim-to-real gap, future work could
include further experiments and analysis comparing real-world
performance under various conditions with that observed in the
simulator.

B. Computational Performance Considerations

There are several considerations of computational perfor-
mance. To allow efficient simulation, a soft body was not
used to simulate the tissue although PhysX 5 allows soft body
simulation using the finite element method (FEM). FEM is
computationally intensive and requires more GPU resources
and processing time. We could not create a large number of
parallel training environments when using FEM soft bodies,
nor were we able to achieve efficient training in terms of
wall-clock time. Instead, a rigid body is used to simulate the

tissue as a trade-off. However, this simplification also results in
the exclusion of key tissue characteristics such as viscoelastic
behavior, especially when the tool is in contact with the
tissue. Liquid permeability, absorption, and surface tension
effects are not considered or limited by the contact model
between the rigid body and the liquid provided by PhysX 5.
The lack of these properties could reduce the realism of the
simulations, potentially affecting the transferability of trained
models to real-world scenarios. While our approach prioritizes
computational feasibility and training efficiency, future work
may explore other efficient soft body simulation techniques,
such as the material point method (MPM) [49] to mitigate
these limitations.

We have also considered the observation of historical im-
ages to capture the temporal information. Including historical
images can potentially enhance the performance, such as by
allowing the agent to infer liquid occluded in the current step
by the Suction/Irrigator from previous non-occluded frames.
However, considering the large rollout buffer size and the
usage of demonstration data, a much larger amount of memory
would be needed. In the current setting, the memory usage
is already more than 30 gigabytes with IL for irrigation,
making it impractical to stack the image observations with
historical ones. To solve this issue, either a much larger
memory should be used, or ML-Agents must be modified to



OU AND TAVAKOLI: LEARNING AUTONOMOUS SURGICAL IRRIGATION AND SUCTION 13

Irrigation: T = 0 T = 4 T = 7 T = 9 T = 12 T = 17

(a)

Suction: T = 0 T = 20 T = 30 T = 50 T = 75 T = 125

(b)

Irrigation: T = 0 T = 6T = 4 T = 7 T = 9 T = 12

Suction: T = 0 T = 30 T = 40 T = 50 T = 70 T = 79

Fig. 15. Representative snapshots selected at different action steps from complete irrigation-suction experiments in the real world.

T = 0 T = 5

(a)

T = 0

(b)

T = 28 T = 70

T = 10

(c)

T = 0 T = 30 T = 240

Fig. 16. Suboptimal outcomes in the real-world trials.

(a) (b)

Fig. 17. Image observations for irrigation from (a) the simulated environment
and (b) the real world.

allow streaming of the rollout data. Using historical frames
at a lower resolution may also be beneficial, though further
downscaling from the current 84× 84 resolution could result
in significant information loss.

C. Other Limitations and Future Work

In this work, no depth information is provided to the agent.
Ideally, it may be possible to achieve a better performance

when depth is taken into account. However, it is not included
in this work as it may increase the sim-to-real gap, due to
the additional noises and inaccuracies of the real-world depth
images. Future work may either include the depth observation
directly or train the agent with a stereo camera that captures
two images side-by-side. Using a stereo camera can also
provide additional information that a single camera might
miss, in addition to depth, especially when tools occlude
the liquid and tissue. However, in this work, significant tool
occlusion is not encountered due to the tool’s relatively small
radius and the side-view camera pose.

Other imitation learning approaches, such as diffusion pol-
icy [50] and action chunking with transformers [51], [52], can
be further incorporated in future work. This may allow more
in-depth investigation of pure IL approaches without RL, as
well as novel approaches that combine the state-of-the-art IL
methods with RL.

One limitation of the real-world experiments is that a
hardcoded EE force constraint is imposed. If the force limit
is reached when the agent attempts to move the EE toward
a position, such as when the EE touches the tissue, the trial
is terminated for safety. This happens only during suction,
as close contact between the tool and tissue may be needed
to suction the liquid. Among all the suction trials, including
those within combined irrigation-suction, a total of 9 trials
were terminated due to force violation. Although the agent is
penalized when the EE is in contact with the tissue during
training, force limit violations are still seen during some
suction trials. Future work may employ a better training
strategy, such as rewarding the agent for lifting up the EE
when it is in contact with the tissue.

This work focuses primarily on obtaining agents that can
perform the tasks autonomously under various physical con-
figurations. While the evaluation focuses on task completion,
other performance metrics are less considered, such as the exe-
cution time and the frequency of safety violations. Qualitative
observations indicate that irrigation execution time remains



14 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

stable across trials, whereas suction time varies depending on
the complexity of the suction area. Further analysis of task
failure cases and a comparison between agents’ performance
and human operation may be necessary before considering
surgical applications, which are beyond the scope of this
research.

Further extension of this work to actual surgeries will also
need additional development of realistic surgical scenes and
re-training of the agents, as this work considers a relatively
simple environment setup without actual surgical components,
such as phantom tissue. With the simulation capability intro-
duced in this work, transitioning to more realistic surgical
scenes–including those beyond minimally invasive surgery–
is straightforward, particularly when simulating body fluids.
Additional validations are required as well to assess the
performance in realistic environments, such as using cadavers.

VIII. CONCLUSION

In this work, we examined the problem of autonomous
irrigation and suction in MIS using RL. To allow sim-to-real
transfer, a new surgical robot learning simulation framework
was built using Unity and PhysX 5, which enables the devel-
opment of simulated learning environments for irrigation and
suction. With DR and carefully designed reward functions,
combined with CL and IL, two vision-based agents were
trained to autonomously complete irrigation and suction. We
found that the irrigation agent achieves a much better perfor-
mance when a curriculum is used, and that IL helps improve
the suction agent but not the irrigation one. We evaluated
their performance in the real world and showed that they
can achieve satisfactory results in most cases. Additionally,
our simulation platform can be extended and used to build
simulated training environments for other surgical tasks in the
future.

IX. ACKOWLEDGMENTS

The authors thankfully acknowledge Industry Sandbox &
AI Computing (ISAIC) for providing us with free trials of
HPC instances to prototype and test our methods. They would
also like to thank Sadra Zargarzadeh for his support and
discussions, and Amir Zakerimanesh and Tleukhan Mussin for
their help with the experiments.

REFERENCES

[1] N. D. Nguyen, T. Nguyen, S. Nahavandi, A. Bhatti, and G. Guest,
“Manipulating soft tissues by deep reinforcement learning for au-
tonomous robotic surgery,” in 2019 IEEE International Systems Con-
ference (SysCon). IEEE, 2019, pp. 1–7.

[2] T. Nguyen, N. D. Nguyen, F. Bello, and S. Nahavandi, “A new tensioning
method using deep reinforcement learning for surgical pattern cutting,”
in 2019 IEEE international conference on industrial technology (ICIT).
IEEE, 2019, pp. 1339–1344.

[3] A. A. Shahkoo and A. A. Abin, “Deep reinforcement learning in
continuous action space for autonomous robotic surgery,” International
Journal of Computer Assisted Radiology and Surgery, vol. 18, no. 3,
pp. 423–431, 2023.

[4] E. Tagliabue, A. Pore, D. Dall’Alba, E. Magnabosco, M. Piccinelli, and
P. Fiorini, “Soft tissue simulation environment to learn manipulation
tasks in autonomous robotic surgery,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2020, pp.
3261–3266.

[5] P. M. Scheikl et al., “Sim-to-real transfer for visual reinforcement
learning of deformable object manipulation for robot-assisted surgery,”
IEEE Robotics and Automation Letters, vol. 8, no. 2, pp. 560–567, 2022.

[6] A. A. Shahkoo and A. A. Abin, “Autonomous tissue manipulation
via surgical robot using deep reinforcement learning and evolutionary
algorithm,” IEEE Transactions on Medical Robotics and Bionics, vol. 5,
no. 1, pp. 30–41, 2023.

[7] Y. Ou and M. Tavakoli, “Sim-to-real surgical robot learning and au-
tonomous planning for internal tissue points manipulation using rein-
forcement learning,” IEEE Robotics and Automation Letters, vol. 8,
no. 5, pp. 2502–2509, 2023.

[8] V. M. Varier, D. K. Rajamani, N. Goldfarb, F. Tavakkolmoghaddam,
A. Munawar, and G. S. Fischer, “Collaborative suturing: A reinforcement
learning approach to automate hand-off task in suturing for surgical
robots,” in 2020 29th IEEE international conference on robot and human
interactive communication (RO-MAN). IEEE, 2020, pp. 1380–1386.

[9] Z.-Y. Chiu, F. Richter, E. K. Funk, R. K. Orosco, and M. C. Yip,
“Bimanual regrasping for suture needles using reinforcement learning
for rapid motion planning,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2021, pp. 7737–7743.

[10] R. Bendikas, V. Modugno, D. Kanoulas, F. Vasconcelos, and D. Stoy-
anov, “Learning needle pick-and-place without expert demonstrations,”
IEEE Robotics and Automation Letters, 2023.

[11] K. Goldberg and G. Guthart, “Augmented dexterity: How robots can
enhance human surgical skills,” Science Robotics, vol. 9, no. 95, p.
eadr5247, 2024.

[12] R. Gondokaryono, M. Haiderbhai, S. A. Suryadevara, and L. A. Kahrs,
“Learning nonprehensile dynamic manipulation: Sim2real vision-based
policy with a surgical robot,” IEEE Robotics and Automation Letters,
2023.

[13] M. Haiderbhai, R. Gondokaryono, A. Wu, and L. A. Kahrs, “Sim2real
rope cutting with a surgical robot using vision-based reinforcement
learning,” IEEE Transactions on Automation Science and Engineering,
2024.

[14] J. W. Milsom, B. Böhm, and K. Nakajima, Eds., Laparoscopic Colorec-
tal Surgery. New York: Springer, 2006.

[15] L.-C. Tsao et al., “Saline irrigation versus gauze wiping and suction only
for peritoneal decontamination during laparoscopic repair for perforated
peptic ulcer disease,” Scientific reports, vol. 13, no. 1, p. 1170, 2023.

[16] J. Lai, K. Huang, B. Lu, Q. Zhao, and H. K. Chu, “Verticalized-tip trajec-
tory tracking of a 3d-printable soft continuum robot: Enabling surgical
blood suction automation,” IEEE/ASME Transactions on Mechatronics,
vol. 27, no. 3, pp. 1545–1556, 2021.

[17] F. Richter et al., “Autonomous robotic suction to clear the surgical field
for hemostasis using image-based blood flow detection,” IEEE Robotics
and Automation Letters, vol. 6, no. 2, pp. 1383–1390, 2021.

[18] J. Huang, F. Liu, F. Richter, and M. C. Yip, “Model-predictive con-
trol of blood suction for surgical hemostasis using differentiable fluid
simulations,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2021, pp. 12 380–12 386.

[19] Y. Ou, A. Soleymani, X. Li, and M. Tavakoli, “Autonomous blood
suction for robot-assisted surgery: A sim-to-real reinforcement learning
approach,” IEEE Robotics and Automation Letters, 2024.

[20] S. Zargarzadeh, M. Mirzaei, Y. Ou, and M. Tavakoli, “From decision
to action in surgical autonomy: Multi-modal large language models for
robot-assisted blood suction,” IEEE Robotics and Automation Letters,
2025.

[21] P. Kazanzides, Z. Chen, A. Deguet, G. S. Fischer, R. H. Taylor, and S. P.
DiMaio, “An open-source research kit for the da vinci® surgical system,”
in 2014 IEEE international conference on robotics and automation
(ICRA). IEEE, 2014, pp. 6434–6439.

[22] Y. Ou, S. Zargarzadeh, P. Sedighi, and M. Tavakoli, “A realistic surgical
simulator for non-rigid and contact-rich manipulation in surgeries with
the da vinci research kit,” in 2024 21st International Conference on
Ubiquitous Robots (UR), 2024, pp. 64–70.

[23] K. Dharmarajan et al., “Automating vascular shunt insertion with the
dvrk surgical robot,” in 2023 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2023, pp. 6781–6788.

[24] B. Li et al., “3d perception based imitation learning under limited
demonstration for laparoscope control in robotic surgery,” in 2022
International Conference on Robotics and Automation (ICRA). IEEE,
2022, pp. 7664–7670.

[25] B. Li, B. Lu, Z. Wang, F. Zhong, Q. Dou, and Y.-H. Liu, “Learning
laparoscope actions via video features for proactive robotic field-of-view
control,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 6653–
6660, 2022.



OU AND TAVAKOLI: LEARNING AUTONOMOUS SURGICAL IRRIGATION AND SUCTION 15

[26] H. Gao et al., “Savanet: Surgical action-driven visual attention network
for autonomous endoscope control,” IEEE Transactions on Automation
Science and Engineering, vol. 20, no. 4, pp. 2655–2667, 2022.

[27] F. Richter, R. K. Orosco, and M. C. Yip, “Open-sourced reinforce-
ment learning environments for surgical robotics,” arXiv preprint
arXiv:1903.02090, 2019.

[28] V. M. Varier, D. K. Rajamani, F. Tavakkolmoghaddam, A. Munawar,
and G. S. Fischer, “Ambf-rl: A real-time simulation based reinforcement
learning toolkit for medical robotics,” in 2022 International Symposium
on Medical Robotics (ISMR). IEEE, 2022, pp. 1–8.

[29] J. Xu, B. Li, B. Lu, Y.-H. Liu, Q. Dou, and P.-A. Heng, “Surrol: An open-
source reinforcement learning centered and dvrk compatible platform for
surgical robot learning,” in 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2021, pp. 1821–1828.

[30] Y. Long, W. Wei, T. Huang, Y. Wang, and Q. Dou, “Human-in-the-
loop embodied intelligence with interactive simulation environment for
surgical robot learning,” IEEE Robotics and Automation Letters (RAL),
2023.

[31] P. M. Scheikl et al., “Lapgym-an open source framework for rein-
forcement learning in robot-assisted laparoscopic surgery,” Journal of
Machine Learning Research, vol. 24, no. 368, pp. 1–42, 2023.

[32] S. Schmidgall, A. Krieger, and J. Eshraghian, “Surgical gym: A high-
performance gpu-based platform for reinforcement learning with surgi-
cal robots,” in 2024 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2024, pp. 13 354–13 361.

[33] Q. Yu et al., “Orbit-surgical: An open-simulation framework for learning
surgical augmented dexterity,” in 2024 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2024, pp. 15 509–15 516.

[34] P. Ma, Y. Tian, Z. Pan, B. Ren, and D. Manocha, “Fluid directed rigid
body control using deep reinforcement learning,” ACM Transactions on
Graphics (TOG), vol. 37, no. 4, pp. 1–11, 2018.

[35] E. Babaians, T. Sharma, M. Karimi, S. Sharifzadeh, and E. Steinbach,
“Pournet: Robust robotic pouring through curriculum and curiosity-
based reinforcement learning,” in 2022 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE, 2022, pp.
9332–9339.

[36] Z. Xian et al., “Fluidlab: A differentiable environment for benchmarking
complex fluid manipulation,” in The Eleventh International Conference
on Learning Representations, 2022.

[37] X. Wang et al., “Physics-based fluid simulation in computer graphics:
Survey, research trends, and challenges,” Computational Visual Media,
vol. 10, no. 5, pp. 803–858, 2024.

[38] M. Müller, “Fast and robust tracking of fluid surfaces,” in Proceedings
of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, 2009, pp. 237–245.

[39] H. Cords and O. G. Staadt, “Interactive screen-space surface rendering of
dynamic particle clouds,” Journal of Graphics, GPU, and Game Tools,
vol. 14, no. 3, pp. 1–19, 2009.

[40] W. J. van der Laan, S. Green, and M. Sainz, “Screen space fluid
rendering with curvature flow,” in Proceedings of the 2009 symposium
on Interactive 3D graphics and games, 2009, pp. 91–98.

[41] Y. Xu et al., “Anisotropic screen space rendering for particle-based fluid
simulation,” Computers & Graphics, vol. 110, pp. 118–124, 2023.

[42] M. Macklin and M. Müller, “Position based fluids,” ACM Transactions
on Graphics (TOG), vol. 32, no. 4, pp. 1–12, 2013.

[43] Y. Zhang et al., “Real-time screen space rendering method for particle-
based multiphase fluid simulation,” Simulation Modelling Practice and
Theory, vol. 136, p. 103008, 2024.

[44] N. Truong and C. Yuksel, “A narrow-range filter for screen-space
fluid rendering,” Proceedings of the ACM on Computer Graphics and
Interactive Techniques, vol. 1, no. 1, pp. 1–15, 2018.

[45] A. Juliani et al., “Unity: A general platform for intelligent agents,” arXiv
preprint arXiv:1809.02627, 2018.

[46] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ international conference
on intelligent robots and systems (IROS). IEEE, 2017, pp. 23–30.

[47] S. Narvekar, B. Peng, M. Leonetti, J. Sinapov, M. E. Taylor, and P. Stone,
“Curriculum learning for reinforcement learning domains: A framework
and survey,” Journal of Machine Learning Research, vol. 21, no. 181,
pp. 1–50, 2020.

[48] A. Pore, E. Tagliabue, M. Piccinelli, D. Dall’Alba, A. Casals, and
P. Fiorini, “Learning from demonstrations for autonomous soft-tissue
retraction,” in 2021 International Symposium on Medical Robotics
(ISMR). IEEE, 2021, pp. 1–7.

[49] Y. Ou and M. Tavakoli, “Cressim-mpm: A material point method library
for surgical soft body simulation with cutting and suturing,” arXiv
preprint arXiv:2502.18437, 2025.

[50] C. Chi et al., “Diffusion policy: Visuomotor policy learning via action
diffusion,” in Proceedings of Robotics: Science and Systems (RSS), 2023.

[51] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn, “Learning fine-
grained bimanual manipulation with low-cost hardware,” arXiv preprint
arXiv:2304.13705, 2023.

[52] J. W. Kim et al., “Surgical robot transformer (srt): Imitation learning
for surgical tasks,” in CoRL 2024 Workshop on Whole-body Control
and Bimanual Manipulation: Applications in Humanoids and Beyond,
2024.

Yafei Ou received his B.Sc. degree in Mechanical
Design, Manufacturing, and Automation from the
University of Electronic Science and Technology of
China (UESTC), China, in 2021. He is currently
pursuing a Ph.D. degree in Electrical and Computer
Engineering at the University of Alberta. His re-
search interests focus on surgical robotics control
and automation.

Mahdi Tavakoli is a Professor in the Department
of Electrical and Computer Engineering, University
of Alberta, Canada. He received his BSc and MSc
degrees in Electrical Engineering from Ferdowsi
University and K.N. Toosi University, Iran, in 1996
and 1999, respectively. He received his PhD degree
in Electrical and Computer Engineering from the
University of Western Ontario, Canada, in 2005. In
2006, he was a post-doctoral researcher at Cana-
dian Surgical Technologies and Advanced Robotics
(CSTAR), Canada. In 2007-2008, he was an NSERC

Post-Doctoral Fellow at Harvard University, USA. Dr. Tavakoli’s research in-
terests broadly involve the areas of robotics and systems control. Specifically,
his research focuses on haptics and teleoperation control, medical robotics,
and image-guided surgery. Dr. Tavakoli is the lead author of Haptics for Tele-
operated Surgical Robotic Systems (World Scientific, 2008). He is a Senior
Member of IEEE, Specialty Chief Editor for Frontiers in Robotics and AI
(Robot Design Section), and an Associate Editor for the International Journal
of Robotics Research, IEEE Transactions on Medical Robotics and Bionics,
IEEE Robotics and Automation Letters, IEEE TMECH/AIM Emerging Topics
Focused Section, and Journal of Medical Robotics Research.


	Introduction
	Related Work
	Surgical Subtask Automation and Augmented Dexterity
	Surgical Simulation and Sim-to-Real Transfer
	Fluid Simulation and Manipulation

	Simulated Learning Environments for Irrigation and Suction
	Fluid Simulation and Rendering
	Fluid Simulation With Color Diffusion
	Fluid Rendering

	A Surgical Robot Learning Framework for the dVRK
	Learning Environments for Irrigation and Suction
	Irrigation Learning Environment
	Suction Learning Environment


	Training in the Simulator
	Environment Randomization and Curriculum Learning
	Learning from Demonstration
	Training Configurations

	Experimental Setup
	Irrigation Only
	Suction Only
	Combined Irrigation and Suction

	Results
	Training Results
	Real-World Performance of Irrigation Only
	Real-World Performance of Suction Only
	Real-World Performance of Combined Irrigation-Suction
	Suboptimal Outcomes

	Discussion
	Sim-to-Real Gap
	Computational Performance Considerations
	Other Limitations and Future Work

	Conclusion
	Ackowledgments
	References
	Biographies
	Yafei Ou
	Mahdi Tavakoli


