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Abstract— This paper introduces a novel attention-based
sequence-to-sequence network for predicting upper-limb ex-
oskeleton joint angles, enhancing the control of assistive tech-
nologies for individuals with upper limb impairments. By
integrating EMG and IMU signals, our model facilitates real-
time decoding of user intentions, generating precise movement
trajectories for a 3-DoF cable-driven upper-limb exoskeleton.
The implementation of an attention mechanism within an
encoder-decoder architecture allows for the dynamic prioritiza-
tion of the most pertinent EMG features and historical angular
positions. Our model significantly outperforms existing EMG-
based hand motion prediction methods in terms of prediction
accuracy and responsiveness as demonstrated in evaluations.
This approach not only offers a tailored response to varying
sequence lengths and compensates for sensor unreliability
but also introduces a level of generalization and adaptability
previously unattainable in robotic rehabilitation and assistive
devices. The implementation of the attention mechanism allows
for adaptive learning, focusing on the most relevant signals for
each user, thereby enhancing the system’s ability to learn and
predict complex movement trajectories.

I. INTRODUCTION

Robotic exoskeleton rehabilitation is widely used for pa-
tients with stroke or spinal cord injuries who experience
upper limb motor impairments. This technology plays a
crucial role in intensive rehabilitation therapy, aiding patients
in regaining motor function [1]. However, the growing aging
population and the escalating demand for therapy sessions
present challenges. Often, there are not enough resources
to provide adequate treatment. This shortage can lead to
diminished therapy quality due to an extensive workload for
the therapist [2]. Additionally, there’s a growing need for
more accurate and customized assistive technologies tailored
to the unique needs of each patient. The effectiveness of
assistive robotic exoskeletons is significantly influenced by
the quality of human-robot interaction (HRI), which can
be better assessed through the interpretation of biological
signals [3]. Achieving intuitive and user-specific control in
exoskeletons remains a challenge, underscoring the need for
new approaches in myoelectric control systems that rely on
more sophisticated processing of biosignals that define the
user’s interaction with an exoskeleton.
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Surface Electromyogram (sEMG) signals, generated by
subtle muscular contractions, have been extensively utilized
in controlling myoelectric prosthetics and exoskeletons. By
extracting meaningful information from EMG signals, it’s
possible to map these signals to intended movements [4].
Another significant advantage of using EMG is their capabil-
ity to reflect motor intention approximately 200 milliseconds
before the actual onset of joint movement [5].

Most studies in intention decoding with EMG sensors
have historically centered on pattern recognition [6] and
gesture classification [7], targeting discrete motions rather
than continuous upper limb movements. This approach has
limited applicability for applications requiring continuous
control. The emerging field of proportional myoelectric
control seeks to bridge this gap by focusing on predicting
continuous movements in prosthetics. Traditional machine-
learning (ML) methods rely on manually handcrafted and
statistical features, which may not fully capture the nuanced
information necessary for effective sensor fusion [8]. In con-
trast, recent advances have seen the adoption of deep learn-
ing (DL) and data-driven techniques capable of extracting
comprehensive features from EMG sensors. When integrated
with IMU data, these methods offer a more sophisticated
approach to motion prediction, leveraging the full potential
of sensor fusion inputs.

Convolutional Neural Networks (CNNs) excel at hidden
spatial feature extraction, making them particularly suited
for EMG signal analysis due to their ability to handle
high-dimensional data. This capability is especially bene-
ficial in scenarios involving crosstalk within multi-degree-
of-freedom exoskeletons. In their work, George et al. [9]
employed a CNN-based method that consistently predicts
joint torques across various levels of assistance. Furthermore,
a novel hybrid CNN–SVM model, detailed in [10], was
introduced for the identification of human locomotion modes.
This model utilizes multi-channel inertial measurement unit
(IMU) signals for its operations.

Nonetheless, it’s crucial to consider the temporal aspect
of EMG signals, as they are inherently sequential data.
Hybrid architectures that combine CNNs with Recurrent
Neural Networks (RNNs) have demonstrated superior per-
formance compared to standalone CNN-based approaches,
as evidenced in [11]. Similarly, Paniz et al. [12] proposed an
innovative hybrid model for intention detection in upper-limb
exoskeletons. However, the performance of these models
could be improved by adding more flexibility and cross-
subject variability. Despite the advancements in deep learn-
ing for myoelectric control, there remains a gap in models
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that can effectively integrate real-time adaptability and user-
specific control, which this research aims to address.

Attention networks have significantly impacted sequence-
to-sequence networks by enabling models to selectively focus
on different segments of the input sequence for each part of
the output [13]. Zhang et al. [14] proposed an attention-
based Kalman Filter (KF) scheme to decode the upper body
movements. Zhu et al. [15] used a hybrid CNN-LSTM
model to estimate the joint positions for the lower-limb
exoskeleton. In another study [16], an attention-based Deep
CNN-BiLSTM Model was used to detect muscle fatigue.

This paper introduces a unique hybrid CNN-LSTM net-
work with an attention mechanism for addressing the lim-
itations of existing models by offering enhanced precision
and adaptability in predicting upper limb movements. By
integrating real-time EMG and IMU signal decoding, the
model generates an optimal movement trajectory for a 3-
DoF cable-driven soft upper-limb exoskeleton, factoring in
historical joint position data. The model’s encoder-decoder
framework, enhanced with an attention mechanism, adeptly
identifies and prioritizes the most crucial spatial and temporal
EMG signal features for accurate position prediction. This
is further refined through a PD position controller that
incorporates feedback from rotary encoders.

The model’s attention mechanism significantly increases
its adaptability, generalizability, and flexibility, enabling it
to efficiently handle input sequence variations—a critical
feature for dynamic industrial tasks. It also remains effective
when some sensors are offline, showcasing a robust design
suitable for practical applications where sensor reliability
may be an issue. Importantly, the model’s ability to focus
on user-specific data points enhances adaptability, ensuring
a more intuitive and safe operation of the exoskeleton in
rehabilitation and industrial environments.

This paper is arranged as follows: Section II introduces
the framework of the encoder-decoder architecture, followed
by a discussion of the position controller in Section III. The
experimental methodology, designed to evaluate the effec-
tiveness of our proposed method is explained in section IV,
along with the resulting quantitative analyses and findings,
which are presented subsequently in section V. The article
concludes with Section VI.

II. TRAJECTORY PREDICTION WITH MYOELECTRIC
ATTENTION

In this section, we describe how we leverage a sequence-
to-sequence model to generate and predict future joint posi-
tions of a 3-DoF robot within the context of the movement.
The proposed model utilizes an encoder-decoder structure.
The purpose of the encoder is to reduce the dimensionality
of the raw EMG and IMU data and map it into a feature map.
The purpose of the decoder is to generate the predicted future
joint positions.

The attention scheme would allow the decoder to selec-
tively focus on certain features of the input by selecting a
subset of all the feature vectors. We denote vectors with bold
font and matrices with capital letters.

A. Encoder: Convolutional Features

The encoder section of our proposed seq2seq CNN-LSTM
model shown in Fig. 1 starts with the input data x of a
time window of length N across 21 channels, which it then
maps onto the encoder state vectors. This model employs
three 2D convolutional layers to encode the input into an X-
dimensional feature map a with a length of K, as represented
by Equation (1). Each feature vector aj , j = 1, . . . ,K
corresponds to the features extracted at different parts of the
window.

a = {a1, . . . ,aK} ,aj ∈ RX (1)

The predicted output is a sequence of angular encoder
positions with a length of T and a dimension of the DoF D.

y = {y1, . . . ,yT } ,yi ∈ RD (2)

The CNN layers are designed to explore correlations
both temporally and across channels, thereby reducing the
dimensionality of the feature map and the overall complexity
of the model. The input channels are strategically arranged
to place similar muscle groups -later explained in IV-A- in
proximity, enhancing the model’s ability to extract relevant
features in the initial layers.

To mitigate the effect of noise in the feature map, av-
erage pooling is implemented in the shallower layers. The
convolutional layers are followed by batch normalization
and ReLU activation functions, ensuring non-linearity and
efficient training. A dropout probability is applied before the
feature map is relayed to the decoder, aiding in the preven-
tion of overfitting and enhancing the model’s generalization
ability. This intricate arrangement of layers and functions
within the CNN encoder not only optimizes the extraction of
meaningful features from EMG and IMU data but also lays a
robust foundation for the subsequent LSTM-based decoding
process.

The first kernel size (3,30), is designed to encompass a
broader context in the time dimension, allowing the model
to integrate information over longer time sequences, which is
essential for understanding the evolution of muscle signals.
Conversely, the smaller dimensions of the subsequent kernel
sizes, (3,5) and (4,2), allow the model to focus on more
fine-grained and localized features within the EMG data.
This hierarchical approach in kernel sizing—from captur-
ing broad temporal patterns to zooming in on detailed
features—enables the model to construct a comprehensive
understanding of the EMG signals, ultimately leading to
more accurate and responsive control of the exoskeleton.

Overall, the encoder’s use of convolutional layers to pro-
cess EMG and IMU data into a feature map is for reduc-
ing input dimensionality while preserving crucial spatial-
temporal relationships. This prepares the model for more
accurate prediction by focusing on the most relevant features
for trajectory determination.
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Fig. 1. Structure of the attention-based CNN-LSTM encoder-decoder
network used for joint position prediction.

B. Decoder: Long-Short Term Memory

In this model, the decoder plays a critical role in process-
ing the feature map generated by the Encoder, along with the
previous hidden and cell states, to predict the angular position
in a time sequence. The input to the decoder, denoted as
yi′−1, can be either the target trajectory of the model or
the previously generated trajectory. This input is initially
transformed via a linear embedding Eyi−1 to align it with
the dimensions of the feature vectors. The single-layer LSTM
then updates its hidden state hi for each time step i using
the formula:

hi = f
(
hi−1,yi′−1, ĉi

)
(3)

In (4), ĉi is the context vector for each embedding of
yi. This context vector plays a crucial role in the Decoder.
It treats each feature vector as a token that encapsulates
information about the entire input sequence, with a particular
emphasis on the parts surrounding the j-th vector. As shown
in Fig. 1, the context vector is calculated as a weighted sum
of these feature vectors.

ĉi =
K∑
j=1

αijaj (4)

The weights αij for each feature vector are generated by
the attention mechanism, which determines the relevance or
’attention’ each vector should receive when predicting the
next embedding of yi. The i-th context vector ĉi represents

the expected energy over all the energies, weighted by the
probabilities αij . For implementation, the softmax of the
energy score is calculated.

αij =
exp(eij)∑K
k=1 exp(eik)

(5)

The energy eij scores the similarity between the inputs
around position j and the output at position i (6). Unlike
traditional attention mechanisms that use dot products for
this calculation, this model employs the ReLU of a feed-
forward neural network, fatt, for determining the energy.
The network’s parameters are trained alongside the other
components of the system.

eij = fatt (hi−1,aj) (6)

Also, the RNN’s 400 cell and hidden states were initialized
with two separate multi-layer perceptrons by inputting the
flattened encoder states before sending them to the decoder.
Some related works have used the averaged encoder states
instead.

c0 = finit, c (Dense(a))

h0 = finit,h (Dense(a))
(7)

In our model, the teacher forcing method is employed to
enhance the learning process, where the decoder is occasion-
ally fed the actual target outputs instead of its predictions.
This technique aids in stabilizing training and improves the
model’s ability to generate accurate sequences by aligning
the training phase more closely with the inference phase,
thus effectively mitigating discrepancies between the two.

In the decoder phase, the attention mechanism’s role is
critical for dynamically focusing on specific features within
the extensive feature map generated by the encoder. By
weighting these features based on their relevance to the
current prediction task, the model achieves a higher level
of precision in predicting joint positions, demonstrating the
practical benefits of attention in managing sequential data.

C. Training

The extensive training process, utilizing a GPU for over 15
hours across 35 epochs, not only underscores the complexity
of the model but also its efficiency in learning from the data.
The optimization achieved through careful adjustment of the
learning rate and dropout rates exemplifies the meticulous
approach taken to enhance model performance. It utilized
a batch size of 32 and a learning rate set at 3 × 10−4,
aiming for a future prediction span of 120 ms. The feature
map was structured with dimensions [200, 5, 2], while the
LSTM architecture featured a single layer containing 400
hidden units, complemented by an embedding size of 200.
Experiments with the dropout rate for both the encoder and
decoder ranged from 0.2 to 0.5, with optimal results achieved
at a dropout rate of 0.2. Furthermore, the teacher-forcing ratio
was determined to be most effective at 0.4.
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Fig. 2. The upper-limb exoskeleton’s intention-based model control
schematic, which uses proportional derivative (PD) for low-level control
and the encoder-decoder network for high-level control while gravity
compensated.

In summary, the integration of an attention mechanism
within a hybrid CNN-LSTM framework marks a substan-
tial advancement in trajectory prediction for upper limb
exoskeletons. This model not only enhances prediction accu-
racy and system responsiveness but also introduces a degree
of adaptability and personalization previously unattainable,
setting a new standard for myoelectric control technologies.

III. ROBOT-ASSISTED CONTROL

For the trajectory tracking controller, we aim to follow
the predicted position, accounting for challenges like delays
and internal friction inherent to the pneumatic cable-driven
system. Employing a Proportional-Derivative (PD) control
scheme, as depicted in Fig. 2, we ensure the robotic ex-
oskeleton accurately follows the desired joint angles. The
controller uses a PD control scheme in 8 with proportional
KP and derivative KD gains to track the desired joint angle
qdi at each time step, complemented by feedforward grav-
ity compensation τGCi that leverages the system’s known
kinematics for enhanced control performance.

τri = KP (qdi − qi)−KD q̇i + τGCi (8)

IV. EXPERIMENTS

A. Hardware Setup

The myoelectric control neural network alongside the
gravity compensation neural network was implemented using
Python (Python Software Foundation, USA). The angular
positions of the exoskeleton joints were captured through an
Arduino Mega 2560 using the Pyserial library, which allows
for bidirectional data communication between the computer
running Python and the Arduino. The angular position data
was sampled at a frequency of 500 Hz. The EMG and IMU
data were sampled through the Delsys Trigno Research+
system at a sampling frequency of 2000 Hz. After the input
data has been captured through the different data streams, the
data would inputted to the control and gravity compensation
neural networks. These networks would regulate the pressure
of the pneumatic soft actuators attached to the exoskeleton
through the usage of another Arduino Mega 2560 commu-
nicating with Python.

The fluidic muscles DMSP-20-RM-CM from Festo Cor-
porate in Esslingen, Germany, powered the joints of the

exoskeleton. Omega electro-pneumatic transducers EP211-
X120-10V from Omega Engineering Inc. in the USA were
employed to regulate the pressure of these pneumatic soft
actuators. Quadrature optical encoders (HEDM-5500 B12,
Broadcom Inc., US) were attached to the shoulder and
elbow joints to measure the exoskeleton’s position. Three
Trigno Avanti Sensors were positioned along the 1- biceps
brachii, 2- anterior deltoid, and 3- medial deltoid to gather
surface EMG and IMU data from each muscle. Six Trigno
Avanti Sensors were positioned along the 4- brachialis, 5-
brachioradialis, 6- pectoralis major (Clavicular Head), 7-
triceps, 8- deltoideus posterior, and 9- trapezius descendens
muscles to gather surface EMG data only [17], [18].

B. Experimental Setup

In this study, our attention-based network was trained
using a dataset collected from seven individuals, aged 21
to 35 (including 3 females), over the course of a week. All
participants were able-bodied and provided written informed
consent. Prior to the experiments, we thoroughly explained
the procedures to each participant.

The experimental protocol involved seven types of upper-
limb movements, each integrating a combination of three
joint actions. The first three movements comprised ascending
and descending the elbow, shoulder abduction/adduction, and
shoulder flexion/extension. The next three involved two of
the same three joint actions, and the last one involved all
three at the same time. To add complexity, these movements
were performed under two conditions: without load and with
a 1kg load, resulting in a total of 14 distinct tasks. Each
task was repeated five times to ensure consistency and to
introduce natural variations in muscle activity due to fatigue.

Each task was completed within an average time range of
4 to 17 seconds. Participants were encouraged to perform
these tasks in a manner they found most ergonomic and
comfortable. This approach allowed for individual variations
in task execution; for instance, the participants were allowed
to choose the pace or lower any joint earlier than others.

The training and testing datasets were partitioned ran-
domly according to movements, adopting an 11:3 ratio for
the split. This procedure entailed conducting five distinct
training sessions, during each of which three randomly
chosen movements from all users were allocated for testing.
This approach, termed combined training, utilized the entire
dataset inclusively. Alternatively, in a different evaluation
strategy, we individually segmented each participant’s dataset
using an 80:20 ratio for training and testing purposes, respec-
tively. This alternative method also involved executing five
training iterations, but in this scenario, we randomly selected
one out of the seven participants for each iteration.

Four deep learning models—Bi-LSTM, CNN-Bi-LSTM,
CNN-LSTM, and the attention-based CNN-LSTM—were
trained with input sequence lengths of 150, 250, and 390.
The Bi-LSTM model enhances the capabilities of the uni-
directional LSTM by simultaneously learning from both for-
ward and backward contextual relationships in the activities
and the input surface electromyography (sEMG) signals. Ma
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et al. [19] utilized a Bi-LSTM network for predicting upper
limb joint angles, utilizing data from three EMG sensors.
However, a combined framework of CNN and Bi-LSTM can
learn not only bi-directional temporal relationships but also
spatial correlations. Karnam et al. [20] adopted this com-
bined approach in their work on hand gesture recognition,
employing EMG signal classification.

In our study, we adapt the structure of their model to assess
its applicability in our context. Additionally, we conducted
a comparative analysis with our previously developed CNN-
LSTM model, which was trained on a dataset from a single
individual. The training was conducted in two scenarios: first,
using data from a single random participant, and second, us-
ing combined data from all participants. In both cases, model
performance was evaluated based on inference accuracy for
the selected individual.

In the second phase of our experiments, we evaluated
the performance of an attention-based CNN-LSTM model
trained on a composite dataset, for predicting the exoskele-
ton’s real-time joint positions. A predefined trajectory shown
in Fig. 3, designed to engage all three joints of the exoskele-
ton and displayed on a computer screen alongside the robot’s
end effector (the user’s index finger), was followed in real
time at an adjusted speed. The participant was instructed to
follow the online generated trajectory without deviating a
tolerance boundary of a 2 cm radius. Data from EMG, IMU,
and angular encoders were input into the model in windows
of 250 by 21 (with a stride of 30). Participants attempted to
trace this trajectory 20 times with all sensors available, 20
times with one sensor disabled, and an additional 20 times
with two sensors disabled.

Apart from the initial three primary sensors detailed in
Section IV-A, one or two of the subsequent six sensors
were randomly disabled during each repetition’s inference
phase. The primary three sensors were exempt from this
because they provide crucial information about the intended
movement, upon which the model heavily relies for accurate
prediction. This strategy tested the model’s robustness to
random sensor failure.

V. EXPERIMENTAL RESULTS

The experimental results are divided into two sections. In
the first section, we assess the performance of four different
deep learning models, focusing on their accuracy across
various sequence lengths. Following this analysis, the model
demonstrating the best performance is selected for further
evaluation. This second phase involves testing the chosen
model’s inference capabilities on a robotic exoskeleton, along
with an examination of its modularity and flexibility.

A. Performance Evaluation

The models were trained once on combined data from all
participants and once on a randomly selected participant’s
data. The loss is calculated on a test data set from the
randomly selected individual using Mean Squared Error
(MSE). Due to computational complexity and limitations in

TABLE I
EVALUATION RESULTS OF FOUR DEEP LEARNING MODELS ACROSS

THREE SEQUENCE LENGTHS.

Models Sequence
length

Combined
dataset

Individual
dataset

Bi-LSTM [19]
150ms 1.72± 0.11 1.68± 0.09
250ms 1.55± 0.34 1.40± 0.17
390ms 1.42± 0.10 1.29± 0.26

CNN Bi-LSTM [20]
150ms 1.36± 0.14 1.23± 0.18
250ms 1.36± 0.16 1.34± 0.22
390ms N/A N/A

IBPA
(parallel CNN-LSTM) [12]

150ms 1.50± 0.15 1.28± 0.14
250ms 1.45± 0.17 1.36± 0.19
390ms N/A N/A

Attention-based
CNN-LSTM

150ms 1.28± 0.09 1.20± 0.12
250ms 0.97± 0.22 0.89± 0.15
390ms 1.15± 0.25 1.08± 0.09

GPU resources, we were unable to test the IBPA and CNN
Bi-LSTM models with a 390 ms sequence length.

Table I distinctly illustrates that the attention-based CNN-
LSTM model achieves the highest overall accuracy when
utilizing a 250 ms sequence length for input. This supe-
rior performance is maintained when the model is trained
exclusively on data from a single user and then applied to
the same individual. This model also demonstrates robust
performance when trained on a dataset comprising multiple
users but tested on some unseen movements from the same
users, thereby affirming its generalized and flexible nature.

Regarding the impact of sequence length, while the at-
tention mechanism does enhance the model’s capability to
process longer sequences, this does not automatically trans-
late into higher accuracy for longer sequences as opposed
to shorter ones. In our findings, a 250 ms sequence length
emerges as the optimal choice for the attention-based model.

When the models are trained using a combined dataset
from multiple users, a noticeable decline in accuracy is
observed across all four model types. However, it is evident
that the attention mechanism is more adept at managing
variations in users’ muscle activities compared to the other
models, showcasing its relative robustness in this aspect.

B. Modularity

We conducted tests to assess the models’ adaptability and
robustness under sensor failure conditions. Specifically, the
trained attention-based CNN-LSTM model, with data from
all participants, was evaluated. During these tests, partici-
pants were instructed to follow a predefined trajectory, dis-
played on a computer screen. Deviation beyond this bound-
ary was marked as a failure. Each movement was repeated 20
times at a consistent speed with all sensors working. We then
conducted this experiment in two scenarios: once with the
output from one EMG sensor set to zero (simulating sensor
failure), and once with two sensors deactivated. On average,
each task repetition lasted 9.5 seconds, with a standard
deviation of 0.01 seconds.

Figure 3 presents the Root Mean Square (RMS) path
for each scenario, averaged across all repetitions and illus-
trated with dashed lines, alongside the predicted path. With
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Fig. 3. The reference trajectory in the solid black line shown to the
participant to follow during the second part of the experiments. Dashed
lines represent the robot-assisted paths traveled by the user root mean
squared over all the repetitions with purple representing the first and blue
representing the second scenario.

TABLE II
COMPARISON OF TWO SCENARIOS DURING INFERENCE.

Normal Scanrio 1 Scenario 2
Number of repetitions 20 20 20
Prediction loss 0.97± 0.12 1.33± 0.24 1.54± 0.19
MSE (Reference trajectory) 0.79± 0.1 1.24± 0.1 1.93± 0.1
RMS EMG 0.9± 0.12 0.9± 0.34 1.4± 0.45
RMS torque (PSI) 64± 11 70± 19 60± 8

the gravitational forces counteracted by gravity compensa-
tion, the predicted joint positions deliver precise assistance,
matching the exact needs of the user. Notably, at the peak of
the movement, the model predicts a higher requirement for
torque when the end effector approaches that point, indicat-
ing an understanding of the assistance required. Furthermore,
the robot-assisted average final path across all repetitions
remains within the predefined boundary.

The trajectory’s mean square error (MSE) in the first sce-
nario, with one sensor disabled, is 1.24 ± 0.1 cm, increasing
to 1.93 ± 0.1 cm in the second scenario with two sensors
disabled. This variance highlights a superior performance of
the robotic exoskeleton when fewer sensors are missing, as
detailed in II, which compares these scenarios against normal
operations with all sensors active.

Moreover, the elevated RMS value of the sEMG signals
in the second scenario suggests an increased effort exerted
by the user, implying a diminished level of assistance from
the exoskeleton. This RMS value, calculated for both EMG
signals and generated torque, was averaged over the entirety
of the movement, encompassing all available sensors and
joints during the task. The comparison shows that despite
having one or three sensors disabled during inference the
model has a relatively good performance. As the number of
disabled sensors increases, the system’s performance deteri-

orates, leading to a scenario where assistance predominantly
depends on gravity compensation, effectively circumventing
the model’s predictive capabilities.

While this article has assessed the model’s performance
under sensor fault conditions, there is potential to further
investigate the effects of various types and degrees of sensor
faults on the model’s performance that do not necessarily
involve zero inputs. This additional research could enhance
the system’s robustness and reliability. Exoskeleton technol-
ogy demands high real-time performance; therefore, further
research could focus on enhancing the real-time control and
prediction capabilities of models to reduce system latency
and increase response speed. In the future, we will delve
deeper into these limitations.

VI. CONCLUSIONS
This paper presents the development of an attention-based

encoder-decoder architecture for decoding user movement
intention while wearing an upper-limb exoskeleton to provide
assistance during rehabilitation procedures and industrial
applications. The attention-based model takes sequential data
of sEMG and IMU as input and then predicts the future
joint position of the robotic pneumatic cable-driven upper
limb exoskeleton. The authors identified the relevant mus-
cles that would provide relevant information to the neural
network. The attention mechanism was able to detect which
inputs contained more relevant information than others as
the human user moved in different directions. In addition to
better performance and higher accuracy compared with other
models, it was demonstrated that the addition of attention
to the model would make it more modular while handling
longer sequences. Furthermore, the model demonstrates re-
markable robustness during inference, even with one or two
sensors being unavailable, underscoring its potential for user-
adaptive exoskeleton control.
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