
0018-9286 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2016.2643444, IEEE
Transactions on Automatic Control

 
Abstract— In this technical note, a descriptor approach to 

leader-following output consensus of multi-agent systems with 
both stationary and dynamic leaders is given in the presence of 
transmission delay and model uncertainty. The proposed method 
can deal with stable and unstable agents described by general 
linear models. To this end, a new proportional-derivative-integral 
(PID) consensus protocol for the closed-loop multi-agent system is 
proposed under a directed graph. Applying this consensus 
protocol to the multi-agent system leads to a time-delay closed-
loop equation of neutral type. To deal with the resulting neutral 
system, a descriptor model transformation is used to derive delay-
dependent sufficient conditions for the existence of the consensus 
protocol in terms of certain linear matrix inequalities (LMI). The 
application of the proposed method is illustrated in a teleoperation 
system. Simulation results are given to show the effectiveness of 
the proposed approach.  

Index Terms—Multi-agent systems, descriptor systems, robust 
control, time-delay. 

I. INTRODUCTION 
Cooperative control of multi-agent systems has attracted 

extensive attention during the last two decades [1]-[6]. 
Consensus problem as an essential task in cooperative control 
attempts that all the agents’ states reach an agreement under the 
agents’ interactions. In this area, leader-following problem of 
time-delay multi-agent systems have also been an active 
research field in recent years. Meng et al. [7] provided results 
for the analysis of both leaderless and leader-following 
consensus algorithms for first-order and second-order agents in 
the presence of communication and input delays. A leader-
following consensus analysis was studied in [8] for time-
varying delayed first-order systems with a static leader. Event-
based leader-following consensus of general linear multi-agent 
systems with time-delay was presented in [9] and [10]. 

It is worth noting that an extensive number of the studies 
presented for leader-following multi-agent systems are limited 
to the integrator behavior agents [8], [11], [12], double 
integrator dynamics for the agents [13], [14], [15] or both 
integral and double integral behavior agents [7], [16] in the 
presence of stationary or dynamic ramp type leaders. 
Furthermore, many researchers have focused on the study of the 
leader-following multi-agent systems with general linear agents 
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such as [9], [10], [17]. In these and similar papers, the leader 
dynamics are usually assumed to have the same dynamics as the 
agents whereas in many practical problems, the control 
objective of a leader-following consensus problem with general 
linear agents is to follow a stationary or dynamic leader. This 
subject is one of the most challenging topics in the area of 
leader-following multi-agent systems especially in the presence 
of time-delay. Furthermore, most of the existing works 
presented for leader-following consensus of time-delay multi-
agent systems have focused on the analysis problem rather than 
designing a consensus controller. Few studies such as [10] 
address how to design a leader-following consensus protocol 
for time-delay multi-agent systems with general linear agents. 
To the best of the authors’ knowledge, no analysis or design 
study on robust leader-following output consensus for uncertain 
time-delay multi-agent systems with a general state-space 
equation has been presented in the literature. Considering the 
aforementioned facts, in this paper, we present a novel 
descriptor approach to robust leader-following output 
consensus for uncertain general linear multi-agent systems in 
the presence of transmission delay for both stationary and 
dynamic leaders. The main contributions of this paper are 
summarized as follows: 
 An uncertain multi-agent system with general linear model 

in this paper. The considered model, which includes both 
uncertainty and time-delay at the same time and is allowed to 
be stable and unstable, is one of the most general linear models 
assumed for the linear multi-agent systems in the literature. 
 A new proportional-integral-derivative (PID) consensus 

protocol is proposed in this paper. Applying the proposed 
consensus protocol in the closed-loop multi-agent system leads 
to a time-delay multi-agent system of neutral type [18] that is 
one of the challenging topics in the area of time-delay systems. 
 To deal with the neutral type multi-agent system, a 

descriptor transformation is used on the closed-loop equation of 
the multi-agent system. Then, new sufficient conditions for the 
design of the proposed consensus protocol are provided. 
 The proposed PID consensus protocol provides leader-

following output consensus for both stable and unstable 
uncertain general linear multi-agent systems in the presence of 
transmission delay for both stationary and dynamic leaders.  
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This paper is organized as follows. Problem statement and 
preliminary results as well as the network topology of the multi-
agent system are given in Section II. Moreover, the new 
consensus protocol is stated in the same section. In Section III, 
the robust design conditions are provided in terms of certain 
linear matrix inequalities. Illustrative examples are provided in 
Section IV to show the effectiveness of the proposed methods. 
Finally, the concluding remarks are given in Section V. 

II. PROBLEM STATEMENT AND PRELIMINARY RESULTS 

A. Graph Theory 
Let G = (, , ) be a directed graph (digraph) where, = 

{1, 2,…, N} and    are the set of vertices and the set of 
edges, respectively. In the digraph G, the i-th vertex represents 
the i-th agent. A directed edge from i to j is denoted as an 
ordered pair (i, j) ∈ , which means that the information flow 
from agent i to agent j. The adjacency matrix = [ aij ]∈ℛ N N

models the communication topology among the agents. aij > 0 
if the j-th agent is a neighbor of the i-th agent; otherwise, aij = 
0. The degree matrix of digraph G is denoted by = diag {d1, 
d2,…, dN}, where the diagonal element is represented as dj =

1
N

ijj a  and the Laplacian matrix of the digraph G is defined 
as Ls = -. A directed path is a sequence of edges that 
connects a sequence of vertices in a digraph, in which the edges 
all are directed in the same direction.  

Assume G  is a graph with N follower nodes and a leader 
node 0. A diagonal matrix Mℛ N N  where M = diag
 1 2, ,..., Nm m m  is the leader adjacency matrix with 0im  . If 
the leader information is accessible for the i-th agent, then 

0im  ; otherwise, mi = 0. If there is a path in G  from every 
node i in G to node 0, then the node 0 is globally reachable in 
G . The following assumption is needed throughout the paper. 

Assumption 1: The graph G  is fixed and directed. 

B. Problem Formulation 
Consider a group of N uncertain n-th order agents represented 

by the following linear differential equation for each agent: 

 
           

   , 1, 2, ...,
i i i

i i

x t A A t x t B B t u t

y t Cx t i N

     

 


 (1) 

where xi (t)ℛ n , ui (t) ℛ m , yi (t) ℛ r
 are respectively the 

agent i’s state, the agent i’s input and the agent i’s output which 
can only use the local information from its neighbor agents. 
Moreover, the constant matrices Aℛ n n , Bℛ n m  and 
Cℛ r n  are the nominal parts and A(t) and B(t) are real 
matrix functions representing time-varying parameter 
uncertainties. Throughout the paper, the notations A  and B  
are used instead of A(t) and B(t) in some of the equations for 
the sake of brevity. These uncertainties are the result of model 
linearization and unmodeled dynamics and are assumed to be 
of the form 

        ,a a a b b bA t D F t E B t D F t E     (2) 

where Fa (t) and Fb (t) are unknown real time-varying matrices 
with Lebesgue measurable elements satisfying 

        ,T T
a a b bF t F t I F t F t I t    (3) 

and Da, Ea, Db, Eb  are real known constant matrices that 
represent how the uncertain parameters in Fa (t) and Fb (t) enter 
the nominal matrices A and B. Moreover, the stationary and 
dynamic leaders are given in (4) and (5), respectively. 

   0
0

, 0
:

0, 0
a t

y t
t


  
 (4) 

   0
0

, 0
:

0, 0
r t t

y t
t


  
 (5) 

where y0 (t) ℛ r  is the output of the leader and a0, r0 ℛ. The 
leaders introduced in (4) and (5) refer to stationary and dynamic 
leaders with constant velocity, respectively.  

The control objective is to design a network based control 
input ui (t), i =1,…, N, such that    0lim 0i

t
y t y t


   for 

1,..., .i N The topology of the network considered in this paper 
is given by Fig. 1. 

 
Fig. 1. Network topology of the directed multi-agent system. 

It is assumed that N number of the agents ( 0 N N  ) in 
the network topology shown in Fig. 1 have access to the leader, 
and vice versa; these are called “reference followers”. 
Therefore, by reachability characteristics of the followers for 
the leader and applying appropriate feedback control to each 
agent, the rest of the followers will reach consensus with the 
leader output.  

Let hr be the delay of transmitting data from the leader to the 
reference followers and sh  be the delay of data transmission 
from the reference followers back to the leader. It is supposed 
that the transmission delays between the follower agents are 
negligible. Moreover, it is supposed that all the controller 
computations are carried out in the leader and sent to the 
followers through the network. Consequently, both 
transmission delays hs and hr affect the control input ui (t). By 
the above structure, in addition to the reachability of the 
followers for the leader, the leader node should be globally 
reachable in the graph G . This means that the digraph G  is 
strongly connected. Throughout the paper, the following 
assumptions hold for the network topology shown in Fig. 1. 

Assumption 2: The pair (A, B) is stabilizable and the pair (A, 
C) is detectable. 

Assumption 3: The digraph G  is strongly connected. 

C. Consensus Protocol 
To deal with the problem of leader-following output 

Graph G 

Leader 
Reference 
Followers

mi  0 

Other 
Followers

mi = 0 

hr 

hs 
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consensus of general linear multi-agent systems in the presence 
of uncertainty and network transmission delay, we propose a 
new proportional-integral-derivative (PID) consensus protocol 
as follows: 

        

      

      

      
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j

t h
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t h

i Di i r

u t K a y t h y t h K a y

y d K a y t h y t h

m K y t h y t h m K y d

y d m K y t h y t h


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 

 



 







    

    

      


     


  







 

 

 (6) 

in which r sh h h  , 0 r rh h  , 0 s sh h   and 0 h h   

where r sh h h  . Obviously, for the reference followers that 
are a neighbor of the leader, the condition mi  0 holds and for 
the rest of the followers, mi = 0. Thus, the closed-loop system 
equation of the multi-agent system is given as 

 

        
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 

   

   

   
 
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

 
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 



 

 

 (7) 

with A A A   and B B B  . 
Remark 1. As we know, it is well known that a PID controller 

designed for a stabilization problem can be further used for 
tracking problem of the same closed-loop system. Considering 
these facts, it suffices to find a stability condition for the closed-
loop system (7) independent of the leader y0 (t) to achieve 
leader-following output consensus of the uncertain multi-agent 
system for the leaders (4) and (5) in the presence of network 
transmission delay. 

Remark 2. It is worthwhile mentioning that the design 
method for consensus protocol (4) that will be discussed in the 
next section can be further applied for designing a proportional-
integral-double integral (PII2) consensus protocol. Therefore, 
the leader-following output consensus for multi-agent system 
(1) in the presence of the dynamic leader in (5) is guaranteed. 
To achieve this goal, it suffices to augment the agents’ model 
with an integrator. Consequently, the design of the PID 
consensus protocol for the augmented agents’ model is 
equivalent to designing a PII2 controller for the original multi-
agent system. The details have been given in [19]. 

As seen in (6), the closed-loop system has a neutral type 
time-delay equation [18] due to the terms 

    
1

N

D ij i j
j

B K C a x t h x t h


      and  i Di im B K Cx t h   . To 

deal with this closed-loop system of neutral type, we define 

        
0

,
t

i i i it x d x t t       (8) 

Considering Remark 1 and using a descriptor transformation, 
the descriptor form of the closed-loop system equation of the 
multi-agent system is represented as 
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 

 

 







      

     

       

      





 (9) 

or  

      hEx t Ax t A x t h    (10) 

where  is the Kronecker product [20] and Ls is the Laplacian 
matrix. Moreover, 
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Now, we present the following lemmas, which will be used 
for obtaining the main results of the paper. 

Lemma 1 [21]: Let H, L and  F t  be real matrices of 

appropriate dimensions with  F t  being a matrix function. 

Then, for any σ > 0 and     ,TF t F t I  we have 

     2
2

1T T T T TLF t H H F t L LL H H


    (11) 

Lemma 2 [22]: If 0W  , there exist 1W  . Thus, 

  1 TSW S S S W      (12) 

III. ROBUST CONTROLLER DESIGN 
In this section, we give the design conditions for robust 

leader-following output consensus of the multi-agent system 
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(10). A Lyapunov-Krasovskii functional for system (10) has the 
form 
 1 2 3V V V V     (13) 
where 

 
       

       

0
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3

,
tT T

h t

t tT T

t h t h

V x t EP x t V x Zx d d

V x Qx d R d


   

       

 

 

 

 

 

 

 

 

  (14) 

in which 1

2 3

0P
P

P P
 

  
 

 and 1P ℛ 2 2nN nN , 3P ℛ nN nN , Q

ℛ 3 3nN nN , Rℛ nN nN , Zℛ 3 3nN nN are symmetric positive 
definite matrices. Therefore, by the definition of E and  x t  in 

(10) and knowing that 1 1 0TP P  , we have 1
T Tx EP x x P x  

 1
TT T Tx P x x EP x   . Consequently, the functionals 

1 2 3, ,V V V  are admissible. 
Remark 3: To enable the application of Lyapunov method for 

the stability of the system (8), the difference operator :  [- h  

, 0]→ℛ n , given by         t s D Dx x t L B K C M B K        

   . I C x t h   should be stable independent of delay with 

respect to all delays [18]. Therefore a sufficient condition for 
the stability of  is given as 

         s D DL B B K C M B B K I C I          (15) 

where | . | is any matrix norm. Now, considering Remark 2, we 
state the following theorem which gives a sufficient condition 
for robust stability design of leader-following output consensus 
for the uncertain multi-agent system (10). 

Theorem 1: Consider the multi-agent system (10) with 
communication delay 0 h h  . Suppose Assumptions 1-3 
hold. Then, leader-following output consensus is 
asymptotically achieved if there exist scalars 

, , 0, , , 1,2,3i i i i      , positive definite symmetric 

matrices L , M ℛ 3 3nN nN , Rℛ nN nN , and matrices K, KD, 
KI, iK  , DiK  , IiK  ℛ m r , 1,...,i N  satisfying the following 
LMIs: 
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Proof: Note that 

          
 1 1

T T T t
V x t EP x t t x t P

x t



 

     
 

 (19) 

Differentiating V1 with respect to t results into 
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  

      
  
        
      

 



  (20) 

where  t  is substituted from (9). Obtaining the time-
derivative of V2 and V3, using definite integral formula known 
as Leibniz-Newton formula as well as the integral inequality 
in [23], an upper bound for V  is found. Then, using Schur 
complement, partitioning the nominal and uncertain parts and 
considering the definition in (2) as well as applying suitable 
congruence transformations, the matrix inequalities (16)-(18) 
are obtained. For the sake of brevity, the detailed proof is 
omitted.  ■ 

Remark 4: Theorem 1 obtains robust stabilization conditions 
for the uncertain multi-agent system (10). The set of controller 
gains K, KD, KI, iK  , DiK  , IiK   that make the LMI conditions 
(16)-(18) feasible guarantee the robust leader-following output 
consensus of the uncertain time-delay multi-agent system (10). 
The significant advantage of this theorem is in giving a novel 
set of stabilization LMI conditions for the system (10) that gives 
the controller gains of the proposed consensus protocol (6). 

A. Special Case 1: First-Order Systems 
For a first-order system (n = 1), it is possible to derive a less 

conservative set of conditions compared to the conditions (16)-
(18). Consequently, the system matrices A, A, B, B and C are 
represented by the scalars a, a, b, b and c, respectively. 
Moreover, a a a  , and b b b   . These conditions 
are given in the following corollary. 

Corollary 1: For the multi-agent system (10) with first-order 
agents and delay 0 h h  , under Assumptions 1-3, the leader-
following output consensus is asymptotically achieved if there 
exist scalars , , 0, , 1, 2,3i i i i     , positive definite 

symmetric matrices L , M ℛ 3 3N N , R  ℛ N N , and 
variables V, VD, VI, iV  , DiV  , IiV  ℛ satisfying the following 
LMIs: 
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N

L Hdiag L L L L diag L L L U diag U U U  
 

      1 1 1, , , , , , , ,N I I IN D D DNV diag V V V diag V V V diag V V             . 
Moreover, H is as defined in Theorem 1. The controller gains 
are given as 1K VL , 1

I IK V L , 1
D DK V L , 1ˆK V L  , 

1ˆ
I IK V L   and 1ˆ

D DK V L  . 

Proof: The proof is omitted since it can be established using 
the proof of Theorem 1. ■ 

Remark 5: As mentioned earlier, the LMI conditions (21)-
(23) are less conservative than the set of LMIs (16)-(18). In the 
proof of Theorem 1, there was a necessity to define the matrix 
variable Y as 1Y L   . This definition enabled us to present 
a set of LMI conditions rather than bilinear matrix inequalities 
(BMIs) that are classified in the category of Non-deterministic 
Polynomial-time hard (NP-hard) problems. In Corollary 1, 
since the agents are first-order, the aforementioned assumption 
for the matrix variable Y is not necessary. Consequently, a set 
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of less conservative LMI conditions in (21)-(23) is obtained 
compared to the LMIs presented in (16)-(18). 

B. Special case 2: PD Controller 
In case the design of a PD controller is considered, one can 

set 0I IiK K   and derive a set of simpler stability analysis 
and design conditions than the general form. This special case 
will lead to a consensus protocol which is a sub-case of the 
consensus protocol (6). Then, the following corollary is 
obtained. 

Corollary 2: Under Assumptions 1-3, for a given delay 
0 h h  , the leader-following output consensus for the multi-
agent system (1) with PD type of the consensus protocol (6) (

0I IiK K  ) is asymptotically achieved if there exist scalars 
, , 0, , , 1, 2,3i i i i      , positive definite symmetric 

matrices L , M ℛ 3 3nN nN , Rℛ nN nN  and matrices K, KD 
, iK  , DiK   ℛ m r , 1,...,i N  satisfying the following LMIs: 
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 1 , , ,NK diag K K     1 , ,D D DNK diag K K   . Moreover, H is 
as defined in Theorem 1 

Proof: The proof is omitted here as it can be easily derived 
by following the proof of Theorem 1. ■ 

Remark 6: Multi-agent systems with integrator agents, i.e., 
      i ix t b b t u t   , are categorized in the special case 2. 

Using the idea of the special case 1, a set of less conservative 
LMI conditions compared to the LMI conditions (24)-(26) can 
be provided that are omitted here for the sake of space 
limitation. 

Remark 7: To the best knowledge of the authors, all the 
stability conditions presented in the literature for the leader-
following multi-agent systems, which are more complicated 
than the conventional consensus problems, are sufficient 
conditions similar to the ones presented in this paper. Therefore, 
Theorem 1 and Corollaries 1 & 2 are not necessarily more 
conservative than the other results presented in the literature for 
leader-following multi-agent systems. 

IV. SIMULATION RESULTS 

A. Example 1  
Consider four uncertain time-delayed unstable agents that 

communicate through a directed topology with the following 
transfer function as 

    
0.10.4

0.02
sbG s e

s a



  

 (27) 

in which a and b are the system parametric uncertainties. In 
a canonical representation form of the system (27), a and b 
are the same uncertainties considered in Corollary 1 where a = 
0.02, b = 0.4, c = 1 and h = 0.1s. Considering the definitions (2) 
and (3), we assume that Da = 0.05, Ea = 0.1, Db = 0.1, Eb = 1. 
Moreover, the communication topology and the leader 
adjacency matrix are represented by the Laplacian matrix as LS 
= [lij] for i,j = 1,…,4 where lii=1 for i =1,…,4, l1,2 = l2,3= l3,4 = 
l4,1 = 1 , otherwise li,j = 0 and the matrix M = diag{0, 1, 1, 0} 
respectively. We set ε1,2,3=0.2, α1=1.5, α2 =0.75, α3 =1.5, σ1 = σ2 
= σ3 =1. Using Corollary 1 and the LMI Toolbox in Matlab, the 
designed PID controller gains are obtained as K = -5.15, KI = -
0.3, KD = -0.23, K = diag (0, -10.2, -10.13, 0), IK   = diag (0, 
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-2.3, -2.44, 0), DK   = diag (0, -0.18, -0.17, 0). Fig. 2 displays 
the simulation results of the closed-loop multi-agent system. As 
shown in Fig. 1, all the uncertain unstable agents has been 
stabilized and followed the leader set-point using the consensus 
protocol (6).  

 
Fig. 2. Controlled outputs of the follower agents (solid) and output of the leader 
(dashed) 

 
Fig 3. Stability region in presence of b and h variations when a = 0 

 
Fig 4. Stability region in presence of a and h variations when b = 0 

Now, we perform some simulations to investigate the robust 
stability of the closed-loop system in the presence of the system 
parameter uncertainties. Since the uncertainty in gain and the 
poles of a system affects the stability of the closed-loop system, 
we investigate the performance of the closed-loop system in 
presence of these uncertainties. To this aim, we firstly set a=0. 
Then, simulating the closed-loop system in the presence of the 
variations of b and h , the stability region for the closed-loop 
multi-agent system is obtained. This is shown as the colored 
area in Fig. 3. It is seen that for h=0, the closed-loop multi-agent 
system is stable for -0.4 ≤ b ≤ 1.01. To obtain the stability 
region of the closed-loop multi-agent system in the presence of 
the uncertainty in a and h, we firstly set b = 0. Then, we 
obtain the stability region for -2a ≤ a ≤ a|h=0.1 in which a =  
= 0.02. The colored area in Fig. 4 shows the stability region of 
the closed-loop multi-agent system in the presence of the 
uncertainty in the pole of the system (27) and the delay h. As 

seen in Fig. 4, increasing the maximum time-delay h, the upper 
limit of the uncertainty of the system pole decreases. Moreover, 
for a = b = 0, the maximum time-delay tolerated by the 
closed-loop system is obtained as h = 0.234s. 

B. Example 2: Teleoperation system 
In this example, a teleoperation system is considered that is 

composed of a local central control system and three remote 
manipulators. It is assumed that the remote manipulators are in 
free space. Suppose that the central control information is 
accessible for the manipulator 1. The communication topology 
and the leader adjacency matrix are represented by the 
Laplacian matrix LS and M, respectively. LS = [lij] for i,j = 1,…,3 
in which lij=2 for i =j and lij = 1 for i ≠ j. Moreover, the matrix 
M = diag{1, 0, 0}. The control objective is to design a feedback 
control system to provide a leader following formation control 
for the introduced multi-agent system with 3 agents. As we 
know, a 3-DOF manipulator has nonlinear dynamics that is 
shown by the Euler-Lagrange equations of motion in joint 
space [24]. Using feedback linearization, we may write the 
manipulator equation in a decoupled canonical form that is 
always controllable from iu  [24] as 

  
0 0

, 3
0 0

p
i i i

p

I
u t h p

I
 

   
      
   

  (28) 

where i col  [ ,i i  ] and      i di it q t q t    is the joint 
tracking error. Therefore, tending  i t  to zero leads the joint 
variables  iq t  to track their desired value  .diq t

 
Fig. 5 

shows the block diagram of the closed-loop system for each 
feedback linearized agent i. Now, we are in a position to apply 
Corollary 2 and present a leader following output consensus for 
the teleoperation system with three robot manipulators. To this 
end, we consider the joint tracking errors as the output of each 
manipulator as yi = [Ip 0]i . Setting 200h ms  and using 
Corollary 2 as well as solving the LMI conditions in (24)-(26) 
by the LMI toolbox in Matlab, we obtain the following PD 
controller gains as  K = 1.32, DK = 1.29, K= diag (1.02, 0, 0), 

DK   = diag (0.98, 0, 0). Since the output of each feedback 
linearized agent is the vector of joint tracking errors, we need 
to solve a leader-following output consensus problem with the 
set-point of zero. This set-point is applied to the first feedback 
linearized manipulator while the other feedback linearized 
manipulators track this set-point via the communication 
topology shown by the adjacency matrix . Consequently, the 
joint variables  iq t  tend to the desired values  diq t . Setting 
the joint desired values as diq  = [/2, /3, -/3]  for i=1, 2, 3 
and simulating the closed-loop multi-agent system by Simulink, 
the simulation results of the teleoperation system with the initial 
conditions 1q  = [2/3, -/6, -/5], 2q  = [/4, /6, -/3], 3q  = 
[/3, /5, -/4] for joint variables are displayed in Figs. 6 and 
7. As seen in Fig. 6, all the joint variables reach a consensus and 
track the desired values  diq t  for i=1, 2, 3. Moreover, Fig. 7 
shows the joint torques i  of the joint variables that stay 
bounded. Additionally, the maximum tolerable round-trip 
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transmission delay between the leader and the first reference 
follower (first follower) in the closed-loop multi-agent system 
is obtained as max 288h ms . 

 
Fig. 5. Closed-loop system of the feedback linearized agent i 

 

Fig. 6. Tracking of the joint desired values (dashed) by the joint variables (solid) 

 

Fig. 7. Joint torques of the manipulators (i) 

V. CONCLUSION 
The problem of leader-following output consensus of 

uncertain multi-agent systems with general linear agents and 
transmission delay has been studied in this paper in the presence 
of stationary and dynamic leaders. The proposed method can be 
used for both stable and unstable follower agents under a 
directed graph. To this end, we proposed a new Proportional-
Derivative-Integral (PID) consensus protocol for the closed-
loop system. A Lyapunov-Krasovskii functional is used to 
derive the design conditions in terms of certain linear matrix 
inequalities (LMIs). Augmenting each agent model with an 
integrator and designing the PID consensus protocol for the 
augmented model is equivalent to designing a proportional-
integral-double integral (PII2) controller for the original multi-
agent system. Thus, the presented stability LMI conditions can 
be used for a dynamic leader as well. Finally, we showed the 

application of our method in a multi-lateral teleoperation 
system. The simulation results confirm the effectiveness of our 
method. 
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