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Abstract— The process through which children learn about 

the world and develop perceptual, cognitive and motor skills 

relies heavily on object exploration in their physical world. New 

types of assistive technology that enable children with 

impairments to interact with their environment have emerged in 

recent years, and they could be beneficial for children's cognitive 

and perceptual skills development. Many studies have reported 

on brain computer interface (BCI) research. However, a 

conventional electroencephalography (EEG) system is generally 

bulky and expensive. It also requires special equipment and 

technical expertise to operate successfully. In this study, a 

compact low-cost EEG system was used to detect signals related 

to movement intention and control a mobile robot control.  EEG 

signals of three non-disabled adults were acquired by the BCI 

system and the movement intention was classified during 

physical movement and motor imagery. The average 

classification accuracies achieved during testing were 56.4% for 

the motor imagery and 72.7% for the physical movement. The 

results show moderate classification accuracy for the motor 

imagery; however, the classification accuracy for the physical 

movement was high for all the subjects. Even though further 

improvement of the system is still needed, the experimental 

results demonstrated the feasibility of a BCI-based robotic 

system that is affordable and accessible for many people 

including children with disabilities. 

Keywords—Assistive Technology; Brain Computer Interfaces 

(BCI); Event Related Desynchronization (ERD); Robot Control 

I. INTRODUCTION  

Cognitive development refers to the development of 

children in terms of thinking, resolving, learning, feeling, and 

knowing the environment [1]. The developmental process of 

cognitive and perceptual skills for children depends heavily on 

object exploration in their physical world [2, 3]. Motor and 

perceptual experiences in our daily activities can also assist in 

cognitive development. Physical manipulation of objects has 

been identified as a critical motor experience that enables 

children to learn skills, such as the emergence of symbols, 

referential communication and the understanding of relations 

between objects [4].  

Play is a natural way in which all children interact with 

their social and physical environments in order to explore and 

discover different objects and experiences [5]. For children 

who have severe physical impairments, one of the biggest 

concerns is a lack of opportunities for meaningful play 

activities with objects. Robots such as the Play-ROB [6] and 

Lego robots [3] enable children with cognitive and physical 

disabilities to manipulate objects in play. Interfaces for these 

robots were, respectively, a joystick [6] or switches [3].  

Studies have successfully demonstrated the feasibility of using 

these interfaces in robot and assistive technology control [3, 6, 

7]. Simple button switches are some of the commonly used 

human interfaces in the field of assistive technology [8]. The 

switches can be placed at different anatomical locations and 

replaced with different types of switch devices; however 

joysticks provide users with more direct control than switch 

interfaces. Joysticks require some degree of physical ability to 

operate and may be difficult for children who have little 

voluntary and repeatable muscle control. The objective of this 

study is to determine whether the use of biological signals to 

detect movement intention as an input for robot control may 

improve robotic manipulation of objects.  

Electroencephalography (EEG) is a biological signal that 

indicates the brain's activity and can be detected by electrodes 

placed on the surface of the scalp [9]. EEG signals are 

generally categorized based on the type of response [10]. One 

response is event-related desynchronization (ERD). ERD can 

be observed over the motor cortex during movement 

("physical movement”) or imagination of movement (“motor 

imagery”). For people with severe physical disability such as 

those who have limited voluntary movement, the ERD 

response can still be observed [11-13]. Huang, et al. [14] 

tested BCIs for 2-dimensional cursor control based on ERD 

during with 5 non-

disabled participants. Classification methods using Linear 
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Discriminant Analysis (LDA), Decision Tree, and Support 

Vector Machine (SVM) provided as high as 88% accuracy 

rate for the physical movements and 73% accuracy rate for the 

motor imagery. In addition, previous BCI studies indicated 

that control of ERD can be enhanced by BCI training with 

biofeedback such as visual, auditory, or vibrotactile feedback 

[15-17]. In the study of Pichiorri, et al. [15], ten non-disabled 

participants underwent 4 weeks of BCI training with visual 

feedback. No significant difference was found between before 

and after BCI training, but 75%-96% accuracy was 

consistantly achieved. These studies indicate that ERD is 

potentially a feasible channel for brain-computer interface 

(BCI) for children with neurological impairments. However, a 

conventional EEG system is generally bulky and expensive. It 

also requires specialized equipment and technical expertise to 

operate successfully. Therefore, conventional EEG systems 

are not suitable for many situations such as play activities at 

home or clinical practice outside of the research laboratory.  

Today, several low-cost BCIs, such as Emotiv EPOC 

(EMOTIV Inc. San Francisco, CA, USA) and NeuroSky 

(NeuroSky Inc, San Jose, CA, USA), are commercially 

available. They are compact and more accessible to the 

general public compared with conventional EEG systems. In a 

study by Frey, et al. [18], a new low-cost EEG system was 

developed. This EEG system was designed for novice users to 

observe their own EEG signals in real-time. The system 

allows people to visualize, understand and interact with their 

own brain activity, and the authors promote it as a relevant 

training and mediation tool. A study by Vamvakousis and 

Ramirez [19] detected ERD response caused by imagery and 

real lower limb movements using the Emotiv EPOC with 

healthy subjects. Since standard location of Emotiv electrodes 

do not cover the motor cortex area, the Emotiv EPOC needed 

to be customized.  

It could be beneficial to investigate the feasibility of a 

robotic system for children with severe physical disability by 

using a compact low-cost BCI. As a first step, we trialed the 

system with adults. EEG data during movement or 

imagination of movement and ERD responses were analyzed 

and used to classify the intentions of movements for mobile 

robot control with non-disabled adults. 

 

II. METHODS 

A. Participants 

Three right-handed adults without disability, a 42-year-

old male (Subject 1), a 23-year-old male (Subject 2), and a 23-

year-old female (Subject 3), participated in the study. Subject 

1 had BCI experience in a previous study, while Subject 2 and 

Subject 3 had no prior BCI experience.  

B. Materials 

The robotic system included a Windows PC, an OpenBCI 

(OpenBCI, Inc., Brooklyn, NY, USA), and a Lego 

Mindstorms NXT (Lego Group, Billund, Denmark). The 

OpenBCI (Figure 1) is a low-cost BCI which is portable, 

programmable, open-source EEG platform that gives access to 

brain signals. The OpenBCI measured the user’s brain signals 

over the cerebral cortex with a set of gold cup electrodes. The 

Lego Mindstorms was used as a mobile robot to be controlled 

by EEG data. Both the OpenBCI and Lego Mindstorms were 

connected with the PC wirelessly via Bluetooth. A schematic 

diagram of this set up is shown in Figure 2. 

MATLAB (MathWorks, Inc., Nadick, MA, USA) was 

used for the EEG data acquisition and signal processing. In 

addition, MATLAB Statistics and Machine Learning Toolbox 

was used for designing and validation of the classifiers based 

on the ERD response.  LabVIEW (National Instruments, Corp, 

Austin, TX, USA) was used to control the Lego Mindstorms 

based on the EEG signals. 

 

 
Fig. 1. OpenBCI Brain Computer Interface 

 

 
Fig. 2. Schematic Diagram of the Experimental Setup. EEG signals are 

acquired from subjects by OpenBCI. The signals are digitally filtered and 

used to design classifiers based on the ERD during physical movements and 

motor imageries. A Lego Mindstorms robot is controlled offline by the EEG 
signals with the classifiers. 

C. Experiment 

The experiments were conducted in two sessions on 

different days. There were two types of tasks in each session: 

EEG measurements during physical movement and EEG 

measurements during motor imagery. Participants sat in a 

comfortable position and looked at the computer screen in 

front of them. For the physical movement task, according to a 

visual cue displayed on the computer screen, they were asked 
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either to stay at rest or perform internal and external rotation 

of the shoulder with their dominant arm while the elbow was 

in 90 degrees of flexion (Figure 3). For the motor imagery 

task, according to a visual cue displayed on the computer 

screen, the participants were asked to imagine either rest (i.e., 

no movement) or movement of their limbs without moving 

their arms.  In each task, the participants were asked to 

perform three trials. 

In each trial, a blank screen was displayed on the 

computer screen for the first four seconds. For the next six 

seconds, the visual cue indicating ‘MOVE’ was displayed. 

The participants performed either physical movement or 

motor imagery until the display was blank again, which lasted 

four seconds. When the visual cue indicated ‘REST’, the 

participants relaxed for the next six seconds. Figure 4 shows 

the timing diagram of the motor imagery and physical 

movement tasks. These visual cue sequences were repeated 

ten times in each trial. In total, six trials for physical 

movement and six trials for motor imagery were collected 

over the two sessions per participant. No BCI training was 

provided to the participants before the experiments. 

 

 

Fig. 3. Trials of the Physical Movement Task with a Subject 

 

Fig. 4. Timing Diagram of the Task for the Physical Movement and Motor 
Imagery 

D. EEG Data Collection 

Sixteen channels of EEG data were recorded during the 

trials with the OpenBCI. All the electrodes were located on 

the surface of the scalp over the area of the central sulcus, 

parietal lobes, and occipital lobes of the brain. The locations 

of the electrodes were C1, C2, C3, C4, CZ, CP1, CP2, CP3, 

CP4, CP5, CP6, P3, P4, PZ, O1, and O2 according to the 10-

20 international system, and the reference and ground were 

placed at A1 and A2 respectively. The EEG data were 

sampled at 125Hz and pre-processed with 3Hz - 40Hz FIR 

band pass filter and Common Average Reference (CAR) to 

remove the noise and offset. 

E. Analysis 

From the trials, six EEG datasets for the physical 

movement tasks and six EEG datasets for the motor imagery 

tasks were obtained per participant. In each task, three datasets 

were randomly chosen as the training datasets for designing 

classifiers, and two datasets were randomly selected for an 

evaluation of the robot control. The last dataset was used to 

fall back upon in case of failure to save EEG data. The 

following were the procedures of the classifier design and the 

system evaluation. 

1) Feature extraction: Power Spectrum Density (PSD) 

using a hamming window was computed in different lengths 

of the EEG signals (e.g., every 63, 125, 188, and 250 samples). 

Since the EEG was sampled at 125Hz sampling rate, the 

length of the EEG indicated the time frame of the PSD 

computation. In other words, to compute the PSD every 63, 

125, 188, and 250 samples means that the PSD was computed 

every 0.5, 1, 1.5, and 2 seconds respectively. The shorter time 

frame enabled the robot to be controlled closer to real-time. 

The frequency range where the ERD occurred was determined 

according to the EEG data for individuals by visual inspection. 

The frequency range was divided into four frequency bands 

and the absolute power in each frequency band was computed. 

The absolute power in each frequency band was extracted as 

the features for the classification design. These features were 

extracted from all 16 EEG channels. Therefore, 64 features 

were obtained from the EEG data in each time frame. 

2) Classification: Three types of machine learning 

classification methods were used to compare classification 

accuracy between periods of movement and rest. The 

classification methods used were Linear Discriminant 

Analysis (LDA) [20], Linear Support Vector Machine (SVM) 

[21], and Neural Network (NN) [22]. The LDA is one of the 

simplest linear discriminant algorithms. It finds a hyperplane 

to separate the classes based on the means of the samples in 

each class. Like the LDA, the SVM is also a classification 

method using a hyperplane to separate the classes. However, 

the SVM finds a separation hyperplane that has the largest 

distance of the nearest samples of any class [21]. The NN is a 

nonlinear classification method, and the network generally 

consists of an input, hidden layer, and output layer. Neurons in 

the hidden layer work as a function that takes some weighted 

inputs from the input layer and then returns an output to the 

output layer. The weights were determined by adjusting to 

minimize error according to the training samples. In this study, 

a NN with 30 neurons in a single hidden layer was used. Since 

the EEG patterns were different depending on the participants, 

the classifiers were designed for each individual based on the 

EEG datasets from the trials. 
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Fig. 5. Time-Frequency Analysis of the EEG signals of Subject 1 (Left), Subject 2 (Center), and Subject 3 (Right) during the Motor Imagery Task (Top) and the 

Physical Movement Task (Bottom) 

3) Evaluation: 10-fold cross validation was used to check 

the classification accuracy during classifier design with the 

training set, which was three datasets combined. Using each 

classifier, the two test datasets were used to check the 

classification accuracy while controlling the robot. The EEG 

test datasets were played back by software at 125 Hz, which is 

the same frequency as the sampling rate of the OpenBCI, and 

based on the classification sent a control command to the Lego 

Mindstorms for either MOVE or STOP.   

The classification accuracy in all the following conditions 

was measured: Tasks (i.e., Physical Movement and Motor 

Imagery), Classification methods (i.e., LDA, NN, and SVM), 

and Time frame of PSD (i.e., 0.5 sec, 1 sec, 1.5 sec, and 2 sec). 

III. RESULTS 

A. EEG data analysis 

EEG data were analyzed in both the frequency and time 

domains to investigate the intention of movement for each 

subject. Figure 5 shows the time-frequency analysis of the 

EEG at the C3 location during the physical movement and 

motor imagery tasks. In the graphs, the narrow sections 

separated by the dotted lines indicate the periods of MOVE of 

the visual cue, and the broad sections indicate the periods of 

blank screen and REST of the visual cue. The larger values of 

power are displayed in blue; the green colored regions 

represent values that are near zero in magnitude. The graphs 

for physical movement show a decrease of the power in 

frequency for each subject during the movement for all the 

subjects, while the graphs for motor imagery do not show the 

decrease as clearly. Figure 5 reveals an individual frequency 

range of the ERD responses. In this study, the alpha frequency 

band (8 – 14 Hz) was used for each subject to compute PSD to 

extract the features in the next steps.  

B. Test performance using different classification methods 

One-way ANOVA with the classification type as a factor 

revealed significant differences between all the classification 

methods except for the physical movement task by Subject 3 

(p < 0.05) as shown in Table 1. Table 1 also shows the mean 

accuracy of LDA and SVM was higher than the NN for both 

the motor imagery and physical movement tasks.  

Figure 6 shows the average accuracy of the classification 

methods based on the different time frames of PSD. These 

results indicate that the classification accuracies of LDA and 

SVM improve as the time frame increases. However, the 

results of NN over the different time frames differed from the 

results of the LDA and SVM. The correlation between 

accuracy and time frame was weaker for NN (R
2 

=0.12 for 

motor imagery and R
2 

=0.53 for physical movement) than 

LDA (R
2 

=0.35 for motor imagery and R
2 

=0.87 for physical 

movement) and SVM (R
2 

=0.20 for motor imagery and R
2 

=0.68 for physical movement). 

 

TABLE I.  CLASSIFICATION ACCURACY OF DIFFERENT CLASSIFICATION 

METHODS 

  Classification Accuracy (%) 

Motor Imagery Physical Movement 

LDA NN SVM LDA NN SVM 

Subject 

1 

49.98* 

(4.05) 

53.82* 

(4.80) 

53.55* 

(4.62) 

74.62* 

(6.72) 

65.74* 

(8.90) 

76.31* 

(6.84) 

Subject 

2 

62.78* 

(9.00) 

57.56* 

(8.18) 

63.12* 

(9.58) 

71.17* 

(9.80) 

64.10* 

(8.59) 

74.10* 

(7.78) 

Subject 

3 

56.40* 
(4.15) 

53.55* 
(4.46) 

56.83* 
(2.60) 

74.74 
(8.93) 

75.78 
(9.35) 

77.55 
(10.12) 

Mean 

(SD) 

56.38 

(8.03) 

54.98 

(6.21) 

57.83 

(7.37) 

73.51 

(8.59) 

68.54 

(10.20) 

75.98 

(8.31) 
*Significant differences p < 0.05 by ANOVA 
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Fig. 6.  Accuracy of the Classification Methods based on the Different 
Time Frames of PSD for the Motor Imagery Tasks (Top) and the Physical 

Movement Tasks (Bottom) 

C. Comparison of classification accuracy for 10-fold cross 

validation and testing with robot for SVM  

The SVM classifier was used here because it had the best 

performance above. No significant differences were found 

between the mean classification accuracy of SVM with 10-

fold cross validation and testing with the robot for the physical 

movement task, and classification accuracy was higher than 

70% in all the cases (Figure 7).  For the motor imagery task, 

classification accuracy was significantly higher for validation 

than testing with robot for Subjects 1 and 3 (p < 0.05). 

 

 
* Significant differences p < 0.05 by t-test 

Fig. 7.  Classification Accuracy of SVM for 10-fold Cross Validation and 

Testing with Robot. 

IV. DISCUSSION 

The feasibility of a robotic system using a low-cost BCI 

was investigated. The intention of movement was successfully 

classified during movement and imagination of movement 

based on EEG data and used to control a mobile robot. 

A longer time frame of PSD results in a higher frequency 

resolution and the more accurate resolution led to a higher 

classification accuracy for LDA and SVM in 1.5 and 2 sec 

time frames. However, NN achieved better accuracy with a 

time frame of 1.5 sec compared to the time frame of 2 sec 

(Figure 6). This is probably because the smaller training 

dataset size impacts the result of the classification accuracy of 

the NN. A longer time frame requires more EEG data to 

compute the PSD. Therefore, it reduces the number of samples 

of the classifier’s training datasets. Even though the size of 

training datasets should impact all types of classification 

methods, in this study, LDA and SVM were more robust and 

accurate in all cases. For robot control, the time frame of 0.5 

sec makes it possible for the mobile robot to operate closer to 

real-time. However, the accuracies were not reliably high with 

that time frame. The time frame of 1 sec and 1.5 sec for SVM 

worked fairly well in this experiment.   

No significant differences were found between the SVM 

classification accuracy with 10-fold cross validation and the 

test result with robot for physical movement (Figure 7). A 

possible reason for the significant differences between these 

results during the motor imagery tasks for Subject 1 and 

Subject 3 is that it was difficult for them to produce the 

constant ERD during the motor imagery tasks. Their EEG 

datasets may not have contained clear ERD responses. Since it 

is known that EEG patterns are different depending on the 

individual, these results should not be surprising.  According 

to feedback from Subject 1 and Subject 3, they tried to change 

the way they imagined movement occasionally and did not 

imagine the same movement throughout the trials. In contrast, 

Subject 2 imagined the same movement which was lifting a 

weight with his dominant arm in all the trials. This could be 

another possible reason for the lower accuracy of Subjects 1 

and 3. Different brain regions are responsible for different 

functions and different parts of the body. Thus, imagining 

different parts of body movement result in different brain 

activity patterns. This might have affected the accuracy of the 

classification results and will be addressed in future protocols. 

The results of this study show similar classification 

accuracy ranges reported in previous BCI studies [15-17]. 

Having biofeedback, for example, visual feedback of the ERD 

levels displayed on the computer screen, and training to 

imagine movement can help to improve the performance of 

the motor imagery task [15]. In this study, the participants did 

not receive any BCI training before the experiments. If BCI 

training was provided to participants before the experiments, 

we expect that the participants would have performed better 

on the motor imagery tasks. In contrast, the classification 

accuracies of the physical movement task were reliably high 

for all the subjects despite having no prior BCI training.   

2247



V. CONCLUSION 

A low-cost BCI, OpenBCI, was used for ERD 

classification and successfully controlled a mobile robot using 

EEG data. This implies that OpenBCI can be a potential brain 

computer interface in the field of assistive technology.  

This study showed that the ERD responses varied among 

different individuals. It might be difficult for some people to 

generate the ERD during the motor imagery tasks. However, 

training sessions prior to the BCI trials are expected to 

improve their performance. In contrast, ERD response during 

physical movement can be reliably measured and 

discriminated by linear classification methods. 

In the future, we want to make the system easier to use 

and improve the classification accuracy for practical use. For 

example, minimizing the number of electrodes is one way to 

make the system easier to set up.  Also, increasing the 

sampling rate would have a great impact on the classification 

accuracy for the system. As preliminary testing for BCI robot 

control, in this study, the robot was controlled with the test 

datasets recorded from participants. For the next step, we will 

develop the robotic system to acquire, process, and classify 

the EEG all in real-time. This can be applied to many 

applications of assistive technology, such as assistive robot 

control, wheelchair maneuvering, and prosthesis control. 

The ultimate goal of this study is to develop a compact 

low-cost BCI-based robotic system for children with 

disabilities. The subjects who participated in this study were 

all non-disabled adults. Therefore, in future studies, the 

system needs to be validated with clinical populations 

including children with physical impairments. 
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