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Abstract: In this paper, a novel control scheme is proposed to 

guarantee position and force tracking in nonlinear 

teleoperation systems subject to varying communication 

delays. Stability and tracking performance of the teleoperation 

system are proved using a proposed Lyapunov-Krasovskii 

functional. To show its effectiveness, the teleoperation 

controller is simulated on a pair of planar 2-DOF robots and 

experimented on a pair of 3-DOF PHANToM Premium 1.5A 

robots connected via a communication channel with time-

varying delays. Both the planar robots in simulations and the 

PHANToM robots in experiments possess nonlinear dynamics. 

Keywords: Nonlinear teleoperation, time-varying time 

delay, Lyapunov-Krasovskii functional, force and 

position tracking. 

I. INTRODUCTION 

SING a teleoperation system, a human operator 

controls a local robot in order to carry out tasks in a 

remote environment via a remote robot. Applications 

of telerobotic systems vary from telesurgery to space 

manipulation. The operator’s task performance in 

teleoperation is greatly enhanced if haptic feedback about 

interaction occurring between the remote robot and the 
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remote environment is provided to the human operator 

through the local robot. Such teleoperation systems are  

called bilateral as information flows in two directions 

between the operator and the remote environment.  

In telerobotic applications with a distance between the 

local and remote robots, there will be a time delay in the 

communication channel of the system. This delay can 

destabilize the telerobotic system  [1]. In practice, the 

communication delay can be time varying and asymmetric 

in forward and backward paths between the operator and 

the remote environment. Clearly, this time-varying 

asymmetric delay requires appropriate compensation to 

ensure the stability and tracking performance of the 

teleoperation system.  

In most of previous schemes for compensation of time-

varying delays in nonlinear teleoperation, the delay’s rate of 

change ��  is required to be less than or equal to one. For 

example, in [2], it is tried to generalize the scattering 

approach to the case of time-varying delay by adding a 

varying gain ���� in the communication channel that 

satisfies in �� � 1 
 �� . In  [3], where a PD like controller is 

considered, a gain for the velocity signals is selected to be 

equal to �1 
 �� , again requiring ��  to be no greater than 

one. Although PD like controllers guarantee asymptotic 
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stability of the velocities and the position error and are 

robust to the value of the delay �, their stability conditions 

are �� -dependent due to the variable gain �1 
 �� . The 

limitation �� � 1 is highly restrictive in practice as ��  may 

take on values greater than one. In fact, in most practical 

applications of teleoperation systems, the communication 

delays comprise of processing delays, transmission delays, 

propagation delays, and queuing delays  [4]. Since the 

processing and queuing delays have a stochastic nature, 

their rates of change can exceed unity. Thus, it is desirable 

to have a control scheme that lets T�  have any bounded value 

(positive or negative). 

In addition to requiring the unity upper limit on the value 

of ��  in the previously-mentioned control schemes, some of 

them also require the value of �� , which is not always 

known in practice [2], [3]. However, it is preferred to have 

a control scheme that rids of the value of ��  at all.  

Besides imposing either or both of the above-mentioned 

restrictions in terms of the upper bound on ��  and 

knowledge of the value of �� , some of past control schemes 

only ensure position tracking between the local and the 

remote robots. However, in addition to position tracking, 

the tracking error between the human/local robot interaction 

and the environment/remote robot interactions needs to 

converge to zero for the nonlinear teleoperation system to 

be transparent. There are control schemes in the literature 

that lift the limitations on the maximum value of ��  but only 

address the position tracking problem  [5],  [6]. On the other 

hand, several past papers have ensured both position and 

force tracking, but still have some of the above-mentioned 

limitations. For instance, in  [7],  [8] and  [9], controllers are 

proposed for force and position tracking in a nonlinear 

teleoperation system, but the only work for slowly-varying 

delays satisfying �� � 1. Other control methods that ensure 

both position and force tracking are either for non-delayed 

nonlinear teleoperation or for delayed linear teleoperation. 

A brief overview of delay compensation methods for linear 

systems is provided next. 

Adaptive control for position and force tracking in 

telerobotic systems without any delay in the communication 

channel has been addressed in  [10]. In  [11], a delay-

dependent controller is proposed for force and position 

tracking in constant-delay teleoperation. An adaptive 

controller for position and force tracking in linear 

telerobotic systems is studied in  [12]. In  [13], position and 

force tracking is ensured for linear delayed teleoperation 

systems. 

From a practical point of view, it is desirable that the 

teleoperation controller compensates for time-varying 

asymmetric delays, without delay inquiry, works for any 

value of delay, without the delay’s rate of variation (�� ) 
inquiry, works for any rate of variation of delay, is able to 

ensure the asymptotic tracking of both positions and forces, 

and is applicable to nonlinear multi-DOF local and remote 

robots. 

In this paper, a new controller is proposed to guarantee 

asymptotic position and force tracking in network-based 

nonlinear teleoperation systems. The network is modeled as 



a pair of time-varying and asymmetric delays with no 

restriction on their rates of variation. It is only assumed that 

time delays and their derivatives are bounded and the upper 

bounds on time delays are known. The teleoperation system 

stability conditions are studied and asymptotic tracking of 

position and force is explored. Simulation results with two 

planar 2-DOF robot and experimental results involving two 

3-DOF PHANToM robots show the efficiency of the 

proposed method in terms of force/position tracking 

performance under varying delays with different rates of 

change.  

This paper is organized as follows. Section II states the 

problem while the main contributions are presented in 

Section III. In Section IV, simulation and experimental 

results are provided followed by the conclusions in Section 

V. 

Notation. We denote the set of real numbers by � �
�
∞, ∞�, the set of positive real numbers by ��� � �0, ∞�, 

and the set of nonnegative real numbers by ��� � �0, �∞��. 
Also, |�|� and |�|� stand for the Euclidian ∞-norm and 2-

norm of a vector ����. The �� and �� norms of a time 

function �: ���  �� are shown as 

!�!�� � "#$%&��,����!����!� and !�!�� � '( !����!��)��
� *

+
,, 

respectively. The �� and �� spaces are defined as the sets 

-�: ���  ��, !�!�� . /∞0 and -�: ���  �� , !�!�� .
/∞0, respectively. For simplicity, we refer to !�!�� as 

!�!� and to  !�!�� as !�!�. We also simplify the notation 

123% � ���� � 0 to ����  0. 

II. PROBLEM STATEMENT 

Consider the local (master) and remote (slave) robots 

with the following nonlinear dynamics: 

45'65���*675��� / 85'65���, 6�5���*6�5 / 95'65���* �
τ;��� 
 τ5���  

4<'6<���*67<��� / 8<'6<���, 6�<���*6�<��� / 9<'6<���* � 

τ<��� 
 τ=��� (1) 

Here, 6>, 6�> and 67> ���?@ for 2�-3, "0 are the joint 

positions, velocities and accelerations of the master and 

slave robots, respectively. Also, 4>�6>���� � ��?� and, 

8>�6>���, 6�>���� � ��?� and 9�6>���� � ��?@ are the inertia 

matrix, the Coriolis/centrifugal matrix, and the gravitational 

vector, respectively. Lastly, A5 and A< � ��?@ are control 

torques for the master and slave robots, and A; and A= 

� ��?@ are torques applied by the human operator and the 

environment, respectively. 

Important properties of the above nonlinear dynamic 

model, which will be used in this paper, are  [14], [15]: 

• For a manipulator with revolute joints, the inertia matrix 

4>�6>� is symmetric positive-definite and has the 

following upper and lower bounds: 

   0 . B5>�'4>�6>����*C � 4>�6>���� � BDEF'4>�6>����*C � ∞ 

where C���?� is the identity matrix. 

• For a manipulator, the relation between the 

Coriolis/centrifugal and the inertia matrices is as follows: 

   4� >�6>���� �  8>�6>���, 6�>���� / 8>G�6>���, 6�>����  

   This is equivalent to 4� >�6>���� 
  28>�6>���, 6�>���� being 

skew–symmetric. 



• For a manipulator with revolute joints, there exists a 

positive η bounding the Coriolis/centrifugal term as 

follows: 

!8>�6>���, I����J���!�  �  K!I���!�!J���!�  

• The time derivative of 8>�6>���, 6�>���� is bounded if 6�>��� 

and 67>��� are bounded. 

III. MAIN CONTRIBUTIONS 

In this paper, a P+D controller that incorporates gravity 

and environment force compensation is used for the slave 

robot. For the master robot, a P+D controller with gravity 

and human force compensation and a term representing the 

force error is used. We choose 

A5��� � L56�5��� / M5 N65��� 
 6<'� 
 �����*O 

93 N63���O /

'"9P'6�5���* / Q* NA;��� 
 A='� 
 �����*OG NA;��� 


A='� 
 �����*O / A;���  

A<��� � 
L<6�<��� 
 M< N6<��� 
 65'� 
 �@���*O / 9<'6<���* /

A=��� (2) 

Here, Q is a vector with small positive elements (i.e. 

Q@ � Q� � R � Q� S 0) and 0 . |Q|� T 1, L5 and L< are 

velocity gains and M5 and M< are position gains, �@��� is the 

time delay from the master to the slave while ����� is the 

time delay in the opposite direction, sgn�. � is the sign 

function, �@5EF � "#$Y�Z[Z% �@�A� and ��5EF �
"#$Y�Z[Z% ���A�. Also, L5 
 ��@5EF / ��5EF�C  and 

L< 
 ��@5EF / ��5EF�C are positive-definite matrices. 

In the following, we present two theorems that study the 

teleoperation system stability and the asymptotic 

convergence of force and position tracking errors.  

Theorem I: In the bilateral tele-manipulator (1) with 

controller (2), the velocities 6�5 and 6�< and position error 

65 
 6< are bounded for any bounded �@���, �����. 

Proof: Let us define a Lyapunov function V�t� as 

^��� � @̂��� / �̂��� / _̂��� / ^̀ ��� 

where 

@̂��� � 1
2 6�5G ���45'65���*6�5��� / 1

2
M5
M<

6�<G���4<'6<���*6�<��� 

�̂��� � 1
2 M5�65��� 
 6<����G�65��� 
 6<���� 

_̂��� � a a 6�5G �K�6�5�K�)K
%

%bc
)d

�

YG+efg
 

/ a a 6�<G�K�6�<�K�)K
%

%bc
)d

�

YG,efg
 

^̀ ��� � a �6�5G ���'"9P'6�5���* / Q*
%

�
NA;��� 
 A='� 
 �����*OG 

NA;��� 
 A='� 
 �����*O�)� (3) 

Using property II in Section II, the time derivative of V@�t� 

can be written as 

�̂@��� � 
6�5G ���95'65���* / 6�5G ���A;��� 
 6�5G ���A5��� 

he
hi

N6�<G���9<'6<���* 
 6�<G���A=��� / 6�<G���A<���O (4) 

Also, the time derivatives of �̂��� is given by 

�̂���� � M56�5G ��� N65��� 
 6<'� 
 �����*O / M56�<G��� N6<��� 


65'� 
 �@���*O / M56�5G ���'6<�� 
 ������ 
 6<���* /

M56�<G���'65�� 
 �@���� 
 65���* (5) 

which using  



6�5G ���'6<�� 
 ������ 
 6<���* � 
6�5G ��� a 6�<�j�)j
%

%YG,�%�
 

6�<G���'65�� 
 �@���� 
 65���* � 
6�<G��� a 6�5�k�)k
%

%YG+�%�
 

is simplified to  

�̂���� � M56�5G ��� N65��� 
 6<'� 
 �����*O / M56�<G��� N6<��� 


65'� 
 �@���*O 
 M56�5G ��� ( 6�<�j�)j%
%YG,�%� 


M56�<G��� ( 6�5�k�)k%
%YG+�%�  (6) 

After algebraic manipulations, the time derivatives of 

V_�t� is found to satisfy 

�̂_��� � �@5EF6�5G ���6�5��� 
 ( 6�5G �k�6�5�k�)k%
%YG+�%� /

��5EF6�<G���6�<��� 
 ( 6�<G�j�6�<�j�)j%
%YG,�%�  (7) 

Using the inequalities  


6�5G ��� a 6�<�j�)j
%

%YG,�%�

 a 6�<G�j�6�<�j�)j

%

%YG,�%�
 

� ��5EF6�5G ���6�5��� 


6�<G��� a 6�5�j�)j
%

%YG+�%�

 a 6�5G �j�6�5�j�)j

%

%YG+�%�
 

� �@5EF6�<G���6�<��� 

which result from Lemma 1 in  [6], it is possible to show 

that 

�̂@��� / �̂���� / �̂_��� � 

6�5G ��� l��@5EF / ��5EF�6�5��� / M5 N65��� 
 6<'� 
 �����*O 


95'65���* 
 A5��� / A;���m / 6�<G��� l��@5EF / ��5EF�6�<��� /

M5 N6<��� 
 65'� 
 �@���*O 
 he
hi

9<'6<���* / he
hi

A<��� 

he
hi

A=���m (8) 

On the other hand, the time derivatives of ^̀ ��� is 

�̀̂ ��� � 6�5G ���'"29P'6�5���* / Q* NA;��� 
 A='� 
 �����*OG 

NA;��� 
 A='� 
 �����*O (9) 

Therefore, �̂ ��� can be shown to have an upper bound: 

�̂ ��� � �̂@��� / �̂���� / �̂_��� / �̀̂ ��� � 6�5G ��� n��@5EF / ��5EF�6�5��� /

M5 N65��� 
 6<'� 
 �����*O 
 95'65���* 
 A5��� / A;��� /

'"9P'6�5���* / Q* NA;��� 
 A='� 
 �����*OG NA;��� 
 A='� 
 �����*Om 

/6�<G��� l��@5EF / ��5EF�6�<��� / M5 N6<��� 
 65'� 
 �@���*O 

he
hi

9<'6<���* / he
hi

A<��� 
 he
hi

A=���m (10) 

Substituting the control laws A5��� and A<��� from (2) in 

(10), we get 

�̂ ��� � 
6�5G ����L5 
 ��@5EF / ��5EF�C�6�5��� 


6�<G����L< 
 ��@5EF / ��5EF�C�6�<��� � 0  (11) 

The above shows that all elements in ^��� are bounded. 

Therefore, 6�5���, 6�<���, and 65��� 
 6<��� ��� and poof 

is competed. 

□ 

Remark I: Any varying or constant time delay in the 

communication channel is bounded from a practical point 

of view. Infinite time delays imply that the connection 

between the master and the slave robots is broken. The only 

information about the communication time delays that we 

need in control design is upper bounds on the delay values. 

Note that, in the absence of packet loss in the 

communication channel, there is always an upper bound for 

the time delay. With proper choices of L5 and L< such that  

L5 
 ��@5EF / ��5EF�C  and L< 
 ��@5EF / ��5EF�C are 



positive-definite matrices, the teleoperation system is 

stable; note that there are numerous obvious choices for L5 

and L< to satisfy this.  

Next, a theorem is introduced to prove asymptotic 

convergence of force and position tracking errors subject to 

restrictions on the interaction forces and the time delay.  

Theorem II: With the assumption in Theorem I and also 

assuming that ��@���, ������ are bounded, in  the bilateral 

tele-manipulator (1) with controller (2), the position 

tracking error 65��� 
 6<'� 
 �����* and the force tracking 

error A;��� 
 A='� 
 �����* converge to zero 

asymptotically. 

Proof: Let us now prove the asymptotic convergence of 

position and force tracking errors to zero. 

A) Asymptotic zero convergence of position error 

Integrating both sides of (11), we get  

^��� 
 ^�0� � ( �̂ ���)�%
� �


 ( 6�5G ���6�5���)�%
� 
 ( 6�<G���6�<���)�%

�   

Equivalently, 

( 6�5G ���6�5���)�%
� / ( 6�<G���6�5<���)�%

� � ^�0� 
 ^��� � ^�0� .
/∞  

Therefore, 6�5��� and 6�<��� o��. Using the fact that 

65��� 
 6<'� 
 �����* � 65��� 
 6<��� / ( 6�<���)�%
%YG,�%�  

and using Cauchy–Schwarz inequality ( 6�<���)�%
%YG,�%� �

������!6�<!�, therefore 65��� 
 6<'� 
 �����*���. 

Based on the above, since the gravity terms 95 and 9< 

are bounded, and because we assumed that A= and A; ���, 

it is possible to see that A5��� and A<��� defined in (2) are 

bounded. From (1), using Property I in Section II, and given 

the boundedness of A5��� and A<���, it can be seen that 

675��� and 67<������. Because 6�5��� o�� and 675������, 

using Barbalat’s lemma (see Form 1 in Appendix) we have 

that 6�5���  0. Similarly, it can be reasoned that 6�<���  
0. 

Now, if 67< is continuous in time, or 

equivalently 6p<������, then 6�<���  0 ensures that 

67<���  0 (see Form 2 of Barbalat’s lemma in Appendix). 

Let us investigate the boundedness of 6p<���. The closed-

loop dynamics found from combining the open-loop system 

(1) and the controller (2) is 

67<��� � N4<'6<���*OY@ q
8<'6<���, 6�<���*6�<��� 
 L<6�<��� 


N6<��� 
 65'� 
 �@���*Or  

Differentiating both sides with respect to time, 

produces qpt�t�: 

6p<��� � u
u% N4<'6<���*OY@ q
8<'6<���, 6�<���*6�<��� 
 L<6�<��� 


N6<��� 
 65'� 
 �@���*Or /

N4<'6<���*OY@ u
u% q
8<'6<���, 6�<���*6�<��� 
 L<6�<��� 


N6<��� 
 65'� 
 �@���*Or  

Using 



u
u% N4<'6<���*OY@ � 
 N4<'6<���*OY@ N8<'6<���, 6�<���* /

8vG'6<���, 6�<���*O N4<'6<���*OY@
  

and based on properties I and III and given the boundedness 

of 6�<, it is easy to see that 
u

u% N4<'6<���*OY@
 is bounded. 

Using properties I, III and IV and the boundedness of 

6<��� 
 65'� 
 �@���*, 6�<, 67< and ��@, it can be seen that 6p< 

is bounded. Given that 6�<���  0 and 6p<������, using 

Barbalat’s lemma (Form 2 in Appendix) we have that 

67<���  0. 

Considering the dynamic equation of the slave robot in 

(1), having shown that 67<���  0 and 6�<���  0, we find 

that A<���  A=��� / 9<'6<���*. Comparing this against the 

controller (2), we get that 

N6<��� 
 65'� 
 �@���*O  0  (12) 

Using the following equations 

6<��� 
 65'� 
 �@���* � 6<��� 
 65��� / a 6�5���
%

%YG+�%�
 

65��� 
 6<'� 
 �����* � 65��� 
 6<��� / a 6�<���
%

%YG,�%�
 

and knowing that 6�>���  0 and N6<��� 
 65'� 


�@���*O  0,  then '6<��� 
 65���*  0 which can be used 

to conclude that N65��� 
 6<'� 
 �����*O  0. This 

demonstrates the asymptotic convergence of the position 

tracking error. 

B) Asymptotic zero convergence of force error 

Applying our latest results in terms of 6�>���  0 and 

N65��� 
 6<'� 
 �����*O  0 to the master robot’s 

dynamic equation in (1) with the controller (2) leads to 

45'65���*675��� � Q NA;��� 
 A='� 
 �����*OG NA;��� 


A='� 
 �����*O  

Multiplying both sides from left by QG N45'65���*OY@
, 

we have 

QG N45'65���*OY@ Q NA;��� 
 A='� 
 �����*OG NA;��� 


A='� 
 �����*O � QG675���  

Using property I, 
@

wefg�De� C � N45'65���*OY@
 and 

therefore 

QG @
wefg�De� Q NA;��� 
 A='� 
 �����*OG NA;��� 
 A='� 


�����*O �

QG x43 N63���Oy
1 Q NA;��� 
 A='� 
 �����*OG NA;��� 


A='� 
 �����*O  

By combining the last two above equations, we get 

@
wefg�De� !Q!�� NA;��� 
 A='� 
 �����*OG NA;��� 
 A='� 


�����*O � QG675���  

Note that Nτz�t� 
τ{'t 
 T��t�*O| Nτz�t� 
τ{'t 


T��t�*O and !Q!�� are nonnegative and B5EF�45� is positive, 

so QG675��� should have a nonnegative value. In the case that 

QG675��� is zero, then it will result to NA;��� 
 A='� 


�����*O � 0 and proof complete. If QG675��� S 0, based on 



the fact that all elements of QG is positive,  then 

∑ 675~����>�@ S 0 and it means that there exist some 675~��� 

that have positive values for �  ∞ and it is in 

contradiction with the 6�5���  0. Therefore QG675��� will 

tends to zero and NA;��� 
 A='� 
 �����*O  0. This 

demonstrates the asymptotic convergence of the force 

tracking error. 

□ 

IV. SIMULATION AND EXPERIMENTAL RESULTS 

In this section, simulation and experimental results for 

the proposed teleoperation controller are provided. First, 

simulation results using a pair of 2-DOF planar robots are 

presented. Then, experimental results using a pair of 3-DOF 

PHANToM Premium 1.5A robots are considered.  

A) Simulation on a teleoperated pair of 2-DOF planar 

robots 

To verify the theoretical results in this paper, the master 

and slave manipulators are considered to be 2-DOF planar 

robots with revolute joints as shown in Figure 1. The master 

and slave manipulator dynamics (1) have the following 

inertia, Coriolis/centrifugal and gravity matrices/vector: 

4>�6>� �  n4>++ 4>+,4>,+ 4>,,
�, 8>�6> , 6�>� �  n8>++ 8>+,8>,+ 8>,,

� and  �>�6>� �

 l9>+9>,
m 

where, for 2�-3, "0, 4>++ � 1>,
� 3>, / 1>+

� '3>+ / 3>,* /

21>+1>,3>, ��"'6>,*, 4>+, �  4>,+ �  1>,
� 3>, / 1>+1>,3>, ��"'6>,*, 

4>,, �  1>,
� 3>,, 8>++ �  
21>+1>,3>,"2P'6>,*6�>,, 8>+, �

 
1>+1>,3>,"2P�6>,�6�>,, 8>,+ �  1>+1>,3>,"2P�6>,�6�>+, 8>,, � 0, 

9>+ �  91>,3>, ��"'6>+ / 6>,* / 1>+'3>+ / 3>,* ��"'6>+*, 

9>, � 91>,3>, ��"'6>+ / 6>,*. Here, 6>+ and 6>,  are the 

positions of the first and the second revolute joints, 1>+ and 

1>, are the lengths of the first and the second links, and 3>+ 

and 3>, are the masses of the first and the second links for 

each robot. 

 

Figure 1. Block diagram and signal flows of the proposed telerobotic 

system. 

Unlike experiments, in a simulation study it is necessary 

to consider human and environment models. Consistent 

with  [16],  [17], we assumed that they are modeled as 

second order LTI systems  

�; � �;� 
 �4;I75 / �;I�5 / L;I5� 

�= � 4=I7= / �=I�= / L=I=  

where 4;, 4=, �;, �=, L; and L=���?� are positive-

definite matrices representing the mass, damping, and 

stiffness of the human hand and the environment, and �;� is 

the human exogenous input force subjected to �;����. In 

this simulation 4; and 4= are set to 0.2C and 0.3C and �; 

and �= are set to 0.1C and 0.15C. Also L; and K{ are set to 

0.1C. L5 and L< are set to 0.6C and M5 and M< are set to C. In 



this simulation, the forward and backward time delays are 

chosen to be random variables with a uniform distribution 

over [0.05, 0.25] s. The random nature of theses time delays 

make it possible to show the effectiveness of the proposed 

method for fast-varying time delays as compared to the past 

methods.  

In this simulation, it is assumed that the master and the 

slave are in initial positions �6@5 6�5� � ��/3 0� and 

�6@< 6�<� � ��/4 0�, respectively. The human’s 

exogenous force �;� in the X direction shown in Figure 2 is 

applied to the master robot. At the same time, as shown in 

Figure 1, the slave robot is in contact with an environment. 

 

Figure 2. The human’s exogenous force �;� is applied to the master robot in 

the X direction 

 As shown in Figure 2, �;�  is zero at the beginning and 

starts to increase at 0.5 s, reaching 5 N at 1 s and staying at 

that level until 1.1 s. After that, it decreases uniformly until 

1.6 s when it reaches zero in 1.6 s. 

 

Figure 3. First joint position tracking between the master and slave robots 

The tracking performances between joint positions of 

master and slave robots are shown in Figures 3 and 4. In 

Figure 3, the first joint 6@ of the master and the slave start 

from �/3 and �/4 rad, respectively and reach 0.3 rad. In 

Figure 4, the second joint 6� of the master and the slave 

start from the same initial position 0 rad and reach 
1.08 

rad. 

 

Figure 4. Second joint position tracking between the master and slave 

robots 

To show the force tracking performance, time profiles of 

the torque applied by the human to the master robot joints 

and the torque applied by the environment to the slave robot 

joints are shown in Figures 5 and 6. Note that A; and A= 

have different signs and tracking error is computed 

as |A;| 
 |A=|. Also, forces applied by human and the 

environment to the master and the slave robots in the X 

direction are shown in Figure 7. Evidently, although the 

human and environment torque/forces are slightly different 

during the transient, they converge to each other 

asymptotically. Note that when the master and the slave are 

kinematically similar and joint position tracking between 

the two robots is achieved, force tracking in the Cartesian 

space is equivalent to torque tracking in the joint space as 

long as the robots are not in singular configurations. 
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Therefore, to show the efficiency of the proposed 

controller, we can either show Cartesian-space force 

tracking or joint-space torque tracking. 

 

Figure 5. Torque at the first joint of the master and the slave caused by 

interaction with the human and the environment, respectively. 

 

Figure 6. Torque at the second joint of the master and the slave caused by 

interaction with the human and the environment, respectively. 

 

Figure 7. Human and environment forces applied to the master and slave 

robots, respectively. 

The Cartesian positions of the end-effectors of the master 

and slave robots are shown in the XY plane of the base 

frame of each robot in Figure 8. In Figure 8, due to different 

initial positions for the master and the slave robot, the slave 

first moves away from the environment in order to 

minimize its position difference from the master. Once the 

master and the slave robots have the same position, they 

move together toward the environment. Clearly, the end-

effector positions of the two robots follow each other 

closely. 

 

Figure 8. End-effector positions of the master and slave robots in the 

XY plane. 

B) Experiment on a teleoperated pair of 3-DOF 

PHANToM robots 

In this section, experimental results for the proposed 

control method are reported. In the experimental setup 

shown in Figure 9, two 3-DOF PHANToM Premium 1.5A 

robots are connected via a communication channel with 

varying time delays. Two JR3 50M31A3 force sensors are 

connected to the master and slave robots’ end-effectors. 

Using these force sensors, the human and environment 

forces are measured and used in the teleoperation controller. 

Time delays between two robots are random variables with 

uniform distributions between 1 and 75 ms. 
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The inertia, Coriolis/centrifugal, and gravity 

matrices/vector of the master and slave PHANToM 

dynamics are based on   [18]. 

 

Figure 9. Experimental setup consisting of two PHANToM Premium 

1.5A’s and the force sensor frame. 

In the experiments, the human operator moves the master 

robot while the slave robot is first in free-motion and then 

in contact-motion. As shown in Figure 9, there is an 

obstacle near the slave that, upon contact, applies a force to 

the robot. Depending on the stiffness of the environment 

and the master position (which is the desired penetration 

into the environment), the environment forces can change.  

 

Figure 10. Human and environment forces applied in X direction to the 

master and the slave, respectively. 

To show the performance of the proposed method in 

terms of force tracking and position tracking, the following 

experiment is performed. First, the human operator moves 

the master such that the slave touches the left side of the 

object shown in Figure 9 – this free-motion test is expected 

to demonstrate the position tracking between the master and 

the slave. Next, the operator pushes the master such that the 

slave indents the object twice in each of the two intervals of 

3.8-4.2 s and 4.5-4.9 s (in Figures 10-12) – this contact-

motion test should show both the force tracking and the 

position tracking between the master and the slave.
1
 

To show the force tracking, the human operator and the 

environment forces measured by the two force sensors in 

the X, Y and Z directions are shown in Figures 10, 11 and 

12, respectively. Note that the X, Y and Z components of 

the environment force are in opposite direction to those of 

the human operator. Also, the X and Y components of the 

slave/environment interaction are negative while its Z 

component is positive. These figures demonstrate 

satisfactory force tracking between the human operator and 

the environment. 

 

Figure 11. Human and environment forces applied in Y direction to the 

master and the slave, respectively. 

                                                           
1 Please see the enclosed multimedia file (.wmv) for the experimental 

setup, free-motion tests (after gravity compensation), and contact-motion 

tests (after gravity compensation). Starting 1:06 sec in the video, the 

master and slave positions and the operator and environment forces are 

plotted in synchrony with the free-motion or contact-motion tests. The 

results in Figures 12-17 of this paper correspond to the video portion 

approximately from 1:15 sec to 1:22 sec of the video. 
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Figure 12. Human and environment forces applied in Z direction to the 

master and the slave, respectively. 

To show the position tracking performance between the 

master and slave robots, joints positions are shown in 

Figure 13, 14 and 15. Clearly, the master and the slave joint 

positions track each other both in free motion (in intervals 

3.5 s – 3.8 s, 4.2 s – 4.5 s and 4.9 s – 5.2 s in Figures 13-

15), and in contact motion (in intervals 3.8 s – 4.2 s and 4.5 

s – 4.9 s in Figures 13-15). 

When the slave robot is in free motion, the environment 

and the human forces are nearly zero and the joint positions 

of the master and the slave track each other. When the slave 

robot is in contact with the environment, the human and the 

environment forces track each other while the joint 

positions of the master and the slave also follow each other. 

Thus, position tracking between the master and the salve 

(shown in Figures 13, 14, and 15) combined with force 

tracking between the human and the environment forces 

(shown in Figures 10, 11 and 12) demonstrate the 

telerobotic system tracking performance in the sense of 

force/position asymptotic convergence. 

 

Figure 13. First joint’s positions of the master and the slave robots. 

 

Figure 14. Second joint’s positions of the master and the slave robots. 

 

Figure 15. Third joint’s positions of the master and the slave robots. 

V. CONCLUSION  

In this paper, a new controller is proposed to guarantee 

force tracking and position tracking together in bilateral 

teleoperation systems in the presence of time-varying time 

delays in the communication channel. The proposed method 

is delay-independent and the derivatives of time delays can 

take any bounded values (less than, equal to, or greater than 

one; also positive or negative) without causing any 

problems for the stability and asymptotic performance of 

the closed-loop system. We presented a new Lyapunov-
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Krasovski functional to study the stability of the system in 

the sense of Lyapunov and proposed two theorems to prove 

stability and tracking performance of the teleoperation 

system. To verify the results of the proposed controller, a 

simulation on two 2-DOF planar robots is performed. Also, 

experiments using two 3-DOF PHANToM robots are 

carried out. Simulation and experimental results both 

demonstrate position tracking between the master and slave 

robots as well as force tracking between the human and 

environment forces. This proves the efficiency of the 

proposed controller and demonstrates the tracking 

performance of the closed-loop teleoperation system. 

As a future research, exponential stability of the 

nonlinear teleoperation system subjected to time varying 

delay could be considered to study the speed of the tacking 

performances of the system. Also the data loss could be 

considered in the communication network to study a more 

realistic analysis of the teleoperation system. 
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APPENDIX 

Let us define a Riemann integrable function and a uniformly continuous 

function as below. 

1. If ���� � ��, then there exist a positive constant M such that 

(|����|�)� . 4. This implies that � is Riemann integrable. 

2. If ����� � ��, then � is uniformly continuous. 

 

Form 1 of Barbalat’s lemma: 

If function �: Rb  Rb is uniformly continuous and be Riemann 

integrable, then lim% � ���� � 0. 

Form 2 of Barbalat’s lemma: 

If ���� has a finite limit as �  ∞ and if �� is uniformly continuous (or 

�7 is bounded), then ��  0 as �  ∞. 


