Estimating Lumbar Spine Compression Using
Markerless Motion Capture
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Abstract— Compressive forces at the L5-S1 intervertebral
joint are a contributing factor to low back pain, a leading cause of
work-related musculoskeletal disorders. Estimating these forces in
field settings and comparing them to safety limits can support
ergonomic risk assessments. While musculoskeletal modeling
platforms such as OpenSim provide accurate estimations of spinal
loading, their reliance on expert operation and high computational
demands limits their practicality in field settings. This study
presents a biomechanical model that estimates L5-S1 compression
force using joint angles derived from a markerless motion capture
system, along with the user’s body weight, sex, and the lifted load.
A proof-of-concept evaluation was conducted with one participant
performing symmetric lifting tasks at 5, 10, and 15 kg. The
proposed method’s outputs were compared to OpenSim estimates,
showing close agreement in peak compression force for 10 and 15
kg conditions, with normalized peak estimation errors of 4 + 2%
and 2 + 1% during lifting and 11 + 5% and 5 + 4% during
lowering, respectively. Larger errors were observed for the 5 kg
condition and during mid-movement for all load conditions, likely
due to unmodeled muscle co-contraction and static assumptions.
Overall, the method shows promise for accessible in-field
ergonomic assessment of peak spinal loads during lifting and
provides a foundation for evaluating interventions such as
occupational exoskeletons in real-world settings.

Keywords—Markerless motion capture, L5-S1 compression
force, Ergonomic risk assessment, Biomechanical modeling,
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I. INTRODUCTION

Low back pain is one of the most prevalent musculoskeletal
disorders worldwide, and its impact on the working population
is particularly severe [1], [2]. The burden of back pain extends
beyond individual suffering, contributing significantly to
reduced productivity, absenteeism, and early retirement [3].
Repetitive lifting and lowering, heavy material handling,
awkward postures, and the development of performance-related
fatigue are among the key risk factors for lower back pain [3],
[4]. Various criteria are used to assess the limits and risks
associated with repetitive lifting, including physiological,
psychophysical, and biomechanical factors [5], [6]. Focusing on
the biomechanical aspect, the L5-S1 intervertebral joint is a
primary load-bearing segment of the spine and is particularly
susceptible to injury due to the high compressive forces it
experiences during lifting tasks [7]. Monitoring compressive
force at the L5-S1 joint is therefore a key biomechanical
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measure for evaluating injury risk in occupational settings [6].
This metric can also be used in studies evaluating the
effectiveness of interventions, such as modifications to task
procedures or workplace environments, as well as the support
provided by wearable assistive technologies, including
exoskeletons [8].

Various methods have been developed to estimate this load
[9], [10], [11], [12]. One of the most detailed approaches
involves musculoskeletal modeling, which incorporates
anatomical representations of body segments and muscles,
subject-specific scaling, and dynamic simulations to estimate
muscle activations and joint reaction forces [9]. The estimated
intervertebral forces in these studies have shown strong
correlations with in vivo implant data, underscoring the
method’s validity [13], [14]. However, this approach requires
expertise in analyzing motion data and operating simulation
tools such as OpenSim [9], and it involves high computational
costs, which can limit its practical application in field settings.

To address the need for simpler yet informative tools, several
analytical methods have been proposed [10], [11], [12]. The
Hand-Calculation Back Compressive Force method estimates
L5-S1 compressive force using inputs such as body weight,
height, lifted load, horizontal hand distance from L5-S1, and
torso flexion angle [10]. This model assumes a single equivalent
back muscle with a sagittal moment arm of 6.9 cm for males and
6.6 cm for females [10]. Its outputs have been validated against
the University of Michigan’s 3D Static Strength Prediction
Program™ , which estimates spinal loading at L5-S1 and L4-L5
levels using simplified anatomical representations of back and
abdominal muscles [11]. Additionally, Potvin developed the
Linked-Segment Biomechanical Model, which estimates L5-S1
compression force by summing the compressive effects of body
segment weights and muscle forces [12]. This model requires
information including user body weight, external hand load,
trunk angle, and the horizontal moment arms of both the load
and the upper body center of mass [12]. It assumes a fixed
sagittal moment arm of 6 cm for a single equivalent back muscle
[12].

Although many existing models estimate L5-S1
compression force using simplified biomechanical assumptions,
they often require manual input of posture parameters and rely
on task-specific measurements. With the growing availability of
markerless motion capture technology [15], it is now possible to



extract joint kinematics efficiently using a smartphone camera,
without the need for specialized equipment or expert
supervision. Therefore, developing a biomechanical modeling
approach that estimates L5-S1 compression forces solely from
joint kinematics obtained via a markerless system could simplify
in-field task risk assessments for employers.

This study presented a biomechanical modeling equation to
estimate L5-S1 compression force based on joint angles
obtained from a recently developed markerless motion capture
system, PoseChecker, combined with the user’s body weight,
sex, and the lifted load. The estimated values were evaluated
against outcomes from OpenSim simulations, which served as
the reference standard.

II. METHODS

A. Participant

For this proof-of-concept study, one female participant (age:
28 years, height: 168 cm, body mass: 63 kg) was recruited.
Written informed consent was obtained after a full explanation
of the experimental procedures. The study was approved by the
University of Alberta Research Ethics Board (Pro00109264).

B. Task

The participant was instructed to lift a crate from ground
level to pelvis height and then return it to the ground. The task
was repeated using crate weights of 5, 10, and 15 kg. The
selected weights reflect typical occupational loads and
commonly used load intervals in biomechanics research [16].
No specific instructions were provided regarding lifting posture
or speed. The order of the lifted weights was randomized, and
three separate trials were performed for each condition.

C. Data collection

Motion data were captured using a nine-camera motion
capture system (Vicon, Oxford Metrics, UK). The participant
was fitted with 51 reflective markers as shown in Fig. 1, and
motion was recorded at 100 Hz. Two markers were also placed
on the crate to detect the instances of lifting and lowering.
Ground reaction forces and moments were simultaneously
recorded using two force plates (OR6-7, AMTI, USA) at 1000
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Figure 1. Placement of reflective markers on the body for motion tracking
with the optical motion capture system.

Hz. All motion data were low-pass filtered using a bidirectional
fourth-order Butterworth filter with a cutoff frequency of 6 Hz.

The markerless motion capture system tracks body
movement and estimates joint angles by generating a skeletal
model based on key points detected from captured video frames
[15]. In this study, a smartphone camera (Galaxy S24, Samsung
Electronics, South Korea) was positioned at approximately a
45° angle relative to the sagittal plane. This angle was selected
to maximize visibility of joint motion while preserving
sufficient depth information. An example frame from the lifting
trial, showing the skeletal structure detected by the markerless
system, is presented in Fig. 2.

D. L5-S1 Compression Force Estimation Using
Musculoskeletal Modeling (OpenSim)

The musculoskeletal model used in this study was the new
fully articulated thoracolumbar spine (FATLS) model, which
comprises 78 segments, 93 degrees of freedom, and 552
musculotendon actuators [13]. Spinal force estimations
produced by this model have been extensively validated against
intradiscal pressure and instrumented implant data during both
static and dynamic lifting tasks [13].

Motion was simulated in OpenSim for the scaled
musculoskeletal model using the Inverse Kinematics tool. To
estimate muscle activations and forces, the Static Optimization
tool was employed to resolve the muscle redundancy problem
by minimizing the sum of squared muscle activations, given the
generalized net joint forces. External forces, including ground
reaction forces and the lifted load, were provided as inputs for
this tool. Similar to [17], the lifted load was modeled as external
forces applied symmetrically to both hands, with half of the
total weight assigned to each. The timing of load application
was determined based on the position data of the markers
placed on the crate. Muscle force-length-velocity properties
were incorporated into the static optimization. Finally, the joint
reaction Analysis tool was used to estimate joint reaction
forces, including L5-S1 compression force. To ensure
repeatability and reduce errors associated with manual input

Figure 2. Skeletal model captured by the markerless motion
capture system during the lifting motion.



through the OpenSim’s graphical user interface, the workflow
was automated using custom MATLAB scripts (The
MathWorks Inc., USA)

E. L5-S1 Compression Force Estimation Using Markerless
Motion Capture (CF-ML)

The L5-S1 compression force was estimated based on the
gravitational loads of the upper body segments and any lifted
load, as well as the force generated by the erector spinae muscle.
This simplified model assumes the erector spinae as the sole
muscle generating the trunk extension moment and acting
parallel to the spine. The compression force at the L5-S1 level
was calculated using the following expression:

Mps—
F = ((BL5) 4 (W + W + Wi + Wyoqa) -cos O +

Wy. cos(07 + 6y))). cos 40° €))]

where Wi, Wy, Wi, Wy, and W, 4 represent the weights of
the trunk, arms, forearms, head, and the lifted load, respectively.
O and Oy are the trunk and neck angles measured by the
markerless motion capture system, as shown in Fig. 3. M;5_¢q
denotes the net moment about the L5-S1 joint and is calculated
based on the joint angles of the trunk, arms, forearms, and neck
obtained from the markerless system. The moment computation
also incorporates the weight, length, and center of mass location
of upper body segments (Fig. 3), derived from anthropometric
data provided by [18] based on the participant’s sex and body
mass. The term ESM LA refers to the erector spinae muscle lever
arm and is estimated using a regression model proposed by [19],
which relates the lever arm to total body mass:

ESMLA (cm) = 3.469 + 0.025 X M )

where M is the body mass in kilograms. An orientation of
40° was assumed for the L5-S1 vertebral angle relative to the
horizontal to project the net axial force along the spinal axis.
This value was adopted based on previous studies reporting an
average intervertebral angle of approximately 40° at the L5-S1
segment [20], [21]. It should be noted that the time intervals
during which the crate was being carried were identified
through visual inspection of the recorded video, and the

contribution of the lifted load to the compression force was
included accordingly through (1).
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Figure 3. Illustration of the external loads and joint angles used in the L5-
S1 compression force estimation using the markerless motion capture
method (CF-ML).

F. Data Analysis

To enable direct comparison between CF-ML method and
OpenSim results, all outputs were time-normalized to the
duration of the lifting and lowering movement. For phase-
specific analysis, the movement was divided into lifting and
lowering phases, with the transition identified by the first local
minimum in trunk angle following its initial peak, indicating
the return to upright posture.

III. RESULTS

Fig. 4 compares L5-S1 compression force estimates from the
CF-ML method with reference values from OpenSim across
three lifting conditions: 5, 10, and 15 kg. For the 10 and 15 kg
conditions, CF-ML estimates generally aligned with the
OpenSim reference in terms of peak magnitudes and the overall
temporal pattern of compression force during lifting and
lowering. However, noticeable discrepancies were observed
during the transition to an upright posture and before initiating
the lowering phase. In the 5 kg condition, larger deviations in
peak magnitude were evident, particularly during the lifting
phase.
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Figure 4. Comparison of L5-S1 compression force estimated using the markerless motion capture method (CF-ML) and the musculoskeletal
modeling approach in OpenSim across three lifting conditions: 5 kg, 10 kg, and 15 kg. Shaded regions represent the standard deviation across
three trials. Time is normalized to the duration of each lifting and lowering cycle.



Quantitative evaluation of these differences is summarized
in Table I, with results reported separately for the lifting and
lowering phases using normalized time thresholds of 34%, 41%,
and 40% for the 5, 10, and 15 kg conditions, respectively.
During the lifting phase, the normalized peak loading error for
the 5 kg condition was 27 + 4%, while substantially lower errors
were observed for the 10 kg (4+£2%) and 15 kg (2+1%)
conditions. The corresponding absolute peak error for the 5 kg
condition reached 778.1 + 135.3 N, indicating a relatively large
deviation in peak magnitude compared to the reference values.
In the lowering phase, the normalized peak loading error
increased slightly for the 10 kg (114 5%) and 15 kg (5 +4%)
conditions relative to the lifting phase, whereas the error for the
5 kg condition decreased to 8+ 2%. Normalized root mean
square error (RMSE) values remained relatively consistent
across all load levels and movement phases, ranging from 28%
to 34% of the OpenSim-estimated peak L5-S1 compression
force.

IV. DISCUSSION

This study presented a biomechanical modeling method for
estimating L5-S1 compression forces based on joint angles
obtained from a markerless motion capture system during
dynamic lifting tasks. To evaluate the performance of this
method, its output was compared to compression force
estimates derived from OpenSim, which served as the
reference.

Analysis of the estimated compression force time series
revealed generally similar trends across methods prior to lift
initiation (Fig. 4). However, noticeable discrepancies in force
magnitude were observed during the phase in which the
participant returned to an upright posture, across all lifted loads.
Several factors may contribute to these differences. The CF-ML
method relies solely on gravitational loads from upper body
segments and the lifted load, along with a single equivalent
extensor muscle force, all estimated based on upper body joint
angles. This approach does not account for muscle co-
activation, distribution of forces across multiple muscles, or
passive intervertebral stiffness, all of which contribute to spinal
loading and are modeled in OpenSim modeling. These
simplifications likely contribute to the underestimation of
compression forces during the post-lift ascent phase. Also, it
should be noted that a previous validation study reported RMSE
values of 6.5°, 12.9°, and 11.6° for the back, shoulder, and

TABLE L

elbow joint angles, respectively, in the sagittal plane, when
comparing this markerless motion capture system to a marker-
based optical system [15]. Since the CF-ML highly relies on the
joint angle measurements, errors in kinematic estimation
directly affect the accuracy of the computed L5-S1 compression
forces. We assessed the impact of +6.5° back angle uncertainty
on L5-S1 compression through an error propagation analysis.
Peak load differences averaged 4.3%, 2.8%, and 3.1% for 5, 10,
and 15kg, with absolute differences of 106, 85, and 89N,
respectively. Furthermore, CF-ML method assumes static
equilibrium at each time frame, while the static optimization
approach incorporates the full dynamics of motion. It should be
noted that the term "static" in this method used in OpenSim
refers to the optimization formulation and does not imply a lack
of motion-related dynamics. Previous studies have shown that
incorporating inertial effects can substantially increase the
estimated peak moments at the L5-S1 joint [22]. One study
reported that inertial contributions can raise estimated
compression forces by up to 60% compared to static
calculations [23]. Additionally, it was found that under certain
lifting conditions, peak moments may occur later in the
movement cycle when dynamic effects are considered [22].
This observation aligns with the slight temporal lag in peak
compression force seen in the OpenSim results compared to the
CF-ML method estimates (see Fig. 4).

Peak compression force estimates from the CF-ML method
closely matched OpenSim results for 10 and 15 kg loads during
both lifting and lowering. However, as shown in Table I, a
notably large normalized peak loading error was present for the
5 kg condition during the lifting phase. This discrepancy may
be partly explained by the greater influence of muscle co-
contraction on L5-S1 loading during lighter lifts, compared to
the contribution from external loads and gross segmental
weights, which are the sole inputs to the CF-ML method. This
may reduce the accuracy of CF-ML in estimating peak
compression forces under low-load conditions. The primary
objective of the CF-ML method is to support ergonomic risk
assessment in field settings by enabling comparison of peak
spinal loads against established safety thresholds for L5-S1
compression. With the exception of the lifting phase for the 5
kg condition, all peak compression force estimates exhibited
normalized errors of 11% or less. While these errors correspond
to relatively small absolute differences, 308.6 + 134.3 N or less,

COMPARISON OF L5-S1 COMPRESSION FORCE ESTIMATION ERRORS BETWEEN THE MARKERLESS METHOD (CF-ML) AND OPENSIM

REFERENCE VALUES FOR THREE LIFTED LOADS (5 KG, 10 KG, AND 15 KG), REPORTED SEPARATELY FOR LIFTING AND LOWERING PHASES. NORMALIZED
VALUES ARE EXPRESSED AS A PERCENTAGE OF THE CORRESPONDING OPENSIM PEAK COMPRESSION FORCE.

Lifting Lowering
Peak loading error l\igll;nll:;ijie: Normalized Peak loading Normalized peak Normalized RMSE
o) perror (%) g RMSE (%) error (N) loading error (%) (%)
5 kg 778.1 £ 1353 27+ 4 282 22344613 8§12 316
10 kg 101.3 + 48.5 442 2843 Mok 1145 3445
15 kg 85.5+98.8 2+1 28+ 4 136.4 £94.4 514 313




caution should still be exercised when interpreting results that
are close to established safety threshold values [6]. Also, further
studies are needed to evaluate the accuracy of this method under
lighter load conditions.

This study has some limitations. The CF-ML method
simplifies muscle contribution to a single extensor acting
parallel to the spine with a fixed lever arm, neglecting other
muscles and variations in muscle moment arms during
movement. It also assumes static equilibrium at each frame,
which may underestimate compression forces, particularly
during mid-motion. CF-ML was only evaluated for symmetric,
two-handed lifting and requires manual identification of the
lifting and releasing instances, which may introduce variability.
Additionally, Higher errors in peak compression force under
light loads likely reflect the greater influence of muscle co-
activation relative to external loads. The study was conducted
with a single participant, limiting generalizability. Future work
should include more participants to validate the method, assess
its accuracy for asymmetric tasks and light loads, and determine
if a load threshold exists below which errors are unacceptably
large. With a larger dataset, it may also be possible to develop
load-specific correction functions to improve estimation
accuracy, particularly under low-load conditions.

V. CONCLUSION

This study evaluated the feasibility of estimating L5-S1
compression forces using joint angles from a markerless motion
capture system, combined with anthropometric, sex-specific,
and load-related inputs. The method produced peak force
estimates comparable to OpenSim for 10 and 15 kg lifts, with
normalized errors under 11%. While larger errors were
observed at 5 kg, the approach shows promise for in-field
ergonomic risk assessments, where ease of use and accessibility
are critical. Further research involving more participants and
varied tasks is needed to enhance the method’s accuracy and
generalizability, particularly for lighter loads and asymmetrical
movements.
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