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Abstract—The problem of synchronization of bilateral teleop-
erators in the presence of stochastic disturbances in control inputs
is considered in this paper. It is clear that the mechanical systems
are often subjected to random disturbances and it can influence
the performance of the control system in an uncertain manner.
To cope with this, the new adaptive controller is proposed. This
technique uses the exponential practical stability concept which
guarantees that the tracking error and its derivative converge
to an arbitrarily small neighborhood of zero by appropriate
tuning of the controller’s parameters. It is noteworthy that, the
proposed method does not need information, such as the physical
parameters of the master and slave robots. Finally, the simulation
results are given to show the effectiveness of proposed technique.

I. INTRODUCTION

Nowadays the teleoperation systems are used significantly
in various applications; for instance, telesurgery, underwater
and space explorations.

The stability in teleoperation systems means bounded track-
ing error between the behavior of the master and slave robots
and different control techniques have been suggested to exam-
ine the stability of the teleoperation systems. The passivity-
based approaches are the most important methods to ensure
the stability of teleoperation systems. In [1] it is shown that the
interconnection of passive systems is passive which allows us
to analyze the stability of complicated systems by considering
each part of systems separately. In these approaches, scattering
signals [2] and wave variable methods [3] are used to ensure
the passivity of the communication channel. In [4], has been
shown that the scattering wave variable method leads to a
bounded steady-state error when there is a mismatch of initial
position conditions between the master and slave robots and
can not ensure the position tracking. To solve this, some PD-
like schemes are developed in [5], [6]. In [7] the teleoperation
system is formulated to an output synchronization problem
and adaptive versions of this method have been developed in
[8], [9] which can synchronize the master and slave positions
and velocities under the dynamical uncertainties. In the recent

years, also some intelligent methods have been developed to
deal with this problem [10], [11]. However, in mentioned
works the disturbances in the control inputs are neglected
which can influence the performance of the teleoperation
systems in an uncertain manner. This is an issue which is
considered in this paper.

In some independent researches, it has been focused on sta-
bility analysis [12], [13], [14], [15] and control of mechanical
systems [16], [17], [18], [19]. In [18] and [19] an adaptive
controller for a class of stochastic Lagrangian control systems
has been developed and this method has been extended to
control the revolute joints robot manipulator in presence of
stochastic disturbance in control input in [20]. These methods
use the exponential practical stability concept to guarantee
the stability of the system. In this paper, the idea in [20] is
used to design the effective framework for the position and
velocity synchronization in bilateral teleoperation systems in
the presence of stochastic disturbances in control inputs. The
proposed adaptive controller does not need any information
on the parameters of the master and slave robot and just uses
some well- known properties of the revolute joint manipulators
[21].

The random disturbance is modeled as white noise with
unknown power spectrum density(PSD). In this work, we
restrict ourselves on passive bilateral teleoperation systems
without time delay in the transmission channel. In the end,
the simulation results are given to verify the efficacy of
the innovative framework to synchronize the behavior of the
master and slave robots.

II. NOTATION

The following notations are used in this paper.
• R := (−∞,+∞),R+ := [0,+∞); Rn denotes the real

n-dimensional space and Rn×r denotes the real n × r
matrix space.

• Ci(Rn) denotes the set of all functions with continuous
ith partial derivative on Rn and C2,1(Rn × R+,R+)
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denotes the family of all non-negative functions V (x, t)
on Rn × R+ which are C2 in x and C1 in t and also
κ represent the set of all functions Rn × R+ which are
continuous, strictly increasing and vanishing at zero.

• For a vector x, xT and |x| denote the transpose of x and
it’s standard Euclidean norm respectively.

• For a matrix A, AT and A−1 denote the transpose and
inverse of A respectively and ‖A‖F =

√
Tr(ATA)

represents the Frobenius norm where Tr(.) denote the
matrix trace.

• E(.) denotes the mathematical expectation.
• Subscript i represents both master and slave robot

III. PRELIMINARIES

A. Nonlinear stochastic dynamical system

Consider the nonlinear stochastic system which is described
by following Itô equation:

dx(t) = f(x(t), t)dt+ g(x(t), t)dW (t) (1)

where x(t) ∈ Rn is state vector, functions f : Rn × R+ −→
Rn and g : Rn×R+ −→ Rn×r are both piecewise continuous
in t ∈ R+ and locally Lipschitz in x ∈ Rn. W (t) is an r-
dimensional independent standard Wiener process(Brownian
motion).

For stability analysis of system (1), in the following some
useful definitions are given:

Definition 1 [18], [19]. If there exist positive constants λ
and d and a function ϑ ∈ κ such that:

E|x(t)|p ≤ ϑ(|x0|)e−λ(t−t0) + d t ≥ t0, x0 ∈ Rn (2)

System (1) is called to be p-th moment exponentially
practically stable. In addition in the case of p = 2 it called
exponentially practically stable in mean square.

Definition 2 [18], [19]. (Chebyshev’s inequality)For a p-th
moment exponentially practically stable system, probability of
|x(t)| > R is :

P{|x(t)| > R} ≤ E|x(t)|p

Rp
≤ ϑ(|x0|) + d

Rp
(3)

Definition 3 [18], [19]. for V (x, t) ∈ C2,1(Rn × R+,R+)
the infinitesimal generator (LV operator) according to (1) is
defined as:

LV (x, t)
∆
=Vt(x, t) + Vx(x, t)f(x, t)

+
1

2
Tr{gT (x, t)Vxx(x, t)g(x, t)} (4)

where Vt =
∂V

∂t
, Vx = (

∂V

∂x1
,
∂V

∂x2
, . . . ,

∂V

∂xn
) and

Vxx = (
∂2V

∂xi∂xj
)n×n .

A criterion for p-th moment exponential practical stability
of system (1) is given in the following lemma[18], [19]:

Lemma 1. For system (1), if there exist positive constants
ki , k

′

i , pi , p
′

i , c , dc and a function V (x, t) ∈ C2,1(Rn ×
R+,R+) such that:

n∑
i=1

ki|xi|pi ≤ V (x, t) ≤
n∑

i=1

k
′

i|xi|p
′
i (5)

LV (x, t) ≤ −cV (x, t) + dc (6)

system is p-th moment exponentially practically stable where
p = min{p1, · · · , pn} and ϑ(s) , λ and d of Definition 1 can
be calculated from following equations [18], [19]:

ϑ(s) = n
p
2

n∑
i=1

(
1

ki

n∑
j=1

kj
′spj

′
)

p
pi (7a)

λ =
cp

max{pi}
(7b)

d = n
p
2

n∑
i=1

(
dc
kic

)
p
pi (7c)

B. Some useful inequalities

The following lemmas presents some inequalities which
are used in this paper.

Lemma 2. For ∀a, b ∈ R and ε ∈ R+ following inequalities
hold:

a ≤ 1

ε
a2 + ε (8a)

− ab ≤ 1

2
a2 +

1

2
b2 (8b)

(a± b)2 ≤ 2(a2 + b2) (8c)

Lemma 3. (Cauchy-Schwarz inequality) for any vectors
x, y ∈ Rn:

|xT y| ≤ |x||y| (9)

Lemma 4. (Young’s inequality) for any vectors x, y ∈ Rn,
p > 1 and any scalar ε ∈ R+:

xT y ≤ εp

p
|x|p + 1

qεq
|y|q (10)

where q =
p

p− 1
.

Lemma 5. For matrices A,B ∈ Rn×n and x ∈ Rn:

‖AB‖F ≤ ‖A‖F ‖B‖F (11a)
|Ax| ≤ ‖A‖F |x| (11b)

IV. SYSTEM DESCRIPTION

This section begins by introducing the general dynamical
model for teleoperation system and some useful properties of
this model, some the new variables are defined which enable
us to use the stability theory which has been discussed in
section III. Control scheme of the bilateral teleoperation with
random disturbances has been presented in figure 1.
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Fig. 1. Control scheme of the bilateral teleoperation with random disturbances

The master and slave are modeled as a pair of n-DOF
revolute joints manipulators. The dynamical model of the
teleoperation system is given by:

Mm(qm)q̈m + Cm(qm, q̇m)q̇m +Gm(qm) = τm + ξm

Ms(qs)q̈s + Cs(qs, q̇s)q̇s +Gs(qs) = τs + ξs (12)

where qi, q̇i, q̈i ∈ Rn are joint positions, velocities and
accelerations. τi ∈ Rn represent the control signals and
ξi ∈ Rn depict the random disturbance signals(modeled
by white noise with unknown PSD). Mi(qi) ∈ Rn×n are
inertia matrices; Ci(qi, q̇i) ∈ Rn×n are the Coriolis centrifugal
effects and Gi(q)i ∈ Rn represents the gravitational forces.
The dynamical model of revolute joints manipulators has the
following well-known properties [21].

P1. The inertia matrices are lower and upper bounded:

0 < kmi
I ≤ Mi(qi) ≤ kMi

I < ∞ (13)

where Mi(qi) are symmetric and positive definite and I is
identity matrix of appropriate dimension.

P2. Boundedness of coriolis forces:

∀qi, q̇i ∈ Rn ∃kci ∈ R+ |Ci(qi, q̇i)q̇i| ≤ kci |q̇i|2 (14)

P3. Boundedness of gravitational forces:

∀qi ∈ Rn ∃kgi ∈ R+ |Gi(qi)| ≤ kgi (15)

For robot manipulators with revolute joints kmi , kMi ,kci
and kgi are constant.

A. Find Ito Equation

To write (12) in form of (1), xT = (qTm, q̇Tm, qTs , q̇
T
s ) is

considered as a state vector and ξ is replaced by dB
dt [14],

where B is an r-dimensional independent Wiener process. In
[22] it has also been shown that, if we consider the power
spectral density(PSD) of white noise is 1

2πΣ , it is equal to
dB = ΣdW which leads to the following Itô form:

dqm =q̇mdt

dq̇m =M−1
m (τm − Cmq̇m −Gm)dt+M−1

m ΣmdWm

dqs =q̇sdt

dq̇s =M−1
s (τs − Csq̇s −Gs)dt+M−1

s ΣsdWs (16)

where Wi are r-dimensional independent standard Wiener
processes and Σi ∈ Rr×r are unknown positive matrices. In
this paper we assume that r = n.

To use the stability analysis which has been discussed in
section III, new variables e1 and e2 are defined as follows:

e1(t)
∆
= qm(t)− qs(t) (17a)

e2(t)
∆
= ė1(t) + c1e1(t) (17b)

where c1 > 0 is a design parameters. Combining (17a) and
(17b) with (16) gives:

de1 =(e2 − c1e1)dt

de2 ={−M−1
m (Cmq̇m +Gm) +M−1

s (Csq̇s +Gs)

M−1
m τm −M−1

s τs + c1e2 − c21e1}dt

+ [M−1
m Σm

...M−1
s Σs]dW (18)

where WT = [WT
m,WT

s ].

B. Assumptions
To design the adaptive controller, following assumptions are

considered [20]:

0 ≤ ηi1φi1(qi) ≤ M−1
i (qi) ≤ ηi2φi2(qi) (19a)

|Ci(qi, q̇i)q̇i +Gi(qi)|2 ≤ ηi3φi3(qi, q̇i) (19b)

where ηij , j = 1, 2, 3 and φij are unknown positive param-
eters and known smooth nonnegative functions respectively.
The ηi and µi are also defined as follows [20]:

ηi
∆
= max {ηi3 , ‖Σi‖2F } × η2i2 (20a)

µi
∆
=

1

ηi1
(20b)

It is also useful to define η̂i and µ̂i as estimates of ηi and
µi with the estimation errors η̃i = η̂i − ηi and µ̃i = µ̂i − µi

respectively.
By considering the properties of the robot according to

P1,P2 and P3 in Section IV, ηi and φi can be considered
as ηi1 = 1

kMi
, ηi2 = 1

kmi
, ηi3 = k2ci + k2gi , φi1 = φi2 = I and

φi3 = 2(1 + |q̇i|4), since the upper bound of |Ci(qi, q̇i)q̇i +
Gi(qi)|2 can be calculate by using the inequality (8c) [20]:

|Ci(qi, q̇i)q̇i +Gi(qi)|2 ≤2(|Ci(qi, q̇i)q̇i|2 + |Gi(qi)|2)
≤2(k2ci + k2gi)(1 + |q̇i|4) (21)

V. PROPOSED ADAPTIVE CONTROLLER

The system (18) with following control inputs is exponen-
tially practically stable in mean square.

τm =− φ−1
m1

e2µ̂mτ̄m (22a)

τs =φ−1
s1 e2µ̂sτ̄s (22b)

where τ̄i = βiη̂i + ki and ki is constant and βi is a
function of φi which will be introduced in the next section.
The adaptive laws are proposed as:

˙̂µi = γi1 τ̄i(e
T
2 e2)

2 − σi1 µ̂i (23a)
˙̂ηi = γi2βi(e

T
2 e2)

2 − σi2 η̂i (23b)

where γi1 , γi2 , σi1 and σi2 are design parameters.
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VI. STABILITY ANALYSIS

A. Some Necessary Precalculations

Before stability analysis, some necessary calculations are
given which will be used in the stability analysis. For sim-
plicity in writing we define Λi

∆
= M−1

i {Ciq̇i +Gi}.
Considering assumptions in (19a), (19b) and using (20a)

and Lemma 5 one can find:

|Λi|2 ≤ ‖ −M−1
i ‖2F |Ciq̇i +Gi|2 ≤ ηiΦi (24)

where Φi = ‖φi2‖2Fφi3 and:

|Λs − Λm|2 ≤ (|Λs|+ |Λm|)2 ≤ 2
∑

i=m,s

ηiΦi (25)

and:

‖M−1
i Σi‖2F ≤ ‖M−1

i ‖2F ‖Σi‖2F ≤ ηi‖φi2‖2F (26)

B. Proof

Consider the Lyapunov function:

V =
1

4
(eT1 e1)

2 +
1

4
(eT2 e2)

2

+
∑

i=m,s

{ 1

2γi1
µ−1
i µ̃2

i +
1

2γi2
η̃2i } (27)

The infinitesimal generator of system (18) regarding the
Lyapunov function (27) is:

LV =− c1e
T
1 e1 e

T
1 e1 + eT1 e1 e

T
1 e2 − c21e

T
2 e2 e

T
2 e1

+ eT2 e2 e
T
2 {Λs − Λm}+ c1e

T
2 e2 e

T
2 e2

+ eT2 e2 e
T
2 (M

−1
m τm −M−1

s τs)

+
1

2

∑
i=m,s

Tr{ΣT
i M

−1
i (2e2e

T
2 + eT2 e2I)M

−1
i Σi}

+
∑

i=m,s

1

γi1
µ−1
i µ̃i

˙̂µi +
∑

i=m,s

1

γi2
η̃i ˙̂ηi (28)

To use the result of Lemma 1 we consider each component
of (28) separately(ith component of LV is shown by LVi ).
Clearly LV1 = −c1(e

T
1 e1)

2 and LV5 = c1(e
T
2 e2)

2. Consider-
ing Youngs inequality in lemma 4, choosing x = eT1 e1e

T
1 and

y = e2 and p = 4
3 leads to the following inequality for LV2:

LV2 ≤ c1
4
(eT1 e1)

2 +
27

4c31
(eT2 e2)

2 (29)

Similarly, LV3 ≤ c1
4
(eT1 e1)

2+
3c

7
3
1

4
(eT2 e2)

2. For LV4, by using

Young’s inequality in Lemma 4 with x = 1 , y = eT2 {Λs−Λm}
, p = 2 and Cauchy-Schwarz inequality in Lemma 3 and then
(25) and (8a),

LV4 = |e2|2{
1

4
+ |e2|2|Λs − Λm|2}

≤ (
1

4ε1
+

∑
i=m,s

ηiΦi)(e
T
2 e2)

2 +
ε1
4

(30)

where ε1 > 0 is a design parameter. Sixth part of LV by
substituting input torques from 22a and (22b) and then using
assumption 1 in (19a) leads to:

LV6 = −eT2 e2 e
T
2 (M

−1
m φ−1

m1
e2µ̂mτ̄m +M−1

s φ−1
s1 e2µ̂sτ̄s)

≤ −eT2 e2 e
T
2 e2(µ

−1
m µ̂mτ̄m + µ−1

s µ̂sτ̄s)

= −(eT2 e2)
2

∑
i=m,s

{τ̄i + µ−1
i µ̃iτ̄i} (31)

By using the definition of matrix trace and (26) then (8a) one
can obtain:

LV7 ≤ 3

2
|e2|2

∑
i=m,s

‖M−1
i Σi‖2F

≤ 3

2
(
1

ε2
|e2|4 + ε2)

∑
i=m,s

‖φi2‖2F ηi (32)

=
3

2ε2
(eT2 e2)

2
∑

i=m,s

‖φi2‖2F ηi +
3ε2
2

∑
i=m,s

‖φi2‖2F ηi

where ε2 > 0 is a design parameter. By substituting ˙̂µ from
adaptive laws (23a) and then µ̂ = µ+ µ̃ in LV8 and then (8b):

LV8 =(eT2 e2)
2

∑
i=m,s

µ−1
i µ̃iτ̄i

−
∑

i=m,s

{ 1

γi1
σi1µ

−1
i µ̃2

i +
1

γi1
σi1µ

−1
i µ̃iµi}

≤(eT2 e2)
2

∑
i=m,s

µ−1
i µ̃iτ̄i

−
∑

i=m,s

{ 1

2γi1
σi1µ

−1
i µ̃2

i +
1

2γi1
σi1µi}

Similarly:

LV9 ≤(eT2 e2)
2

∑
i=m,s

βiη̃i

−
∑

i=m,s

{ 1

2γi2
σi2 η̃

2
i +

1

2γi2
σi2η

2
i } (33)

Substituting LVi inequalities, the following inequality can
be found for LV :

LV ≤ − c1
2
(eT1 e1)

2

+ (d̄+
∑

i=m,s

{(Φi + Ψi)ηi + βiη̃i − τ̄i})(eT2 e2)2

−
∑

i=m,s

{ 1

2γi1
σi1µ

−1
i µ̃2

i +
1

2γi2
σi2 η̃

2
i }+ dc (34)

where Ψi =
3

2ε2
‖φi2‖2F . Defining the d̄ and dc as,

d̄ =
27

4c31
+

3

4
c1

7
3 +

1

4ε1
+ c1 (35a)

dc =
ε1
4

+
3ε2
2

∑
i=m,s

‖φi2‖2F ηi

+
∑

i=m,s

{ 1

2γi1
σi1µi +

1

2γi2
σi2η

2
i } (35b)
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and considering βi = Φi + Ψi and τ̄i = βiη̂i +
d̄
2 +

c2
4

, LV
leads to:

LV ≤− c1
2
(eT1 e1)

2 − c2
2
(eT2 e2)

2

−
∑

i=m,s

{ 1

2γi1
σi1µ

−1
i µ̃2

i +
1

2γi2
σi2 η̃

2
i }+ dc (36)

with choosing c = min{2c1, 2c2, σ1, σ2} in (36) and consid-
ering (27), LV ≤ −cV +dc holds. Hence according to Lemma
1, the system (18) is exponentially practically stable in mean
square and ei(t), i = 1, 2 satisfy the following inequality:

lim
t→∞

E|ei(t)|2 ≤ (
4dc
c

)
1
2 (37)

Using (17b), and defining the e(t) = e1(t) as a tracking
error, following results are straightforward.

lim
t→∞

E|e(t)|2 ≤(
4dc
c

)
1
2

lim
t→∞

E|ė(t)|2 ≤2(1 + c21)(
4dc
c

)
1
2 (38)

According to Chebyshev’s inequality from Definition 2 and
considering (38), for any ε ≥ 0 and ε0 ≥ 0, there exists T > 0
such that when t > T ,

P{|e(t)| > ε} ≤ 1

ε2
(ε0 + (

4dc
c

)
1
2 ) ≤ ε′

P{|ė(t)| > ε} ≤ 1

ε2
(ε0 + 2(1 + c21)(

4dc
c

)
1
2 ) ≤ ε′ (39)

By considering c = min{2c1, 2c2, σ1, σ2} and dc from
(35b), it is obvious that ε′ can be made small enough by
choosing ε1, ε2 small enough and γ1, γ2 large enough, and
also they are independent from c1, c2, σ1, σ2.

It is important to note that choosing the design parameters
is a trade-off between the tracking error and allowable control
effort.

VII. SIMULATION

In this section, a simulation study is exhibited to il-
lustrate the effectiveness of the proposed synchronization
scheme. In this simulation, the model of Pelican robot
is used for both master and slave. This robot is a 2-
DOF and fixed base manipulator which is developed at CI-
CESE, robotic lab [21]. The elements of inertia matrix are
M11 = m1l

2
c1+m2(l

2
1+l2c2+2l1lc2c2)+I1+I2, M12 = M21 =

m2(l
2
c2 + l1lc2c2)+I2 and M22 = m2l

2
c2 +I2; the elements of

the Coriolis and centrifugal matrix are C11 = −hq̇2, C12 =
−h(q̇1+ q̇2), C21 = hq̇1 and C22 = 0 and also the elements of
the gravity vector are G1 = (m1lc1 +m2l1)gs1 +m2lc2gs12
and G2 = m2lc2gs12. In which h = m2l1lc2s2 and s1, s2, c1
and s12 denote sin(q1), sin(q2), cos(q1) and sin(q1 + q2)
respectively. The description of physical parameters of Pelican
robot is given in Table. I. Also, Σi which is related to PSD
of disturbance for both master and slave side are Σi = 0.01I

The initial condition of master and slave robots are qm(0) =
[π3 ,

π
4 ]

T and qs(0) = [π4 ,−
π
6 ]

T all of them with unit rad
and q̇i(0) = [0, 0]T rad/s. The initial value of estimates of

adaptive laws are η̂m = µ̂m = 0.1 and η̂s = µ̂s = 0.2.
The design parameters are also selected as c1 = 1.5, c2 = 1,
ε1 = ε2 = 0.001, γi1 = 2, γi2 = 4, σi1 = 0.1 and σi2 = 0.3.
The simulation results are given in Figs. 2-9 which shows the
validity of the proposed technique.
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VIII. CONCLUSION

In this paper, a new architecture for position and velocity
synchronization in bilateral teleoperation system has been
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TABLE I
SIMULATION PARAMETERS

Parameter Description Unit Master Slave From view of controllers

l1 Length of link 1 m 0.13 0.26 Unknown
lc1 Distance to the center of mass (Link 1) m 0.0492 0.0983 Unknown
m1 Mass of link 1 kg 3.26 6.5225 Unknown
I1 Inertia rel. to center of mass (Link 1) kg.m2 0.0152 0.1213 Unknown
l2 Length of link 2 m 0.13 0.26 Unknown
lc2 Distance to the center of mass (Link 2) m 0.01145 0.0229 Unknown
m2 Mass of link 2 kg 1.0229 2.0458 Unknown
I2 Inertia rel. to center of mass (Link 2) kg.m2 0.0014 0.0116 Unknown
g Gravity acceleration m/s2 9.81 9.81 Unknown
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developed. The stability analysis guarantees the state and
velocity synchronization of the master/slave robot in the
presence of stochastic disturbances in control inputs. The
analytical study shows that the error and time derivatives of
error can converge to an arbitrarily small neighborhood of zero
by tuning the controller parameters. The proposed adaptive
controller doesn’t need any information of physical parameters
of robots and just use the well-known properties of revolute
joints manipulator. The simulation results have been exhibited
which approved the theoretical results.
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