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Abstract—In this paper, an adaptive filtering technique is
proposed to estimate and characterize pathological tremors
caused by Parkinson’s disease (PD) and Essential Tremor
(ET). The technique is based on the formulation of Band-
limited Multiple Fourier Linear Combiners (BMFLC) and is
called Enhanced-BMFLC (E-BMFLC). The effectiveness of
the designed filter is statistically evaluated through a clinical
study involving 14 PD and 13 ET patients. The hand tremors
of the participants are studied in three Degrees of Freedom
(DOF). Using statistical analysis, it is shown that the new
design of the filter significantly enhances the accuracy in
comparison with the performance of conventional BMFLC
filtering. In addition, E-BMFLC significantly reduces the
sensitivity to parameter tuning and intra-patient variabilities.
The observed improvements are achieved by modulating the
memory of the proposed filter, and by enriching the utilized
harmonic model. The proposed filter is then used to develop
a safe haptics-enabled robotic rehabilitation architecture,
designed for patients having hand tremors. The architecture
is entitled Augmented Haptic Rehabilitation (AHR) which
enables adaptive management of the involuntary components
of the hand motion while delivering assist-as-needed haptic
therapy (for the voluntary component) and avoiding unsafe
amplification of hand tremors. Experimental evaluations are
provided to evaluate the efficacy of the proposed AHR system.

Index Terms—Adaptive Filters, Pathological Hand Tremors,
Assist-as-needed Robotic Rehabilitation.
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I. INTRODUCTION AND PRELIMINARIES

B ased on official statistics, the population of adults over
the age of 65 is rapidly increasing worldwide. This

trend is anticipated to continue due to the increase in life
expectancy, and reduced fertility rate. It is anticipated that
the number of senior adults will be more than twice by 2050
compared to the corresponding number in 2013 [1]. As a
result of this ageing society, it is expected that there will
be a significant increase in the incidence rate of age-related
sensorimotor disorders and diseases such as Parkinson’s
Disease (PD) and Essential Tremor (ET). PD and ET
are known to affect coordination, targeting and speed of
motion while causing involuntary hand tremor [2], [3], [4].
Processing of hand motion and real-time extraction of the
involuntary components while introducing minimum lag is
an active line of research. This has attracted a great deal of
interest for designing assistive, wearable and rehabilitative
technologies by utilizing kinesthetic inputs and electrical
stimulations (see, e.g., [5], [6], [7], [8], [9]).

Adaptive filters developed based on a Fourier Linear
Combiner (FLC) algorithm have demonstrated appropriate
performance in extracting hand tremors while introducing
minimum latency compared to classical filtering [10], [11],
[12], [13], [14], [15]. The original version of recursive
FLC-based filters, i.e., Weighted-frequency Fourier Linear
Combiner (WFLC), was developed based on the assump-
tion of having a single dominant frequency [10] for the
targeted signals. The filter was used to design hand-held
surgical tools in order to cancel physiological tremor of
surgeons’ hands, in real-time (a practical need for delicate
microsurgery) [11]. The assumption of a single dominant
frequency was relaxed by proposing the BMFLC technique
which can track multiple harmonics of a signal. The original
motivation was to extract physiological hand tremor in
healthy subjects [12], [13], [14]. The BMFLC filter has
been utilized to extract physiological hand tremor [16] for
surgical applications [17], [18] and its performance has
been compared with that of the WFLC filter in quantifi-
cation of hand tremors of microsurgeons and considerable
improvement has been reported [13]. Due to appropriate
performance of BMFLC filters in extracting physiological
tremors, a recent study has investigated the possibility of
using the technique for pathological hand tremors (such
as those in PD) [15]. For this purpose, in [15], a new
modification of the BMFLC filter was proposed to find
the dominant frequency of the signal. Although the per-
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formance of the technique in [15] was slightly inferior
to that of the conventional BMFLC filter, it was able to
automatically find the dominant frequency of interest.

It should be noted that there are distinct differences
between pathological and physiological tremors in terms of
(a) amplitude, (b) frequency content, and (c) variability. In
contrast to physiological tremors, pathological involuntary
movements caused by PD and ET have closer range of
frequencies to voluntary actions. However, for physio-
logical hand tremor, the frequency range of involuntary
movements is considerably higher than that for voluntary
components of the motion. This makes it possible to
deal with the voluntary components of motion through
the use of a bias term in the model for the case of
physiological tremor [12], [13]. The close frequency range
of pathological hand tremors to the voluntary components
can challenge the estimation problem using various filtering
techniques, specially in real-time applications. In addition
to the frequency range, the nature, amplitude and existence
of the tremor is considerably variable for the case of
pathological tremors and they change considerably during
task performance. Characteristics of pathological tremors in
PD and ET patients depend on position, velocity, posture,
task, and loading conditions. As an example, in Fig. 1, the
hand tremor of a patient (participant #23 in our study, a
84 years old male with ET) is demonstrated for the cases
of no-load posturing (Fig. 1(a)) and with-load posturing
(Fig. 1(b)). In this test, the patient is asked to keep the
posture steady while holding a cup under two loading
conditions (i.e. empty cup and 1-pound loaded cup ). Each
loading condition is performed for 10 seconds. We overlaid
10 snapshots of each condition during the corresponding
period of the test to produce Figs. 1(a) and 1(b). In addition,
the results of measuring the hand accelerations in 3 DOF
are given in Fig. 1(c). As can be seen, there is almost no
tremor during no-load posturing for this participant while
high-amplitude tremors start right after adding the 1-pound
weight to the cup. This is just one example of how variable
the pathological tremors can be under different conditions.

The BMFLC filters were designed originally for physio-
logical tremors. Consequently, using them for pathological
hand tremors should be statistically studied. For example,
since there are considerable variations in the nature of hand
tremors for each patient in different posturing, motion and
load conditions, the filter needs to have low sensitivity to
parameter tuning. In other words, when we tune the main
parameter of the BMFLC filter (which is a corrective gain,
defined later in this paper), we need to be confident that
the filter will keep good performance during the task, even
if the type and nature of a hand tremor changes. It will
not be practical if the filter is sensitive to the tuning of the
corrective gain. The reason is that in this case, for each part
of the task (which may require a different load or posturing
condition) the filter may need a different corrective gain to
deliver appropriate performance. This is not practical.

Consequently, although the use of the BMFLC filter is
promising for extracting pathological tremors, the perfor-
mance of this filter needs to be statistically analyzed for

(a) (b)

(c)

Fig. 1. Participant #23 Holding the cup while maintaining a posture: (a)
overlaid 10 snapshots during 10 seconds for the case of an empty cup,
(b) overlaid 10 snapshots during 10 seconds for the case of a loaded cup,
(c) hand accelerations in X-direction (solid blue line), Y-direction (solid
red line), and Z-direction (solid black line) for the case of the empty cup
experiment (left) and the loaded cup experiment (right). In (b), the blurred
image of the patient’s hand is due to high amplitude tremor.

a group of pathological patients and the possibility of en-
hancing performance should be evaluated to be compatible
with the characteristics of pathological tremors.

A. Focus of This Paper

Motivated by the above issues, in this paper we propose a
new two-step modification to make the filter more accurate
in extracting tremors and less sensitive to parameter tuning
and intra-patient variabilities. The two-step modifications
are (a) modulating the filter’s memory, and (b) enriching
the harmonic model for extracting the hand tremor. The
filter proposed in this paper is called “E-BMFLC”.

In the next step, we conducted a clinical study including
14 PD and 13 ET patients to evaluate the efficacy of
the proposed filter in comparison with the conventional
BMFLC technique. Using statistical analysis, we showed
that E-BMFLC not only significantly enhances the accuracy
of the proposed filter, but it also substantially reduces
the sensitivity to the design of the filter’s parameters and
intra-patient variabilities. To the best knowledge of the
authors, this is the first paper showing how to improve the
performance of BMFLC filters in a statistically-significant
manner for patients living with pathological hand tremors.

In the second part of this study, we investigate the
possibility of using the proposed E-BMFLC filter to de-
velop a new Haptics-enabled Robotic Rehabilitation (HRR)
architecture which is capable of delivering energetically-
active assist-as-needed therapy for PD and ET patients
while adaptively controlling their hand tremor and avoiding
unsafe Tremor Amplification (TA). TA is a restrictive factor



when using non-passive robotic systems (that elevate the
energy of the human-robot interaction) for patients having
hand tremors. Active HRR systems amplify the energy
provided by the patient and reflect it back to him/her to
enhance coordination and movement speed. However, when
the patient has involuntary hand tremor, elevating the total
energy of the patient’s hand is equal to elevating the energy
of the hand tremor. This can result in an unsafe unwanted
condition (i.e. TA). TA can simply degrade the performance
and usability of HRR systems for patients living with hand
tremor. In the literature, the use of HRR systems in patients
living with hand tremors are mostly limited to assessment
and analysis of the disease and not multi-modal interactive
rehabilitation and intelligent exercises [19], [20], [21].

In order to address the aforementioned challenge, we
propose Augmented Haptic Rehabilitation (AHR) archi-
tecture. AHR is motivated by new evidence showing that
interactive Virtual Reality (VR)-based rehabilitation can
considerably accelerate Neuro-Plasticity (NP) and enhance
sensorimotor health and targeting accuracy for patients
living with pathological tremors, such as PD [22], [23],
[24], [25] and ET [26], [27], [28]. The initial concept
of the architecture was briefly presented by the authors
in the conference paper [29]. The AHR system presented
in the current paper is an adaptive dual-action augmented
haptic platform designed based on monitoring the energy
of the voluntary and involuntary components of motion.
The proposed architecture provides an adaptive viscous
environment (resistive therapy) in parts of the frequency
spectrum of the patient’s motion to resist (not counteract)
the hand tremor up to a point that it reaches a minimum
energy level. This action of the AHR system is like an
adaptive energy cap which gradually forces the energy of
the patient’s hand tremor to converge to a small under-
control value. This action avoids TA and makes the HRR
system compatible for use for tremor patients. At the same
time, the AHR system provides assistive action for the
voluntary component of the motion. The energy of the
voluntary component and tracking error is also monitored.
The assistive force field enables the patient to have an
acceptable tracking performance based on the monitored
energy of the voluntary movement. The intensity of the
assistive therapy is adaptively and gradually tuned in a new
energy-based assist-as-needed manner to provide the patient
with minimum needed assistance while keeping the patient
in the loop of interaction. Consequently, the proposed dual-
action behavior of the AHR system allows for delivering
assistance to the voluntary component of the motion while
restricting the involuntary component of motion in order to
avoid potential TA. This is achieved taking advantage of the
accurate decomposition of the voluntary and the involuntary
components of the patient’s motion using the proposed
E-BMFLC filter. This motion processing is the heart of
the proposed AHR architecture which makes it possible to
use interactive multi-modal environment of assistive HRR
systems for rehabilitating slowness, coordination deficits
and motion range problems (typical symptoms in PD and
ET patients), in a safe manner. Fig. 2 shows the proposed

Fig. 2. Block-diagram of the designed AHR system.

AHR architecture. The architecture is implemented in this
paper and experimental evaluations are reported.

Remark 1. The contributions of this paper are summa-
rized below:

a: Showing two issues with the conventional design of
BMFLC filters which can reduce the quality of the
results for pathological tremor estimation, namely:
infinite memory and old tremor projection.

b: Proposing two new solutions to significantly enhance
the accuracy of the filter, reduce the sensitivity to pa-
rameter tuning and variation in the frequency content
of the signal, and deal with the two issues mentioned
above.

c: Statistically analyzing the performance of the pro-
posed E-BMFLC filter for 27 pathological tremor
patients in order to validate the functionality of the
proposed technique.

d: Proposing a new AHR technique which enables de-
livery of a new assist-as-needed rehabilitation therapy
for PD and ET patients while controlling the energy
of involuntary movements and avoiding unsafe am-
plification of hand tremors due to the active nature
of robotic therapy.

e: Experimental evaluation of the functionality of the
proposed AHR system.•

The rest of this paper is organized as follows: The conven-
tional BMFLC filter is introduced in Section II. The new
E-BMFLC filter is proposed in Section III. In Section IV,
the developed AHR architecture is defined. The statistical
results of the clinical study on the performance of the E-
BMFLC filter are given in Section V. The AHR architecture
is evaluated and experimental results are reported in Section
VI. Concluding remarks are given in Section VII.

II. CONVENTIONAL ADAPTIVE BMFLC FILTERING

In this section a quick overview of the conventional
BMFLC filter is given, based on [12], [13], [14]. It is known
that hand movement of patients living with pathological
tremor is a modulated signal which has low-frequency vol-
untary actions and high-frequency involuntary components
[6]. Accordingly, the hand motion can be modelled as:

Mp(t) = Mp−v(t)+Mp−i(t) (1)



In (1), Mp(t) is a signal which corresponds to the motion
of the patient’s hand that can be the hand position Pp(t),
velocity Vp(t), or acceleration Ap(t). Accordingly, Mp−v(t)
is the voluntary component of the hand motion and Mp−i(t)
is the involuntary component. The main goal of the BMFLC
filtering is to find an estimate for Mp−i(t) in a real-time
manner while minimizing error and lag. The output can
then be used in actuated devices such as the one used for
hand-held anti-tremor surgical tools [12], [13], [14].

A BMFLC filter considers a truncated Fourier model for
the frequency window [ωa,ωb] of the hand tremor as:

Y (t) =
i=β (ωb−ωa)

∑
i=0

λi sin(ωat +
i
β

t)+ϑi cos(ωat +
i
β

t). (2)

In (2), Y (t) is the signal to be modeled, ωa and ωb
define the frequency window of interest (which correspond
to the tremor frequency). β is the number of harmonics
considered for one unit of frequency. Also, λ and ϑ are
coefficients of the truncated Fourier combiner model. The
linear regressors formulation of the truncated model (2)
considering the band-limited frequency window for the
hand tremor [ωa,ωb] can be written as:

Y (t) = θ
T

φ(t), (3)

where we have:

φ(t) =
[

sin(ωat + 0
β

t), ... ,sin(ωat + β (ωb−ωa)
β

t),

cos(ωat + 0
β

t), ... ,cos(ωat + β (ωb−ωa)
β

t)
]T

,
(4)

and θ =
[
λ0, ... ,λβ (ωb−ωa),ϑ0, ... ,ϑβ (ωb−ωa)

]T
. (5)

The regressors model, defined in (3)-(5) is then utilized
in a recursive Least Mean Squares (LMS) algorithm to
estimate the tremor in real-time and track its amplitude
and the frequency content. It should be highlighted that
the LMS algorithm has been conventionally and recently
used in the design of BMFLC filters [12], [13], [14], [15].
LMS has been also replaced with Kalman filtering in some
studies [30], [16]. Although the use of Kalman filtering
may enhance the performance, it significantly increases the
computational cost of the filter [31]. In [31] it has been
reported that for N operations needed through the use of
the LMS technique in BMFLC filters, 3N2 operations are
needed for Kalman filtering. For example, if we need 160
operations to extract a tremor through the use of LMS in
the BMFLC filtering technique, 76800 operations would be
needed if we use Kalman filtering [31]. In [30], it has been
reported that if the Kalman filter is utilized in the design
of the BMFLC technique, having frequency resolution of
the model less than 0.5Hz can prevent real-time implemen-
tation of the filter (when 512Hz sampling rate is assumed
as the definition of real-time implementation). Note that
for the case of haptic interaction, the sampling frequency
is suggested to be at least between 1KHz and 1.5KHz. In
addition to the above, as can be seen in [30], [16], using
the Kalman filter for BMFLC filtering, the linear state-
space model of the system will not be time-invariant. This

does not match with requirements of the classical Kalman
filters with guaranteed stability and it has been shown that
it can result in an unexpected diverging behavior [32], [33],
[34], especially since the measurement and the model are
uncertain (which is the case for pathological hand tremor).
Finally, it should be added that in order to use the Kalman
filtering technique in practice, the covariance matrices for
the model and observation uncertainties should be properly
tuned based on knowledge of existing measurement noises
and model uncertainties [32], [33]. The possible diverging
behavior of the Kalman filter is closely related to the tuning
of the covariance matrices [33]. This makes it even more
challenging to use the Kalman+BMFLC technique. As a
result, in this paper we propose two new modifications
(for the LMS+BMFLC) which can significantly enhance
the accuracy of the conventional BMFLC filter (as shown
later in this paper) without adding further complications
for extracting pathological tremors. The LMS algorithm is
shown below:

Ŷ (t) = θ̂
T (n)φ(t) (6)

where
θ̂ T (n) = θ̂ T (n−1)+2ηφ(n)E(t)

and E(t) = S(t)− Ŷ (t).
(7)

In (7), η is the LMS corrective gain, E(t) is the esti-
mation error, S(t) is the input signal, Ŷ (t) is the estimated
signal, θ̂ is the estimation of the coefficient vector of the
Fourier combiner model. Since the model is truncated, the
estimated signal will be an estimation of the high frequency
components of the hand motion Mp−i(t) [12], [13], [14].

III. PROPOSED ENHANCED-BMFLC TECHNIQUE

In this section, we indicate two facts that can degrade
the performance of the BMFLC filter, then we propose
solutions which form the new design called E-BMFLC.

A. Challenges with the Conventional Design of BMFLC

There are two problems associated with the conventional
formulation of the BMFLC filter in (4)-(7):

1) Inaccurate Error Calculation: In (7), the error
is represented as E(t) = S(t)− Ŷ (t), where Ŷ (t) is the
estimated tremor. However, the input signal S(t) is equal
to the modulated hand motion Mp(t), the only measurable
characteristic of the hand’s motion. It is known that the
actual measure of hand tremor Mp−i(t) is not accessible
and estimating it is the main objective of the filter. Con-
sequently, we cannot obtain the actual error between the
hand tremor and the estimated tremor. In the conventional
design of BMFLC filter, it is assumed that since the model
is truncated, the output of this estimation will converge to
the content of the tremor frequency window. Although this
assumption is not incorrect, it is not accurate either. In the
utilized LMS technique (7), the estimation parameters θ̂

concurrently change in the recursive design of the filter to
minimize the estimation error E(t). Consequently, although
the considered model is truncated, the changing parameters
can bring other frequencies out of the window of interest
(i.e. [ωa,ωb]) to make the error between the modulated hand



motion Mp(t) and the filter’s output Ŷ (t) zero. This reduces
the accuracy of the filter since the output of the filter should
converge to Mp−i(t) not Mp(t). As an example, even if at
some point, the output of the filter ideally matches with
the actual hand tremor Mp−i(t), the LMS technique still
observes the existing error E(t) since the error is calculated
considering the value of Mp not Mp−i. Consequently, the
filter tries to move the estimation away from that point
(which was ideal) and make the error between Mp and Ŷ (t)
as small as possible. Based on this, we note the following:

Remark 2. We hypothesize that the aforementioned
inaccuracy in error estimation will cause considerable sen-
sitivity to the tuning of the corrective gain η . The reason
is that for the conventional design of the BMFLC filter,
shown in (4)-(7), increasing the corrective gain makes the
dynamics of the LMS algorithm faster (more responsive).
This results in higher effort of the filter in pushing the
estimated signal closer to Mp and away from Mp−i by
quickly changing the estimation parameters θ̂ . On the other
hand, it is known that having small values for the corrective
gain η in LMS algorithm decreases the convergence rate
and estimation accuracy. Consequently, for the design of
the BMFLC filter, either increasing or decreasing the gain
can result in higher error. This makes it difficult to find
an appropriate gain for the BMFLC filter in estimating
pathological tremors. This hypothesis (sensitivity to the
change in η) is shown in Section V. •

Remark 3. Note that the features of the pathological
tremors are considerably variable compared to physiologi-
cal hand tremor. Consequently, even if we choose a value
for the corrective gain η which works in one situation for
the hand tremor of a patient, it does not necessarily work for
the same patient, in the same session under slightly different
condition which can change the characteristics of the hand
tremor. The reason is that the new tremor signal may need a
different value of η . In other words, considerable variability
in the characteristics of pathological tremor necessitate
having low sensitivity to the choice of η factor. For the
case of physiological tremor, since the variability is not as
much as the one for pathological tremor, the inaccuracy
might be less. Analyzing the performance of the BMFLC
filter for the case of physiological tremor is out of the scope
of this paper. The mentioned sensitivity issue is shown in
Section V for the case of pathological tremor. •

Remark 4. In addition to the above, since the frequency
range of pathological tremor is closer to the voluntary
components (in comparison with physiological tremor),
higher η values can more easily push the output away from
Mp−i(t), in the design of the conventional BMFLC filter. •

Remark 5. Since the calculated error for the conven-
tional BMFLC filter E(t) is the difference between the
whole modulated hand motion Mp(t) and the estimated
tremor Ŷ (t), it is not an appropriate measure of accuracy for
the model considered in the LMS technique. Consequently,
it is not possible to evaluate the performance of the filter
and the chosen parameters by monitoring the error E(t).
The error might be quite high while the output still matches
with the hand tremor.•

Considering the above remarks, there is a need to enrich
the model in a way that (a) represents less sensitivity to η ,
and (b) provides a proper measure of modelling accuracy.

2) Infinite Memory: The other problem of conventional
BMFLC filtering is the considered infinite memory of the
filter for estimating the coefficients of the truncated Fourier
combiner model. Considering (7), the dynamics of the
recursive formulation used to estimate the hand tremor
keeps the impact of old information similar the one of
new information. In other words, the estimated values in
the current time sample get affected by all old values in
a recursive manner. Considering that the regressors model
used in the design of BMFLC filter is based on the Fourier
linear combiner, having infinite memory means that we
have assumed a periodic nature for the tremor. This is the
main assumption of conventional BMFLC filters. However,
due to the considerable variability in pathological tremor,
although assuming a quasi-periodic nature could be correct,
the assumption of completely periodic model is not valid.
Keeping the impact of old information similar to the new
one and trying to find a Fourier combiner model for the
whole signal, means that the behavior of the signal is
assumed to be periodic and the whole input signal (from
the t = 0 to the current time sample) can be modelled by
one Fourier combiner. Consequently, if the input signal has
a specific pattern at the beginning of time, this pattern
will be repeated in future estimation of the tremor. This
phenomenon is called “Old Tremor Projection (OTP)” in
this paper and can considerably reduce the accuracy of the
estimation, over time. The existence of OTP is discussed
in Section V.

B. Enhanced-BMFLC Filter

In this part, we propose E-BMFLC filter to deal with the
aforementioned issues in two phases of enhancement.

Phase #1 ) Harmonic Model Enrichment:
To deal with incorrect error calculation, we propose to first
use an enriched model and then extract the tremor out of
the enriched model. This allows us to isolate modelling and
tremor extraction steps. The following steps are taken:

Step I: in the first step, instead of using a truncated
model considering the frequency window of the tremor
[ωa,ωb], the whole frequency spectrum of the “modulated
signal” Mp(t) is modelled using the frequency window
of [ωmin,ωmax]. ωmin is the minimum frequency which is
considered in the spectrum of Mp(t), and ωmax is the
maximum frequency of it. In this paper, ωmin is considered
to be 0 Hz and ωmax is considered to be 20 Hz for the
acceleration data of patients’ hands. Considering L number
of harmonics for the Fourier combiner model of Mp(t),
when L = β (ωb−ωa)+1, we have:

Mp(t) = θ
T
MpφMp(t), (8)

where φMp(t) =[
sin(ωmint + 0

β
t), ... ,sin(ωmint + β (ωmax−ωmin)

β
t),

cos(ωmint + 0
β

t), ... ,cos(ωmint + β (ωmax−ωmin)
β

t)
]T

,

(9)



θMp =[
λ0, ... ,λβ (ωmax−ωmin),ϑ0, ... ,ϑβ (ωmax−ωmin)

]T
.

(10)

The complete model of the input signal (8) is then used in
recursive LMS algorithm for the filter, as follows:

M̂p(t) = θ̂
T
Mp(n)φMp(t) (11)

where θ̂ T
Mp(n) = θ̂ T

Mp(n−1)+2ηφMp(n)EMp(t)
and EMp(t) = Mp(t)− M̂p(t).

(12)

In (11),(12), M̂p(t) is the estimation of Mp(t). Also, EMp
is the difference between the estimated value M̂p(t) and
Mp(t). In addition, θ̂ T

Mp(n) is the coefficient vector for the
estimated model for Mp. Consequently, the estimation error
EMp is a real measure of accuracy for the LMS algorithm
(in contrast with the conventional BMFLC). Accordingly,
we can monitor/utilize EMp to evaluate the efficacy of the
filter. In addition, gradually increasing the corrective gain η

results in a more accurate estimation up to a point that the
measure of accuracy EMp shows an acceptable matching
between the considered Fourier model for Mp and the real
value of Mp. In summary, using the enriched model, the
behavior of the filter is more predictable in comparison
with the conventional BMFLC and the tuning procedure of
η is more straightforward.

Step II): After finding an accurate model for the modu-
lated signal Mp, now we can consider different band-limited
windows of frequency to extract various frequency ranges
(considering the need of the application). In fact, using
the proposed technique, the signal modelling and frequency
truncation are decoupled, while in the conventional formu-
lation of BMFLC filter these two steps were fused. In this
paper, we considered two frequency ranges: [ωa−v,ωb−v]
for the voluntary component of the motion and [ωa−i,ωb−i]
for the involuntary component of the motion. We have:

ωmax ≥ ωb−i ≥ ωa−i ≥ ωb−v ≥ ωa−v ≥ ωmin ≥ 0 (13)

Accordingly, the estimation of the voluntary component of
the motion (i.e. M̂p−v), and the involuntary component of
the motion (i.e. M̂p−i) can be obtained as given below:

M̂p−v(t) = θ̂ T
Mp−v(n)φMp−v(t)

M̂p−i(t) = θ̂ T
Mp−i(n)φMp−i(t)

(14)

θ̂ T
Mp−v(n) =

[
θ̂Mp(n){i = γ0}, ..., θ̂Mp(n){i = γ1},

θ̂Mp(n){i = γ2}, ..., θ̂Mp(n){i = γ3}

]
,

(15)

θ̂ T
Mp−i(n) =

[
θ̂Mp(n){i = γ4}, ..., θ̂Mp(n){i = γ5},

θ̂Mp(n){i = γ6}, ..., θ̂Mp(n){i = γ7}

]
,

(16)

φ T
Mp−v(n) =

[
φMp(n){i = γ0}, ...,φMp(n){i = γ1},

φMp(n){i = γ2}, ...,φMp(n){i = γ3}

]
,

(17)

φ T
Mp−i(n) =

[
φMp(n){i = γ4}, ...,φMp(n){i = γ5},

φMp(n){i = γ6}, ...,φMp(n){i = γ7}

]
.

(18)

In (15)-(18), θ̂Mp(n){i = k} and φMp(n){i = k} are the
kth element of θ̂Mp, and φMp vectors at nth time stamp,
respectively. Also, we have:

γ0 = β (ωa−v−ωmin)+1,γ1 = β (ωb−v−ωmin)+1,
γ2 = L+ γ0, γ3 = L+ γ1,γ4 = β (ωa−i−ωmin)+1,
γ5 = β (ωb−i−ωmin)+1,γ6 = L+ γ4, γ7 = L+ γ5.

(19)
Consequently, the Fourier-based signal modelling and
tremor extracting are decoupled. This allows us to first
accurately model the modulated signal Mp, and then extract
Mp−i and Mp−v. Consequently, more precise extraction of
tremor and less sensitivity to the choice of η are expected.
This is statistically demonstrated in Section V.

Phase #2 ) Memory Manipulation
Here we propose to use windowed memory instead of the
conventional infinite memory for the filter. This allows us
to adapt better to change in characteristics of the tremor.
The sliding memory window results in greater impact from
recent values than from old values. For this purpose the
recursive formulation of the filter (12) is modified as

θ̂ T
Mp(n) = ρθ̂ T

Mp(n−1)+2ηφMp(n)EMp(t)
where EMp(t) = Mp(t)− M̂p(t),

ρ = δ
√

α, and δ = 1
∆T Tp.

(20)

In (20), ρ defines the pole of the discrete dynamics of
the memory windowing for the filter in the Z-domain.
The lower the ρ value, the faster the forgetting dynamics
will be. This parameter can directly be chosen based on
the desired speed that we would like to forget older data
(which correlates with the variable nature of the signal to be
filtered). Based on our observation which will be reported
later in this paper, for extracting pathological tremor of
PD and ET patients, ρ = 0.999 can be used as the default
value which can significantly enhance the performance of
the filter. Using (20), we can tune the ρ value when (a)
the sampling frequency is different from the one chosen in
this paper; and (b) we would like to filter a signal with a
different variable nature compared with pathological hand
tremor of PD and ET patients. In (20), ∆T is the sampling
time (in seconds), Tp is the width of the considered memory
window (in seconds), and α is the considered minimum
gain within the time window which corresponds to the latest
value in the window. The suggested default value for ρ is
calculated as follows. The width of the memory window
is considered to be Tp = 2s. This means that we want to
consider a window of 2s for keeping the impact of past



Fig. 3. Sliding memory window. t − 2 refers to 2 seconds before the
current time stamp.

values. Here, “impact” corresponds to having scaling gain
more than α whose default value is set at 5%. For our
clinical experiment, the sampling frequency was 1.5 KHz
which means that ∆T = (1/1500)s. The resulting sliding
memory window for the designed filter is shown in Fig. 3.

This technique gradually forgets the old information
affecting tremor estimation and uses recent data from a
limited past time-window. Consequently, the assumption
of periodic behavior is relaxed and it is just limited to
the considered time-window. As a result, the signal can
behave in a “quasi-periodic” manner without violating the
assumptions of the designed filter. The combination of
the proposed Harmonic Model Enrichment and Memory
Manipulation forms the proposed design for E-BMFLC.

IV. PROPOSED AHR ARCHITECTURE

In this section, the E-BMFLC filter is used in the design
of a new therapeutic architecture for pathological tremor
patients. The architecture is called Augmented Haptic Re-
habilitation (AHR) and performs the following two actions:
• Action 1) damping out the extracted hand tremor to

avoid amplification of the tremor energy and enhance
patient-robot interaction safety;

• Action 2) assisting the voluntary component of motion
to help the patient in finishing therapeutic tasks.

The modulated force designed by AHR architecture is

FM(t) = FR−i(t)+FA−v(t), (21)

where FM is the modulated force field applied by the
rehabilitation robot to the patient’s hand; FR−i(t) is the
resistive component designed to “damp out” the tremor
energy based on the definition of dissipative haptic systems
[35]; and FA−v(t) is the assistive component designed to
help the patient in finishing the task. The designs of FR−i(t)
and FA−v(t) are given in the rest of this section.

A. Modulated Force Field

To damp out the tremor energy, FR−i(t) is calculated as

FR−i(t) = B(t)V̂p−i. (22)

In (22), V̂p−i is the estimated velocity of the tremor
calculated using the proposed E-BMFLC filter. B(t) is
the adaptive damping coefficient. This design realizes a
viscous environment in the frequency range of the tremor.
Consequently, FR−i acts like a damper for the hand tremor
and dissipates the corresponding energy. The adaptation

rule to calculate B(t) for each patient is based on a
performance measure corresponding to the severity of the
tremor (explained later in this section). In addition, to assist
the patient’s motion in the frequency range of voluntary
movement (extracted by E-BMFLC) FA−v(t) is applied to
help the patient in following a desired therapeutic trajectory,
as

FA−v(t) =C(t)Ep−v,
where, Ep−v = Xdes− X̂p−v

(23)

In (23), Êp−v is the trajectory tracking error, C(t) is the
adaptive coordinative gain, Xdes is the desired position
trajectory which should be tracked by the patient, and
X̂p−v is the estimated position of the voluntary component
(calculated by E-BMFLC). The adaptation rule to calculate
C(t) for each patient is based on a performance measure
that corresponds to the accuracy of trajectory tracking
which is explained later in this section.

B. Performance Measures

In order to calculate B(t) and C(t) for each patient,
two performance measures PMi and PMv are defined for
the proposed resistive and assistive components of the
modulated force field, respectively. PMi provides a quan-
titative measure of the severity of hand tremor during a
rehabilitation task, and PMv provides a quantitative measure
of accuracy for tracking the rehabilitation trajectory using
the voluntary component of the hand motion.

The design of PMi is as follows:

PMi(t) =
ξtremor(t)
ξmax−1

. (24)

In (24), ξtremor is the real-time measure of the energy of the
involuntary hand velocity. To eliminate time-dependence of
PMi(t), windowed energy is considered for ξtremor:

ξtremor(t) =
∫ t

t−Tw

V̂p−i(τ)
2 dτ. (25)

In (25), Tw is the width of the time window which is
considered to be 10 s in this paper. In addition, ξmax−1 is a
rough estimate of the maximum value for ξtremor, designed
to normalize the proposed performance measure. ξmax−1
can be achieved through a preoperative test when the patient
is asked to hold/move the robotic handle while the force
field is turned off. The ultimate goal is to increase the
damping coefficient B(t) until ξtremor converges to a small
value. The design of PMv is as follows:

PMv(t) =
ξE−track(t)

ξmax−2
. (26)

In (26), ξE−track is the energy of the tracking error of
the voluntary component while considering an acceptable
tracking error (i.e. Emin). To eliminate time-dependence of
PMv(t), windowed energy is considered for ξE−track:

ξE−track(t) =
∫ t

t−Tw

(Ep−v(τ)−Emin)
2 dτ. (27)

In (27), Emin is an acceptable threshold for the tracking
error which is considered to be 10 percent of the maximum



amplitude of the desired trajectory. Also, Ep−v is the
tracking error of the voluntary component of the patient’s
hand motion. In addition, in (26), ξmax−2 is the normalizing
maximum value for the tracking error which is calculated
prior to the operation. The value is achieved assuming that
the patient is completely incapable of tracking the target
(worst case scenario). The ultimate goal is to gradually
increase C(t) using the second adaptation rule (explained
later) until ξE−track converges to a small value.

C. Adaptation Rules

Two adaptation rules are proposed to tune B(t) and C(t)
based on the needs of the patient:

The First Adaptation Rule: The goal of the first rule
is to gradually increase the dissipation gain B(t) for the
tremor and keep PMi under control to make it as small as
possible that results in avoiding TA. The adaptation rule is:

B(t) = µi(t)Bmax, (28)

where µi(n) = giµi(n−1)+PMi∆i. (29)

In (28), Bmax is the maximum damping factor considered
for dissipating the hand tremor. This value can be tuned
based on the capabilities of the utilized robot. In this paper,
the default value for Bmax is 250N.s/m. In addition, µi is
the adaptive scaling gain which is calculated using (29)
based on the severity of the tremor. In (29), gi is the
forgetting factor and ∆i is the growth rate constant for B(t).
To better understand the functionality of the proposed rule,
first assume gi = 1. In this case, if the patient shows a
severe tremor (which means PMi −→ 1) the adaptive scaling
gain µi gradually increases with the rate of ∆i. Increasing
µi results in having higher B(t) which results in having less
tremor and better performance measure PMi. This reduces
the growth rate of B(t). At the same time, considering
the forgetting factor gi slightly less than unity results in
slowly forgetting early information and allowing the patient
to experience a lower dissipation, if he/she represents a less
severe tremor after some point. Finally, µi will converge to
an equilibrium value which is specifically achieved for this
patient to minimize his/her tremor. To better understand the
functionality of gi, suppose that the hand tremor suddenly
stops at some point. This does not of course happen in
practice. We are assuming it to clarify the behavior of gi.
In this case, if gi = 1, the dissipative gain B(t) will stay
at the previous value, while there is no tremor. However,
by having gi slightly less than unity the dissipative gain
B(t) will gradually reduce. Note that if at any point, the
severity of the tremor changes, this will be observed by PMi
and it results in changing µi and setting a new equilibrium
point for it. Consequently, taking advantage of having both
gi and ∆i, an appropriate value for B(t) can be achieved
which minimizes PMi while providing minimum needed
resistance. This technique is called Energy-based Resist-
as-Needed (ERN) approach. The default value for gi is
0.99995. This value can make µi less than half in 15 s when
PMi = 0, considering sampling time of 1 KHz. Also, the

default value for ∆i is 0.0005 which can result in reaching
the maximum B(t) in 2 s when gi = 1 and PMi = 1.

The Second Adaptation Rule: The goal of the second
rule is to gradually increase the assistive coordination gain
C(t) for the voluntary component and keep PMv as small as
possible. This will result in having an acceptable tracking
performance in an assist-as-needed manner. The ultimate
purpose is to provide the patient with minimum assistance
just needed to perform the task and not to provide him/her
with too much assistance. If too much assistance was
provided, the patient would rely on the robot and would
not get involved in the interactive procedure. The rule is
achieved using similar concept mentioned above as

C(t) = µv(t)Cmax, (30)

where µv(n) = gvµv(n−1)+PMv∆v. (31)

In (30), Cmax is the maximum coordination factor consid-
ered for delivering assistance to the voluntary component.
This value can be tuned based on the capabilities of the
utilized robot. The default value for Bmax is 800 N/m.
In addition, µv(t) is the adaptive scaling gain which is
calculated using (31) based on the severity of the coor-
dination deficit. In (31), gv is the forgetting factor and ∆v
is the growth rate constant for C(t). The functionality of
the adaptation rule given in (31) is similar to that of (29).
The goal is to find the minimum assistance needed for
the patient. Having gv slightly less than unity allows us
to always challenge the patient and try to keep him/her
involved in the loop. In fact, this choice of gv allows for
evaluating the patient’s capability in tracking the trajectory
and automatically tuning C(t) to provide corresponding
assistance. If we consider gv = 1 and the patient’s trajectory
tracking is inaccurate at the beginning of the task, µv will
converge to a high equilibrium value and will stay there. In
this situation, if trajectory tracking becomes more accurate,
since we had gv = 1, the assistive gain C(t) will not be
reduced and the robot will keep on providing assistance.
However, by considering gv slightly less than unity the
coordination gain will gradually drop when the patient
starts to behave in a more accurate manner. This results in
an assist-as-needed approach which we call Energy-based
Assist-as-Needed (EAN) technique. The default values for
gv and ∆v are 0.9998 and 0.0002, respectively. The designed
AHR system is shown in Fig. 2.

V. FILTER EVALUATION AND CLINICAL STUDY

In this section, the clinical evaluation of E-BMFLC filter
is presented. The goal is to evaluate the accuracy, and
the corresponding sensitivity to the tuning of η and intra-
patient variability, in comparison with BMFLC filter.

A. Demographic data

This study includes 27 patients (14 PD, and 13 ET).
The patients were aged from 36 to 86 (mean: 67.85,
S.D.=11.46). The population involved 17 males and 10
females. Patients were recruited from the Movement Disor-
ders Centre at University Hospital, London Health Sciences



Fig. 4. Multi-sensor experimental setup for tremor data collection.

Centre (London, Ontario, Canada). The study protocol was
approved by the Research Ethics Board at Western Univer-
sity. Written consent forms and details of the protocol were
provided to the patients prior to their participation.

B. Experimental Setup and Task

The experimental setup (shown in Fig. 4) consists of
a full upper-limb kinematic measurement system from
Biometrics Ltd. Motion sensor data was collected at
1500Hz and transmitted to the PC interface MyoResearch
from Noraxon. In this paper, we used measurement data of
a 3 DOF Cartesian accelerometer on hand. Each patient has
been asked to perform a random target tracking task in free
space for 20 seconds by repetitively moving the hand from
nose to a pen showing the target. The target positions are set
such that the patient needs to fully stretch out his/her arm.
After one 20-second episode of target tracking the patient is
asked to perform other tasks in series (each for 20 seconds)
i.e. holding an empty cup, holding a loaded cup, resting
hands on lap, resting hands on a support table. These tasks
are chosen to change their tremor conditions and trigger
different characteristics. This allows us to evaluate their
tremor in different situations. The procedure is repeated
three times (three trials) for each patient. Consequently, for
all 27 patients we have 3DOF acceleration for 3 separated
episodes. As a result, each patient provides 9 sample signals
of 20-second target tracking. Considering all 27 patients,
we have 234 sample data, in total.

C. Evaluation Protocol

An evaluation protocol is needed to be repeated for all
sample data. The question to be addressed is: “what are
the ideal references (for voluntary and involuntary motions)
which should be considered to calculate the accuracy and
sensitivity?”. For this goal, the following protocol has been
conducted. For each sample signal:

Step 1) Fast Fourier Transform (FFT) is calculated.
Step 2) A 7th-order linear polynomial is fitted to the
absolute value of the calculated FFT.
Step 3) The analytical derivative of the 7-order polyno-
mial is calculated. This is used to find the two suprema
of the polynomial which correspond to the peaks
in the central frequencies of the voluntary and the
involuntary components. Also, the cut-off frequency
that can separate the components is calculated.
Step 4) The internal product of the FFT of the signal
and a separating vector Vsep with the same size is
calculated. Vsep has values equal to one for frequency

less than the cut-off frequency and zero for frequencies
higher than that. The result is the ideal FFT of the
voluntary component of motion.
Step 5) The same procedure is repeated while replac-
ing the separating vector by 1−Vsep. The result is the
FFT of the involuntary component of the hand motion.
Step 6) The achieved ideal FFT vectors of the vol-
untary and involuntary motions are named Hv( f ) and
Hi( f ), respectively. f is frequency in Hz.
Step 7) The inverse FFTs of both the voluntary and
involuntary components are calculated. These are used
as the ideal references for evaluating the output of
the filters. The achieved ideal references in the time-
domain are named Rv(t) for the voluntary component
and Ri(t) for the involuntary component. Note that the
mentioned procedure is a post-processing technique
representing how to realize an offline ideal filter.

The mentioned procedure is displayed in Fig. 5, for motion
in the X-direction of participant #21.

D. Method and Evaluation Metrics

In this part, the method used to evaluate and compare the
performance of the filters is discussed. After calculating the
cut-off frequencies and finding the references to perform
evaluation in frequency-domain and in time-domain, both
the BMFLC and E-BMFLC filters have been implemented
in real-time for three corrective gains η , as explained as
follows. Based on our observations, η = 0.004 is a rational
value to be considered for the filters. This observation is
made by checking 10 random signals out of the 234 items
of data. To evaluate the sensitivity of the filters to the
change in η , and to evaluate/compare the performance of
the filters, we run both BMFLC and E-BMFLC techniques
for two more η values, which are 0.004 ±50%. It should
be noted that changing the η value considerably more than
50% of the nominal value (i.e. 0.004) resulted in diverging
behavior for the conventional BMFLC filter in some of
the mentioned 10 randomly chosen signals. Although the
diverging behavior could be a good validation of the high
sensitivity of the conventional filter, it would not allow us
to quantitatively compare the sensitivity of the two filters.
As a result, 50% deviation is considered to analyze and
compare the sensitivity of the two filters (BMFLC and E-
BMFLC) to the change in η value.

As a result of the above mentioned method, each signal
(out of the 234 signals) is filtered for 3 times by the BMFLC
filter and for other 3 times by the E-BMFLC filter.

The Normalized RMSE (NRMSE) values of the extracted
tremors (applying both the BMFLC and E-BMFLC filters)
are calculated in the time-domain, using the ideal reference
Ri(t). Also, the NRMSE values of the extracted tremors
(applying both the BMFLC and E-BMFLC filters) are
calculated in the frequency-domain using Hi(t).

Consequently, applying the BMFLC filter on each hand
signal, we calculate three NRMSE values in the time
domain which corresponds to the three η values; also, we
have three NRMSE values in the frequency domain. In
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Fig. 5. The results of the proposed post-processing protocol to calculate
Rv(t), Ri(t), Hv( f ), Hi( f ) for participant #21 in the X-direction. (a)
The visualization of the proposed protocol; (b) the modulated hand
acceleration versus the extracted voluntary component Rv(t); (c) the
extracted involuntary component of motion Ri(t).

addition, applying the E-BMFLC filter on each signal we
will calculate three NRMSE values in the time-domain and
three NRMSE values in the frequency-domain. Using the
achieved NRMSE values, six metrics are designed which
will be used in the next part (“Part E”) to statistically
compare the performance of the filters.

Metrics #1 and #2) In order to calculate the extent
of improvement potentially achieved using the proposed
E-BMFLC filter, the first metric is calculated for all 234
signals in the time-domain, as follows:

IMPError(t) =
NRMSEconv−t −NRMSEenhanced−t

NRMSEconv−t
, (32)

In (32), NRMSEconv−t corresponds to the conventional BM-

FLC filter. It is the minimum NRMSE value (best perfor-
mance) in the time-domain, considering the three NRMSE
values calculated by applying the three η values. Conse-
quently, for each signal (out of the 234 signals) we have one
NRMSEconv−t value. In addition, NRMSEenhanced−t corre-
sponds to the proposed E-BMFLC filter. It is the minimum
NRMSE value achieved in the time-domain out of the
three NRMSE values calculated by applying the three η

values. As a result, IMPError(t) represents the improvement
achieved for tracking error in the time-domain, by applying
the E-BMFLC filter and in comparison with the BMFLC
filter. Consequently, we have 234 IMPError(t) values and the
statistical distribution of it will be analyzed in Part E of this
subsection. IMPError(t) = 0 indicates no improvement, and
IMPError(t) = 1 indicates 100% improvement.

The same procedure is repeated to calculate the second
metric which is the potential improvement achieved by
applying the E-BMFLC filter, in the frequency-domain. The
definition of the second metric is:

IMPError( f ) =
NRMSEconv− f −NRMSEenhanced− f

NRMSEconv− f
. (33)

In (33), IMPError( f ) is the improvement achieved for esti-
mating error in the frequency-domain.

Metrics #3 and #4) In addition to the above, to quanti-
tatively evaluate the consistency of the filter in estimating
hand tremor and statistically compare the filters from the
point of view of the sensitivity to the choice of η , the third
and forth metrics are designed. The third metric is:

IMPηVAR(t) =
Vconv−t −Venhanced−t

Vconv−t
. (34)

In (34), Vconv−t is the variance of the three NRMSE values
for each signal which correspond to the considered three
values of η for the conventional BMFLC filter, in the
time domain. Also, Venhanced−t is the variance of the three
NRMSE values which correspond to the considered three
values of η for the proposed E-BMFLC filter, in the time
domain. Consequently, IMPηVAR(t) is a quantitative metric
which can tell us how much improvement is achieved
applying E-BMFLC filter (in comparison with conventional
BMFLC filter), from the point of view of sensitivity to
the change in η value. Having IMPηVAR(t) close to unity
means that under the same condition, the E-BMFLC filter
demonstrates little performance change (less sensitivity) in
comparison to the BMFLC filter. On the other hand, having
IMPηVAR(t) close to zero means that the E-BMFLC filter
behaves similar to the conventional BMFLC filter from
the point of view of sensitivity to the change in η . The
third metric will be calculated for all 234 signals and the
statistical distribution of it will be evaluated in Part E.

The sensitivity of the filters can be also compared in the
frequency-domain using the fourth metric, IMPηVAR( f ), as:

IMPηVAR( f ) =
Vconv− f −Venhanced− f

Vconv− f
. (35)

In (35), Vconv− f is the variance of the three NRMSE values
for each signal which correspond to the considered three



values of η for the conventional BMFLC filter, in the
frequency-domain. Also, Venhanced− f is the variance of the
three NRMSE values which correspond to the considered
values of η for E-BMFLC filter, in the frequency-domain.

Metrics #5 and #6) We are also interested in comparing
the sensitivity of the filters to changes in motion character-
istics of patients and account for intra-patient variabilities.
For this goal and to evaluate the consistency of the filters
in extracting hand tremors of different patients with various
characteristics, the fifth and sixth metrics are designed.
These metrics show how much improvement is achieved
in reducing the variation in performance under different
motion conditions associated with different patients. These
metrics are achieved for all 27 patients. The fifth metric is:

IMPΩVAR(t) =
Wconv−t −Wenhanced−t

Wconv−t
. (36)

In (36), Wconv−t is the variance of the nine NRMSE values
which correspond to the nine best performances achieved
by applying the BMFLC filter for estimating nine motion
data for each patient in the time domain. The explanation
of how to calculate Wconv−t is as follows: For each patient
we have 9 measured signals (3DOF measurements for 3
trials). Each signal is filtered using three different values
of η . The best performance for filtering each signal is
the minimum NRMSE value out of the three NRMSE
values achieved by applying the defined three η values.
Accordingly, for each signal we have one best performance.
Considering nine signals for each patient, we have nine best
performances for each patient. The variance of these nine
best performances is Wconv−t for the BMFLC filter in the
time-domain. Consequently, for each patient we have one
Wconv−t value in the time-domain.

Also, Wenhanced−t is the variance of the nine minimum
NRMSE values which correspond to the best performances
achieved applying the E-BMFLC filter for estimating the
nine motion data for each patient in the time-domain.
Consequently, for each patient we have one Wenhanced−t
value in the time-domain. Accordingly, IMPΩVAR(t) can
be calculated for each patient as given in (36), which
is the improvement achieved in reducing the variation in
the performance by applying the E-BMFLC filter. Finding
IMPΩVAR(t) for all 27 patients, we can statistically analyze
the corresponding distribution. This is done in Part E.

Similarly, the consistency of the filters can be compared
in the frequency-domain using the sixth metric, IMPΩVAR(t):

IMPΩVAR( f ) =
Wconv− f −Wenhanced− f

Wconv− f
. (37)

In (37), Wconv− f and Wenhanced− f are the variance of the nine
minimum NRMSE values in the frequency-domain for the
BMFLC filter and the E-BMFLC filter, respectively.

E. Implementation Results and Statistical Analysis

In this part, first, various aspects of the proposed E-
BMFLC filter are separately analyzed. Then, the results of
the statistical comparative study on the efficacy of the filter
for extracting tremors of 27 patients are given.

I) Analyzing Old Tremor Projections: As mentioned
before, one of the challenges with conventional BMFLC
filter is the infinite memory of it, besides the assumption
of fully-periodic input signal. This can result in repetitive
OTPs which can degrade the efficacy. To show the existence
of OTPs in the conventional BMFLC filter, and to isolate
it from other potential sources of error, the following steps
are taken. First, motion data for one patient have been
randomly chosen. In this case, we chose the hand motion
of Participant #4 (a 55 years old male with PD) in the X-
direction, during the first trial. While applying no change
to the first 3 seconds of the signal, we cut the remaining
part of the signal (from t = 3 s to t = 20 s) and make
it zero. This is just to highlight and extract the effect of
OTPs. The result of applying conventional BMFLC filter is
shown in Fig. 6(a). As can be seen, although the original
signal is flattened after t = 3s, repetitive projections exist
in the estimated value. These are the predicted OTPs. As
mentioned, the OTPs are the result of assuming the fully
periodic model in BMFLC besides having infinite memory.
Applying the proposed memory windowing technique for
the same filter (ρ = 0.999) results in Fig. 6(b). As can
be seen in Fig. 6(b), the OTPs are completely eliminated.
This result validates existence of OTPs and effectiveness of
the proposed memory windowing technique. In Fig. 6(c),
the estimated coefficients of the utilized Fourier combiner
are plotted, over time. As it is shown in Fig. 6(c), for the
conventional BMFLC filter, the coefficient values still vary
after t = 3 s. The reason is that the filter assumes that the
complete hand signal from t = 0 to the current time stamp
should be modelled by a periodic nature. Better view of
the coefficients are given in Fig. 7(a). After applying the
proposed memory windowing, the coefficients gradually
converge to small values (after t = 3 s) eliminating the
OTPs. This is shown in Fig. 6(d) and Fig. 7(b).

II) Analyzing Sensitivity to the Design of η : As
mentioned earlier, we hypothesize that the design of the
proposed E-BMFLC filter is more robust to the change in η

value in comparison with BMFLC filter. This is statistically
evaluated at the end of this section. Here, an example for
one signal is given to discuss the behavior of E-BMFLC and
the conventional BMFLC for three different η values (i.e.
0.002, 0.004, 0.006). The data of Participant #4 is analyzed
here. For this purpose, we have considered hand motion in
the X ,Y , and Z directions, for the defined three trials. So,
in total we have the following 9 data samples:

• Sample #1: X-direction, Trial #1
• Sample #2: X-direction, Trial #2
• Sample #3: X-direction, Trial #3
• Sample #4: Y -direction, Trial #1
• Sample #5: Y -direction, Trial #2
• Sample #6: Y -direction, Trial #3
• Sample #7: Z-direction, Trial #1
• Sample #8: Z-direction, Trial #2
• Sample #9: Z-direction, Trial #3

The above 9 signals have been used to evaluate both
the BMFLC and E-BMFLC filters, while considering the



(a) (b)
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Fig. 6. (a) The existence of OTPs in the output of BMFLC filter; (b)
elimination of OTPs by applying the proposed memory windowing; (c)
the estimated coefficients of the Fourier model for the case of BMFLC
filtering; (d) the estimated coefficients after applying memory windowing.

(a)

(b)

Fig. 7. (a) The 3D view of the estimated Fourier coefficients (a) for
BMFLC filtering, (b) after applying memory windowing.

defined three η values for each filter and each signal. The
corresponding NRMSE values in the time-domain and in
the frequency-domain are calculated. The results are shown
in Fig. 8. In this figure, red lines correspond to BMFLC
filter. Each line is the result of one η value. Also, the blue
lines correspond to the proposed E-BMFLC filter.

(a) (b)

Fig. 8. The NRMSE values for the proposed E-BMFLC filter (blue lines)
and the conventional BMFLC technique (red lines). Each line corresponds
to applying one η value out of the considered three values. (a) Results in
the time-domain; (b) results in the frequency-domain.

(a) (b)

Fig. 9. Tremor extraction for Participant #4 in the Z-direction, during
the first trial. The red line is the actual hand tremor, and the blue line is
the output of the filter. (a) The result of applying the proposed E-BMFLC
filter; (b) the result of applying the conventional BMFLC filter.

Considering the results in Fig. 8, the E-BMFLC filter
not only provides a more accurate tremor estimation (lower
average NRSME value), it has represented (a) less perfor-
mance change (less sensitivity) applying different η values,
and (b) less variation in performance applying different
inputs (considering different signals). In fact, the difference
between the results of using different η values is not even
easily distinguishable in the figure for the E-BMFLC filter.
However, the performance of the conventional BMFLC
filter changes dramatically by changing the η values and
by using the same filter for a different data point.

Consequently, it can be concluded that for the considered
participant, the E-BMFLC filter has shown a more robust,
more accurate and less sensitive performance.

The outputs of the filters are plotted over time for the
Z-direction during the first trial, in Fig. 9. As expected, the
figure shows more accurate estimation achieved by using
the E-BMFLC filter in tracking the hand tremor of this
participant when comparing with the conventional BMFLC
filter, under the same condition.

To ensure that the achieved conclusion is statistically
significant and consistent, we need to evaluate the filters
for a group of patients and run a standard statistical test,
as given in the following part.

III) Patient-based Evaluation and Statitsical Analysis:
In this part, the effectiveness of the proposed E-BMFLC
filter is statistically evaluated in comparison with the per-
formance of the conventional BMFLC technique. For this
purpose, the statistical distributions of the aforementioned
six metrics are evaluated. The average values and standard
deviations for the six metrics are calculated. The standard



TABLE I
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Fig. 10. Statistical distribution of the six improvement metrics.

statistical T-test is utilized to analyze the significance of
the calculated improvements. The results are summarized
in Table I. In addition, the corresponding box plots of the
distributions are plotted in Fig. 10 for metrics #1 to #6. As
can be seen in Table I, the average improvement achieved
for NRMSE in the time-domain (IMPError(t)) is 59.73%
and the standard deviation is 9.59%. Also, the average
improvement for NRMSE value in the frequency-domain
(IMPError( f )) is 68.22% with standard deviation of 6.03%.
The significance of the results are validated using the T-
test which results in a p-value < 0.001. This shows that
the achieved improvements are statistically significant. The
same analysis is performed for other defined metrics and
the results are shown in Table I.

Considering the results summarized in Table I, the
proposed E-BMFLC filter, has statistically significant im-
provement in accuracy of the filter for estimating hand
tremor. This is interpreted based on the statistical anal-
ysis of IMPError(t) and IMPError( f ). Also, the sensitivity
to the change in η , is significantly reduced. This is in-
terpreted based on the statistical analysis of IMPηVAR(t)
and IMPηVAR( f ). In addition, the proposed filter shows
considerable improvement in reducing the sensitivity to the
change in tremor characteristics of different patients. This
is interpreted based on the statistical analysis of IMPΩVAR(t)
and IMPΩVAR( f ). All the results are statistically significant
in both the time-domain and the frequency-domain. Con-
sequently, the proposed filter consistently shows significant
improvement in extracting hand tremors of patients living
with PD and ET. This validates the hypotheses of this paper.

VI. EXPERIMENTAL EVALUATION OF THE AUGMENTED
HAPTIC REHABILITATION ARCHITECTURE

In this section, the proposed AHR system is implemented
and experimentally evaluated. Upper-limb rehabilitation
robot from Quanser Inc. is used, shown in Fig. 2. The user
wears a head-mounted display visor which provides visual
cues and the location of the moving target to track. The
experiment is designed to evaluate different features of the
AHR system including the proposed adaptive assistance and
resistive algorithms. It should be noted that in pathological
tremor patients, the involuntary movement is due to invol-
untary activation of hand muscles which results in an invol-
untary force field. Consequently, in this experiment, while a
healthy user handles the robot, the tremor of participant #21
is chosen randomly to design a tremor-like force field for
the user to mimic the interaction between a tremor patient
and the system. It should be highlighted that the generated
force field in this experiment might be different from the
one felt by the user during data collection. As mentioned,
in this section we aimed to analyze the performance of
the proposed AHR system. As a result it was needed to
make a tremor-like force field to analyze the reactions of the
system. For this purpose, the data collected for Participant
#21 has been used as a model to make the force field which
represents a realistic frequency content of a human with
pathological hand tremor.

A. Experiment Design

The experiment is designed in three phases. In the first
phase (0s ≤ t < 27s), the user holds the robot while the
robot perturbs the user’s hand by applying the designed
tremor-like force field. During this phase, the robotic ther-
apy is turned off and no assistive/resistive force is delivered
to the user. It is expected that the user’s hand continues
shaking in a tremor-like manner. During the second phase
(27s≤ t < 60s), the designed resistive force field is turned
on. It is expected that the intensity of the dissipative force
gradually increases due to the proposed adaptation rule (28)
and (29). This should result in a reduction in the amplitude
of the hand tremor. During the third phase (t ≥ 60s),
the assistive force field is also turned on. It is expected
that during this phase, the intensity of the assistive force
field gradually increases (due to the proposed corresponding
adaptation rule (30) and (31)). This should result in an
increase in the amplitude of the low-frequency of the hand
motion and a reduction in the tracking error.

It should be highlighted that during the third phase, for
t ≤ 100s, the user just holds the robotic handle and does
not try to track the target trajectory in order to mimic the
behavior of a severely impaired patient. Consequently, the
robot should take the full authority, increase the coordi-
native gain and push the user’s hand towards the correct
path of motion. After t = 100s, the user starts to act like
a less-impaired patient by putting effort in tracking the
target. Consequently, if the designed adaptation rule works,
it is expected that the intensity of the assistance force field
should reduce and the system should give some authority



to the user. This means that the equilibrium point for the
coordinative gain should drop after t = 100s.

B. Results

The results of the experiment are shown in Figs. 11
and 12. In Fig. 11(a), the hand velocity is shown for the
proposed three phases of the experiment. As can be seen
in the figure, during the first phase, the hand of the user
shakes due to the applied tremor-like force field, while
the therapeutic forces are turned off. When the resistive
therapy is started (as Phase 2), the amplitude of the hand
tremor considerably reduces as expected. The amplitude of
the tremor during the second phase is 8.6 times smaller
than that during the first phase. This is due to the gradual
increase in the dissipative gain which can be seen in Fig.
12(b). In addition to the above, by the start of the third
phase in Fig. 11(a), the amplitude of the low-frequency
motion increases which is due to the increase in the coor-
dinative gain. The coordinative gain is shown in Fig. 12(a).
This results in gradual reduction in the tracking error (as
can be seen in 11(b)). The target movement is shown by the
solid red line in Fig. 11(b), where the voluntary component
of the hand motion is shown by the solid blue line. The total
modulated force provided by the proposed controller during
the second and the third phases is shown in Fig. 11(c).
During the second phase, the aforementioned modulated
force has high-frequency components to resist the hand
tremor. During the third phase and before t = 100s the
modulated force has significant low-frequency components
(to guide the user’s hand towards the correct path) together
with the high-frequency components to resist the hand
tremor. Considering Fig. 12(a), after t = 100s, when the user
starts to act like a less-impaired patient by putting effort
in tracking the target, the coordinative gain is significantly
reduced (by 64%). This means that the controller detects
that the user is more capable of moving the robot (after
t = 100s) so the adaptive algorithm provides 64% of the
authority to the user. Consequently, as can be seen in Fig.
11(c), after t = 100s, the low-frequency component of the
modulated control force is reduced (which is due to the
reduction in the coordinative gain), while still the high-
frequency components exists to dissipate the tremor energy.
These results match with the expectations and validate the
functionality of the architecture.

VII. CONCLUSION
In this paper, a new design of the BMFLC filter was

proposed which we have called E-BMFLC technique. The
new filter uses an enriched Fourier combiner model together
with a windowed memory. The goals were to reduce the
error in extracting pathological hand tremor as well as the
sensitivity of the filter to the choice of the corrective gain
used in the filter and intra-patient variabilities. To evaluate
the performance of the filter, recorded hand motions of
27 patients (PD and ET) were used in the comparative
study. The proposed E-BMFLC filter showed a statistically-
significant improvement (p-value < 0.001) in estimation
accuracy, in comparison with the conventional design of

(a)

(b)

(c)

Fig. 11. Experimental results for the three phases. (a) hand velocity, (b)
target tracking, (c) the designed modulated force field.

(a) (b)

Fig. 12. The designed parameters for the therapy: (a) coordinative gain,
(b) dissipative resistive gain.

the BMFLC filter. The tremor tracking accuracy and the
sensitivity to the choice of corrective gain and intra-patient
variabilities were significantly improved using the proposed
filter. In the second part of this paper, the designed filter was
utilized in developing a new haptics-enabled rehabilitation
strategy, called AHR (Augmented Haptic Rehabilitation).
The AHR is capable of delivering therapeutic forces (in an
assist-as-needed manner) while keeping the hand tremor un-
der control and avoiding unsafe amplification of tremor en-
ergy. This architecture makes it possible for patients living
with pathological hand tremor to take advantage of robotic
rehabilitation. The design of the proposed AHR architecture
is motivated by recent evidence showing the impact of
multi-modal rehabilitation for enhancing motor control in



patients living with pathological hand tremor. The proposed
AHR architecture was implemented using an upper-limb
rehabilitation robot from Quanser Inc. (Markham, Ontario,
Canada), and its performance was evaluated experimentally.
It was shown that using the proposed AHR architecture,
assistance can be delivered to the voluntary component of
the hand motion (in an adaptive manner) while the system
can control involuntary hand tremors. Future work in this
study is to longitudinally analyze the improvement that can
be achieved by the use of the proposed AHR system on a
group of PD and ET patients.
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