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Abstract— Compressive forces at the L5-S1 intervertebral 

joint are a contributing factor to low back pain, a leading cause of 

work-related musculoskeletal disorders. Estimating these forces in 

field settings and comparing them to safety limits can support 

ergonomic risk assessments. While musculoskeletal modeling 

platforms such as OpenSim provide accurate estimations of spinal 

loading, their reliance on expert operation and high computational 

demands limits their practicality in field settings. This study 

presents a biomechanical model that estimates L5-S1 compression 

force using joint angles derived from a markerless motion capture 

system, along with the user’s body weight, sex, and the lifted load. 

A proof-of-concept evaluation was conducted with one participant 

performing symmetric lifting tasks at 5, 10, and 15 kg. The 

proposed method’s outputs were compared to OpenSim estimates, 

showing close agreement in peak compression force for 10 and 15 

kg conditions, with normalized peak estimation errors of 4 ± 2% 

and 2 ±  1% during lifting and 11 ±  5% and 5 ±  4% during 

lowering, respectively. Larger errors were observed for the 5 kg 

condition and during mid-movement for all load conditions, likely 

due to unmodeled muscle co-contraction and static assumptions. 
Overall, the method shows promise for accessible in-field 

ergonomic assessment of peak spinal loads during lifting and 

provides a foundation for evaluating interventions such as 

occupational exoskeletons in real-world settings. 

Keywords—Markerless motion capture, L5-S1 compression 

force, Ergonomic risk assessment, Biomechanical modeling, 
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I. INTRODUCTION 

Low back pain is one of the most prevalent musculoskeletal 
disorders worldwide, and its impact on the working population 
is particularly severe [1], [2]. The burden of back pain extends 
beyond individual suffering, contributing significantly to 
reduced productivity, absenteeism, and early retirement [3]. 
Repetitive lifting and lowering, heavy material handling, 
awkward postures, and the development of performance-related 
fatigue are among the key risk factors for lower back pain [3], 
[4]. Various criteria are used to assess the limits and risks 
associated with repetitive lifting, including physiological, 
psychophysical, and biomechanical factors [5], [6]. Focusing on 
the biomechanical aspect, the L5-S1 intervertebral joint is a 
primary load-bearing segment of the spine and is particularly 
susceptible to injury due to the high compressive forces it 
experiences during lifting tasks [7]. Monitoring compressive 
force at the L5-S1 joint is therefore a key biomechanical 

measure for evaluating injury risk in occupational settings [6]. 
This metric can also be used in studies evaluating the 
effectiveness of interventions, such as modifications to task 
procedures or workplace environments, as well as the support 
provided by wearable assistive technologies, including 
exoskeletons [8]. 

Various methods have been developed to estimate this load 
[9], [10], [11], [12]. One of the most detailed approaches 
involves musculoskeletal modeling, which incorporates 
anatomical representations of body segments and muscles, 
subject-specific scaling, and dynamic simulations to estimate 
muscle activations and joint reaction forces [9]. The estimated 
intervertebral forces in these studies have shown strong 
correlations with in vivo implant data, underscoring the 
method’s validity [13], [14]. However, this approach requires 
expertise in analyzing motion data and operating simulation 
tools such as OpenSim [9], and it involves high computational 
costs, which can limit its practical application in field settings. 

To address the need for simpler yet informative tools, several 
analytical methods have been proposed [10], [11], [12]. The 
Hand-Calculation Back Compressive Force  method estimates 
L5-S1 compressive force using inputs such as body weight, 
height, lifted load, horizontal hand distance from L5-S1, and 
torso flexion angle [10]. This model assumes a single equivalent 
back muscle with a sagittal moment arm of 6.9 cm for males and 
6.6 cm for females [10]. Its outputs have been validated against 
the University of Michigan’s 3D Static Strength Prediction 
Program™ , which estimates spinal loading at L5-S1 and L4-L5 
levels using simplified anatomical representations of back and 
abdominal muscles [11]. Additionally, Potvin developed the 
Linked-Segment Biomechanical Model, which estimates L5-S1 
compression force by summing the compressive effects of body 
segment weights and muscle forces [12]. This model requires 
information including user body weight, external hand load, 
trunk angle, and the horizontal moment arms of both the load 
and the upper body center of mass [12]. It assumes a fixed 
sagittal moment arm of 6 cm for a single equivalent back muscle 
[12]. 

Although many existing models estimate L5-S1 
compression force using simplified biomechanical assumptions, 
they often require manual input of posture parameters and rely 
on task-specific measurements. With the growing availability of 
markerless motion capture technology [15], it is now possible to 
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extract joint kinematics efficiently using a smartphone camera, 
without the need for specialized equipment or expert 
supervision. Therefore, developing a biomechanical modeling 
approach that estimates L5-S1 compression forces solely from 
joint kinematics obtained via a markerless system could simplify 
in-field task risk assessments for employers. 

This study presented a biomechanical modeling equation to 
estimate L5-S1 compression force based on joint angles 
obtained from a recently developed markerless motion capture 
system, PoseChecker, combined with the user’s body weight, 
sex, and the lifted load. The estimated values were evaluated 
against outcomes from OpenSim simulations, which served as 
the reference standard. 

II. METHODS 

A. Participant 

For this proof-of-concept study, one female participant (age: 
28 years, height: 168 cm, body mass: 63 kg) was recruited. 
Written informed consent was obtained after a full explanation 
of the experimental procedures. The study was approved by the 
University of Alberta Research Ethics Board (Pro00109264). 

B. Task 

The participant was instructed to lift a crate from ground 
level to pelvis height and then return it to the ground. The task 
was repeated using crate weights of 5, 10, and 15 kg. The 
selected weights reflect typical occupational loads and 
commonly used load intervals in biomechanics research [16]. 
No specific instructions were provided regarding lifting posture 
or speed. The order of the lifted weights was randomized, and 
three separate trials were performed for each condition. 

C. Data collection 

Motion data were captured using a nine-camera motion 

capture system (Vicon, Oxford Metrics, UK). The participant 

was fitted with 51 reflective markers as shown in Fig. 1, and 

motion was recorded at 100 Hz. Two markers were also placed 

on the crate to detect the instances of lifting and lowering. 

Ground reaction forces and moments were simultaneously 

recorded using two force plates (OR6-7, AMTI, USA) at 1000 

Hz. All motion data were low-pass filtered using a bidirectional 

fourth-order Butterworth filter with a cutoff frequency of 6 Hz. 

The markerless motion capture system tracks body 

movement and estimates joint angles by generating a skeletal 

model based on key points detected from captured video frames 

[15]. In this study, a smartphone camera (Galaxy S24, Samsung 

Electronics, South Korea) was positioned at approximately a 

45° angle relative to the sagittal plane. This angle was selected 

to maximize visibility of joint motion while preserving 

sufficient depth information. An example frame from the lifting 

trial, showing the skeletal structure detected by the markerless 

system, is presented in Fig. 2. 

D. L5-S1 Compression Force Estimation Using 

Musculoskeletal Modeling (OpenSim) 

The musculoskeletal model used in this study was the new 

fully articulated thoracolumbar spine (FATLS) model, which 

comprises 78 segments, 93 degrees of freedom, and 552 

musculotendon actuators [13]. Spinal force estimations 

produced by this model have been extensively validated against 

intradiscal pressure and instrumented implant data during both 

static and dynamic lifting tasks [13]. 

Motion was simulated in OpenSim for the scaled 

musculoskeletal model using the Inverse Kinematics tool. To 

estimate muscle activations and forces, the Static Optimization 

tool was employed to resolve the muscle redundancy problem 

by minimizing the sum of squared muscle activations, given the 

generalized net joint forces. External forces, including ground 

reaction forces and the lifted load, were provided as inputs for 

this tool. Similar to [17], the lifted load was modeled as external 

forces applied symmetrically to both hands, with half of the 

total weight assigned to each. The timing of load application 

was determined based on the position data of the markers 

placed on the crate. Muscle force-length-velocity properties 

were incorporated into the static optimization. Finally, the joint 

reaction Analysis tool was used to estimate joint reaction 

forces, including L5-S1 compression force. To ensure 

repeatability and reduce errors associated with manual input 

Figure 1. Placement of reflective markers on the body for motion tracking 

with the optical motion capture system. 

 

Figure 2. Skeletal model captured by the markerless motion 

capture system during the lifting motion. 



through the OpenSim’s graphical user interface, the workflow 

was automated using custom MATLAB scripts (The 

MathWorks Inc., USA) 

E. L5-S1 Compression Force Estimation Using Markerless 

Motion Capture (CF-ML) 

The L5-S1 compression force was estimated based on the 
gravitational loads of the upper body segments and any lifted 
load, as well as the force generated by the erector spinae muscle. 
This simplified model assumes the erector spinae as the sole 
muscle generating the trunk extension moment and acting 
parallel to the spine. The compression force at the L5-S1 level 
was calculated using the following expression:  
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 � . cos��� � �!�"�. cos 40°  (1) 

where ��, ��, ��, � , and �����  represent the weights of 
the trunk, arms, forearms, head, and the lifted load, respectively. 
��  and �!  are the trunk and neck angles measured by the 
markerless motion capture system, as shown in Fig. 3. &�'(
) 
denotes the net moment about the L5-S1 joint and is calculated 
based on the joint angles of the trunk, arms, forearms, and neck 
obtained from the markerless system. The moment computation 
also incorporates the weight, length, and center of mass location 
of upper body segments (Fig. 3), derived from anthropometric 
data provided by [18] based on the participant’s sex and body 
mass. The term *+&,- refers to the erector spinae muscle lever 
arm and is estimated using a regression model proposed by [19], 
which relates the lever arm to total body mass: 

 *+&,- �./� � 3.469 � 0.025 5 & (2) 

where & is the body mass in kilograms. An orientation of 

40° was assumed for the L5-S1 vertebral angle relative to the 

horizontal to project the net axial force along the spinal axis. 

This value was adopted based on previous studies reporting an 

average intervertebral angle of approximately 40° at the L5-S1 

segment [20], [21]. It should be noted that the time intervals 

during which the crate was being carried were identified 

through visual inspection of the recorded video, and the 

contribution of the lifted load to the compression force was 

included accordingly through (1). 

F. Data Analysis 

To enable direct comparison between CF-ML method and 

OpenSim results, all outputs were time-normalized to the 

duration of the lifting and lowering movement. For phase-

specific analysis, the movement was divided into lifting and 

lowering phases, with the transition identified by the first local 

minimum in trunk angle following its initial peak, indicating 

the return to upright posture. 

III. RESULTS 

Fig. 4 compares L5-S1 compression force estimates from the 
CF-ML method with reference values from OpenSim across 
three lifting conditions: 5, 10, and 15 kg. For the 10 and 15 kg 
conditions, CF-ML estimates generally aligned with the 
OpenSim reference in terms of peak magnitudes and the overall 
temporal pattern of compression force during lifting and 
lowering. However, noticeable discrepancies were observed 
during the transition to an upright posture and before initiating 
the lowering phase. In the 5 kg condition, larger deviations in 
peak magnitude were evident, particularly during the lifting 
phase.  

 

Figure 3. Illustration of the external loads and joint angles used in the L5-

S1 compression force estimation using the markerless motion capture 

method (CF-ML). 

 

Figure 4. Comparison of L5-S1 compression force estimated using the markerless motion capture method (CF-ML) and the musculoskeletal 

modeling approach in OpenSim across three lifting conditions: 5 kg, 10 kg, and 15 kg. Shaded regions represent the standard deviation across 
three trials. Time is normalized to the duration of each lifting and lowering cycle. 



Quantitative evaluation of these differences is summarized 
in Table I, with results reported separately for the lifting and 
lowering phases using normalized time thresholds of 34%, 41%, 
and 40% for the 5, 10, and 15 kg conditions, respectively. 
During the lifting phase, the normalized peak loading error for 
the 5 kg condition was 27 ± 4%, while substantially lower errors 
were observed for the 10 kg (4 ± 2%) and 15 kg (2 ± 1%) 
conditions. The corresponding absolute peak error for the 5 kg 
condition reached 778.1 ± 135.3 N, indicating a relatively large 
deviation in peak magnitude compared to the reference values. 
In the lowering phase, the normalized peak loading error 
increased slightly for the 10 kg (11 ± 5%) and 15 kg (5 ± 4%) 
conditions relative to the lifting phase, whereas the error for the 
5 kg condition decreased to 8 ± 2%. Normalized root mean 
square error (RMSE) values remained relatively consistent 
across all load levels and movement phases, ranging from 28% 
to 34% of the OpenSim-estimated peak L5-S1 compression 
force. 

IV. DISCUSSION 

This study presented a biomechanical modeling method for 

estimating L5-S1 compression forces based on joint angles 

obtained from a markerless motion capture system during 

dynamic lifting tasks. To evaluate the performance of this 

method, its output was compared to compression force 

estimates derived from OpenSim, which served as the 

reference. 

Analysis of the estimated compression force time series 

revealed generally similar trends across methods prior to lift 

initiation (Fig. 4). However, noticeable discrepancies in force 

magnitude were observed during the phase in which the 

participant returned to an upright posture, across all lifted loads. 

Several factors may contribute to these differences. The CF-ML 

method relies solely on gravitational loads from upper body 

segments and the lifted load, along with a single equivalent 

extensor muscle force, all estimated based on upper body joint 

angles. This approach does not account for muscle co-

activation, distribution of forces across multiple muscles, or 

passive intervertebral stiffness, all of which contribute to spinal 

loading and are modeled in OpenSim modeling. These 

simplifications likely contribute to the underestimation of 

compression forces during the post-lift ascent phase. Also, it 

should be noted that a previous validation study reported RMSE 

values of 6.5°, 12.9°, and 11.6° for the back, shoulder, and 

elbow joint angles, respectively, in the sagittal plane, when 

comparing this markerless motion capture system to a marker-

based optical system [15]. Since the CF-ML highly relies on the 

joint angle measurements, errors in kinematic estimation 

directly affect the accuracy of the computed L5-S1 compression 

forces. We assessed the impact of ±6.5° back angle uncertainty 

on L5-S1 compression through an error propagation analysis. 

Peak load differences averaged 4.3%, 2.8%, and 3.1% for 5, 10, 

and 15 kg, with absolute differences of 106, 85, and 89 N, 

respectively. Furthermore, CF-ML method assumes static 

equilibrium at each time frame, while the static optimization 

approach incorporates the full dynamics of motion. It should be 

noted that the term "static" in this method used in OpenSim 

refers to the optimization formulation and does not imply a lack 

of motion-related dynamics. Previous studies have shown that 

incorporating inertial effects can substantially increase the 

estimated peak moments at the L5-S1 joint [22]. One study 

reported that inertial contributions can raise estimated 

compression forces by up to 60% compared to static 

calculations [23]. Additionally, it was found that under certain 

lifting conditions, peak moments may occur later in the 

movement cycle when dynamic effects are considered [22]. 

This observation aligns with the slight temporal lag in peak 

compression force seen in the OpenSim results compared to the 

CF-ML method estimates (see Fig. 4). 

Peak compression force estimates from the CF-ML method 

closely matched OpenSim results for 10 and 15 kg loads during 

both lifting and lowering. However, as shown in Table I, a 

notably large normalized peak loading error was present for the 

5 kg condition during the lifting phase. This discrepancy may 

be partly explained by the greater influence of muscle co-

contraction on L5-S1 loading during lighter lifts, compared to 

the contribution from external loads and gross segmental 

weights, which are the sole inputs to the CF-ML method. This 

may reduce the accuracy of CF-ML in estimating peak 

compression forces under low-load conditions. The primary 

objective of the CF-ML method is to support ergonomic risk 

assessment in field settings by enabling comparison of peak 

spinal loads against established safety thresholds for L5-S1 

compression. With the exception of the lifting phase for the 5 

kg condition, all peak compression force estimates exhibited 

normalized errors of 11% or less. While these errors correspond 

to relatively small absolute differences, 308.6 ± 134.3 N or less, 

TABLE I.  COMPARISON OF L5-S1 COMPRESSION FORCE ESTIMATION ERRORS BETWEEN THE MARKERLESS METHOD (CF-ML) AND OPENSIM 

REFERENCE VALUES FOR THREE LIFTED LOADS (5 KG, 10 KG, AND 15 KG), REPORTED SEPARATELY FOR LIFTING AND LOWERING PHASES. NORMALIZED 

VALUES ARE EXPRESSED AS A PERCENTAGE OF THE CORRESPONDING OPENSIM PEAK COMPRESSION FORCE. 

 

Lifting Lowering 

Peak loading error 

(N) 

Normalized 

peak loading 

error (%) 

Normalized 

RMSE (%) 

Peak loading 

error (N) 

Normalized peak 

loading error (%) 

Normalized RMSE 

(%) 

5 kg 778.1 ± 135.3 27 ± 4 28 ± 2 223.4 ± 61.3 8 ± 2 31 ± 6 

10 kg 101.3 ± 48.5 4 ± 2 28 ± 3 
308.6 ± 

134.3 
11 ± 5 34 ± 5 

15 kg 85.5 ± 98.8 2 ± 1 28 ± 4 136.4 ± 94.4 5 ± 4 31 ± 3 

 



caution should still be exercised when interpreting results that 

are close to established safety threshold values [6]. Also, further 

studies are needed to evaluate the accuracy of this method under 

lighter load conditions. 

This study has some limitations. The CF-ML method 

simplifies muscle contribution to a single extensor acting 

parallel to the spine with a fixed lever arm, neglecting other 

muscles and variations in muscle moment arms during 

movement. It also assumes static equilibrium at each frame, 

which may underestimate compression forces, particularly 

during mid-motion. CF-ML was only evaluated for symmetric, 

two-handed lifting and requires manual identification of the 

lifting and releasing instances, which may introduce variability. 

Additionally, Higher errors in peak compression force under 

light loads likely reflect the greater influence of muscle co-

activation relative to external loads. The study was conducted 

with a single participant, limiting generalizability. Future work 

should include more participants to validate the method, assess 

its accuracy for asymmetric tasks and light loads, and determine 

if a load threshold exists below which errors are unacceptably 

large. With a larger dataset, it may also be possible to develop 

load-specific correction functions to improve estimation 

accuracy, particularly under low-load conditions. 

V. CONCLUSION 

This study evaluated the feasibility of estimating L5-S1 

compression forces using joint angles from a markerless motion 

capture system, combined with anthropometric, sex-specific, 

and load-related inputs. The method produced peak force 

estimates comparable to OpenSim for 10 and 15 kg lifts, with 

normalized errors under 11%. While larger errors were 

observed at 5 kg, the approach shows promise for in-field 

ergonomic risk assessments, where ease of use and accessibility 

are critical. Further research involving more participants and 

varied tasks is needed to enhance the method’s accuracy and 

generalizability, particularly for lighter loads and asymmetrical 

movements. 
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