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Virtual Attention Points: Bridging Human Movement Characteristics
and Dexterous Robot Motion Generation

Abed Soleymani, Yafei Ou, Xingyu Li, and Mahdi Tavakoli

Abstract—In this study, we introduce Virtual Attention Points (VAPs)
as a novel technique for characterizing the essence of dexterous human
movements through mathematical encoding. This method focuses
on pivotal points to capture movement dynamics, resulting in the
generation of versatile and human-like motions for robotic systems. The
proposed method inspired by the idea of human movement primitives
(MPs) generates an interpretable low-dimensional representation for
a given complex movement based on a new encoding basis function.
Our approach achieves a remarkable 97% improvement in encoding
accuracy for dexterous demonstrations with agile maneuvers and
sharp turns, surpassing existing MP-based methods, enhancing the
precision of fine manipulation and elevating the fidelity of encoded
actions to the human movement. The precise replication of crucial
poses and underlying behaviors highlights the efficacy of our approach
in faithfully capturing the intricacies of expert human demonstrations.
Our approach also generates a meaningful and interpretable repre-
sentation of each demonstration, which encapsulates the skills-related
features for performance assessment purposes. We propose a novel
trajectory cloning algorithm that minimally warps various movement
demonstrations such that starting and end points of motions will be ma-
nipulated to desired locations. Our work holds transformative potential,
especially in enhancing surgical training and autonomous surgical
systems, where precision and human-like dexterity are paramount. As
surgical operations necessitate dexterous trajectories to execute specific
functional tasks like suturing, we implement the proposed method to
assess its performance in surgical skills and autonomous surgery tasks.

Index Terms—Dexterous Robotics, Trajectory Encoding, Generation,
and Optimization, Movement Primitives, Surgical Skills Assessment.

I. INTRODUCTION

New application areas for robots demand versatility in handling
complex tasks, whether autonomously or through collaboration
with humans in real-world environments. For example, in surgical
robotics, robots are expected to exhibit human-like behavior while
functioning autonomously to enhance human-robot communication,
integration, and co-adaptation. Human-like behavior of a
collaborative robot can directly enhance the quality of information
exchange between the human and the robot (communication),
enhance how the human’s decision-making process connects
with the robot decision-making process leverage this hybrid
natural-artificial intelligence fusion to improve the task performance
(integration), and facilitate a mutual adaptation process in which the
robot adapts to the human’s actions and vice versa (co-adaptation).
However, despite their fast actuators and real-time signal processing,
robots are still far behind humans who suffer from slow muscles
and neural delays in terms of dexterous object manipulation tasks
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[1]. In this paper, dexterity is referred to as the ability to follow
spatial trajectories with fast maneuvers and occasionally sharp turns,
such as tying a knot. Purely data-directed imitation learning (i.e.,
reliance on human demonstrations) in complex scenarios such as
(semi-)autonomous robotic surgeries does not necessarily generate
a natural and task-appropriate behavior in the real world [2].

In addition to dexterity, the optimality in terms of the minimum
effort or minimum wear and tear is another aspect of human-
performed tasks [3]. To achieve optimality in robot-performed
tasks, the perspective of incorporating optimal control concepts
may seem somewhat narrow, as such approaches primarily focus
on optimizing the performance of a single task.

By mimicking human-like motions, we aim to generate optimal
and dexterous trajectories for robots across a wide array of tasks.
These tasks may include encoding human hands’ demonstrations,
enabling robots to autonomously replicate closely-followed
trajectories (the main focus of this paper), or facilitating human-
robot interactions that emulate the natural dynamics observed
in human-human interactions (the focus of future work). To
this end, one elegant approach involves distilling the essence
of expert demonstrations into a compact and understandable
representation, allowing the robot to gain a tangible grasp of the
nuanced dexterity and optimization inherent in skilled trajectories.
This paper introduces a novel approach that translates complex
human demonstrations into simplified representations in code space.
This method not only reduces the complexity and computational
cost for downstream tasks, whether involving robot autonomy, task
optimization, or human-robot collaboration, but also preserves the
dexterity exhibited in the original demonstration and maintains the
optimal behaviors and skills of the human demonstrator.

One reason biological systems, such as humans and animals,
execute complex movements in a versatile and optimal manner,
is that motor trajectories in their nervous system are encoded in
terms of a combination of parameterized movement primitives
(MPs). This encoding serves as a crucial simplification for learning,
performance, and retention of complex skills [1]. MPs have simple
time profiles and can be viewed as attractors that contribute to
the variations within the trajectory. Recent research on patients
recovering after a paralyzing stroke and infant reaching behaviors
showed that their earliest movements were composed of simple
submovements with streamlined profiles [4]. The time between
adjacent submovements decreased and became more overlapped
as the stroke patients recovered or the infants became older [4].
Among all possible operators for combining MPs, linear vector
superposition of submovements has been shown to provide an
accurate description of human-performed trajectories [4].

In mathematical terms, MPs are a set of overlapping basis func-
tions through time that, by a proper linear combination, can produce
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a wide range of motion profiles. Such mathematical representation
of human movements dramatically reduces the dimensionality of the
trajectory by encoding complicated demonstrations onto the param-
eter space. This allows for efficient modeling of desired movements,
compact parameterization, fast trajectory generation, and motor
skills generalization. Such minimal expression of human trajectories
is ideal in terms of memory efficiency and computational considera-
tions for downstream robot control tasks (e.g., machine/deep learning
classifier/regressor or utilizing policy search algorithm for training an
agent) compared to storing all timestamps of a given demonstration.

The concept of MPs for representing human motor skills raises
an important question: what is the best basis function? The basis
should ideally have several properties, including but not limited to
the preservation of trajectory’s shape, explainability in human terms,
generalizability to new but similar situations, and low computational
complexity. The first trivial option is the famous monomial (power)
basis (i.e., [1, t, ..., tn]), which leads to spline fitting. However, spline
fitting might not be an intuitive choice, as spline parameters are
obtained by solving a set of intangible mathematical equations which
usually returns interrelated parameters [5]. Another choice is Gaus-
sian basis which leads to the popular approach of dynamic movement
primitives (DMP) [6] and its variants such as probabilistic movement
primitives (ProMP) [7] and compliant movement primitives (CMP)
[8]. In short, DMP approaches characterize a human demonstration
via a second-order dynamical system, formulated with position error,
velocity, and a nonlinear forcing term, to obtain the acceleration
profile of a smooth movement. The forcing term utilizes a Gaussian
basis to encode local variations within the demonstration. DMP-
based approaches require first and second derivatives of a trajectory
which can be a source of inaccuracy in human-performed trajectories
with high frequency content caused by sharp turns or hand tremors.
Additionally, DMPs have a relatively large number of hyperparam-
eters and to the best of the authors’ knowledge, there is no tangible
interpretation for the weights of the basis functions in the forcing
term. For more elaboration on DMP, please see Section IV-B.

Another choice for selecting basis functions is the Bernstein basis,
with its favorable geometric properties and computationally efficient
algorithms, which enables the trajectory generator to efficiently learn
demonstrations and enforce constraints along the robots’ trajectories
[9]. However, the Bernstein basis often falls short in accurately
encoding dexterous movements, leading to inefficiencies and errors
in applications demanding high precision, such as robotic surgery.
The inherently ultra-smooth nature of these approximations fails
to represent the abrupt changes characteristic of human-performed
trajectories, thereby necessitating an advanced encoding strategy
that can more faithfully replicate the nuanced movements involved.

Inspired by the aforementioned advantages of the MP theory and
to address the limitations of existing methods such as DMP, this
paper will outline a new basis function so that the resultant encoded
trajectory can execute complex movements in a versatile, energy
efficient, and adjustable manner and convey valuable insight into
the user’s behavior over a finite time interval, yielding numerous
useful properties that can be adopted in downstream tasks. The
proposed basis offers many advantages including but not limited
to: (1) it enjoys a trajectory shape preserving property specifically
for dexterous demonstrations, (2) the parameters learned from the
observed behavior can be associated with what we define as virtual

attention points (VAPs) of the user that convey tangible information
about the executive task and its temporally or spatially similar tasks,
(3) the generated VAPs provide an interpretable low-dimensional
representation of the original dexterous trajectory which facilitate fur-
ther optimization and trial-and-error learning of trajectories with low
computational demand. Please note that we primarily chose robotic
surgery applications to test our method due to its critical necessity for
generating trajectories to precisely mimic the nuanced movements
of expert human surgeon, ensuring error-free task execution during
delicate operations. Our work means robots will be able to perform
complex tasks with a level of precision closer to human capabilities,
making them safer and more effective for tasks like surgery and other
delicate operations. It should be noted that throughout this paper,
motion is represented in the Cartesian space or the robot’s joint space,
and it is assumed that there exists a low-level controller that converts
kinematic variables into motor commands (e.g. force or torque).

The outline of the remainder of the paper is as follows: In Section
II, motivations behind VAP method, its theoretical foundation,
and implementation details will be discussed. In Section III, the
applications of our proposed method in surgical skills assessment
and autonomous robotics will be presented. In Section IV, several
discussions about the properties and practical details of the proposed
method as well as comparative analysis with existing methods will
be investigated. Concluding remarks are provided in Section V.

II. METHODOLOGY

A. Motivation

Humans generate fast, dexterous, and optimal trajectories for
complex tasks in real world which are beyond the capability of exist-
ing MP encoding approaches. It has been shown that incorporating
human attention into the imitation learning of the robot can enhance
the dexterity and naturalness of the generated trajectories [2]. Such
attentive approach leads us to the idea of virtual attention points
(VAPs), or namely, primitive intent, which plays an important role in
human motion perception and action representation [2]. Beyond the
biological motivation, a compact and vectorized representation of
human motor skills in terms of specific basis functions can be consid-
ered as a feature extraction method. A properly-designed set of basis
function that generates VAPs allows for interpretable and explainable
knowledge discovery, targeted feedback, and enhances the model’s
transparency in downstream tasks [10]. Moreover, the VAP paradigm
is also in alignment with the attractor behavior of MPs, which shapes
local variations within trajectories, as discussed in Section I.

The central idea of VAP is shown in Fig. 1 in which a given
trajectoryP (t) starts at source pointσ and converges to sink ς while
being attracted by VAPs p1 and p2 by a given attention dynamics:
the mathematical equations that guide how robots focus on different
parts of a task. Two sample attention dynamics Ψ and Φ are
illustrated in Fig. 1(a) with different temporal width that specify the
attraction strength of each VAP as a time-dependent profile. Eachψi

and ϕi reaches its maximum peak at a specific time and diminishes
while gaining attraction towards the next VAP. The attractional
behavior of VAPs with attention dynamics Ψ is depicted in Fig.
1(b). The effect of attention dynamics on the generated trajectory is
shown in Fig. 1(c) with the same set of points σ→p1→p2→ς but
different attention dynamicsΦ. It can be concluded that more spread
attention dynamics result in smoother trajectories with less sharp
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Fig. 1: The concept of VAP in trajectories starting from the source point σ, converging to the sink point ς, while being attracted towards
attention points pi with specific attention dynamics. (a) Sample illustration of two different attention dynamics Ψ=[ψ1,ψ2,ψ3,ψ4]
and Φ= [φ1,φ2,φ3,φ4]. Attention dynamics represent the influence of each VAP on the trajectory over time, with Ψ being more
concentrated and Φ more spread out, indicating different strengths and durations of attraction. (b) The illustration of VAP for four points
σ→p1→p2→ς based on attention dynamics Ψ. (c) The effect of changing the attention dynamics Ψ to a more spread dynamics Φ
on the generated trajectory is shown; spread dynamics yield a smoother, less abrupt path. (d) The effect of changing attention point p2
on the trajectoryP (t) to a distant attention point p̂2 with the fixed attention dynamics Ψ illustrates how VAPs alter local trajectory shapes
depending on their locations and associated dynamics.

turns. Fig. 1(d) investigates the effect of VAPs on the generated
trajectory with a fixed set of attention dynamics. If we move p2
further to point p̂2, it generates stronger attractions that rigorously
affect the local shape of the trajectory. Each VAP is analogous to the
virtual nocking point of a bow and as the bowman pulls them back,
the bow string (trajectory) shapes accordingly.

The presented VAP paradigm intuitively makes sense from the
brain’s computational perspective. The human brain is not advanced
enough to simultaneously process all the incoming stimuli, to
generate the entire desired path, and execute it ahead of time. Such
attentive processing turns out to be a powerful natural heuristic
to constrain the search and computational demand, rendering the
general object manipulating problem doable for human and tractable
for robots [11].

B. Problem Statement

According to the encoding paradigm discussed so far, each
continuous trajectory, utilizing a proper basis matrix A as defined in
(3), will be mapped to a finite set of VAPs as coefficients. The basis
matrix A in general represents the fundamental building blocks of
a curve-fitting model, such as power or Bernstein basis functions.
Each basis function in A scales with corresponding control gains
(VAPs in our case) to reconstruct the desired trajectory with either
smooth or sharp transitions as required. In this way, each VAP
acts as a natural shape handle, permitting intuitive generation or
manipulation of the trajectory to satisfy the reconstruction loss.
This states that, for a given continuous trajectory F(t) on a time
interval t ∈ [t0, t1] and an error tolerance ϵ > 0, we want to find
a parametric polynomial curve PA

n (t) of sufficiently high degree
n with respect to basis A, such that

|F(t) − PA
n (t)| ≤ ϵ, t ∈ [t0, t1]. (1)

Replacing the time variable t in (1) with (t − t0)/(t1 − t0) maps
t ∈ [t0, t1] to t ∈ [0, 1] without changing the max norm of function
F(·). As a result, we can restrict our approximation to t ∈ [0, 1]

without loss of generality and definePA
n (t) by

PA
n (t) = σan0 (t) +

n−1∑
k=1

pka
n
k(t) + ςa

n
n(t), t ∈ [0, 1] (2)

where σ is source, ς is sink, pk are gain vectors, and ani (t) are
basis functions for all 0 ≤ i ≤ n. (2) can be represented in a matrix
multiplication format as

F(t) ≈ PA
n (t)d×m = Pd×(n+1) A (n+1)×m

=

 − − − −

σ p1 ... pn−1 ς

− − − −


− an0 (t) −

...
− ann(t) −

 (3)

where d is the dimensionality of the trajectory F(t) encoded
by PA

n (t) and m is the number of its sample points which is
typically much larger than n. Finding points pi in matrix P in (3) is
equivalent to the problem of least squares fit of polynomialPA

n (t)
to the trajectory F(t) with the cost function of ||F(t)−PA

n (t)||22.
This problem has a unique solution:

P ≈ F(t)A† = F(t)A⊤
(
AA⊤

)−1

(4)

where A† is the pseudo-inverse of matrix A.

C. The Choice of Attention Dynamics

The choice of attention dynamics is fundamental to a successful
encoding procedure in terms of extracting meaningful and stable
attention points with minimal reconstruction loss. A in (3) should
derive benefit from several simple but important attributes. We
now briefly describe these key properties and reasons why they are
crucial for our attention dynamics.

1) Generated points in P should resemble VAPs in the executed
task, so the encoding approach benefits from the mentioned
advantages in Section II-A.

2) The final approximation presented in (3) should preserve
essential properties of the demonstrated trajectory F(t), such
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as monotonicity or convexity. This kind of approximation
is referred to as a shape-preserving approximation, which,
for our specific problem formulated in (1), should have two
following properties:

PA
n (ti) = F(ti), 0=t1<t2< ···<tm=1

sgn
(

dPA
n (t)
dt

∣∣∣
t=t̂

)
= sgn(F(tl+1) − F(tl)), t̂ ∈ [tl, tl+1]

for all l = 1, ···, m−1 [12]. This suggests that the polynomial
basis {ani (t)}ni=0 becomes normalized totally positive on
[0, 1] which yields

∑n
i=0a

n
i (t) = 1 and ani (t) ≥ 0 for

∀i = 0, 1, ..., n [13]. For such a basis, the total number of
sign changes ofPA

n (t) in (2) cannot exceed the total number
of sign variations in coefficients {ani (t)}ni=0. Therefore, the
resultant approximation will be specified as shape–preserving.
If property 1 holds, connecting consecutive points yields
the attention polygon, which can be viewed as a directed
graph of the user’s intent, sketching the caricature of the
original trajectory that exaggerates its shape. The assumption
that 0 ≤ ani (t) ≤ 1 maps the encoded trajectory inside
the attention polygon which is useful for analyzing and
manipulating the curve. Furthermore, this feature prevents
extreme extrapolations by bounding the trajectory in the
convex hull of attention points.

3) It is desirable that the encoded trajectory PA
n (t) starts from

the source at t= 0 and converges to the sink at t= 1. The
combination of this fact and property 2 suggests that an0 (0) =
ann(1) = 1. Due to the numerical rounding errors of the
pseudo-inverse operation in (4), the first and last columns of
the calculatedPmatrix (i.e.,σ and ς) exhibit a slight deviation
from the first and last points of the trajectory, namely F(t1)
and F(tm), respectively. As a practical perspective, we have
to manually set σ and ς to F(t1) and F(tm), respectively.

According to [14], if we use Bernstein basis for attention dynamics
A in (3) defined as follows

ani (t) :=

(
n
i

)
(1−t)n−iti =

n!

i!(n−i)!
(1−t)n−iti (5)

for ∀i=0,1,...,n, the generated points pi simulate VAP properties
discussed in Section II-A. These properties are illustrated in Fig.
1 for very smooth and simple but not dexterous trajectories. The
final estimation PA

n (t) based on Bernstein basis is optimally
shape–preserving, and the resultant attention polygon gives a better
sense of the trajectory shape than the polygon associated with any
other polynomial basis. This arises from the fact that property 2
makes A a column-wise stochastic totally positive matrix—i.e., its
elements are non-negative and sum to unity across each column [15]
(to see why this fact is correct, please refer to Appendix A). The
illustration of Bernstein basis for n=4 is provided asφi in Fig. 1(d).
Regarding the second required property, as it is clear from (5) and
graphical illustration in Fig. 1(d), we will have an0 (0) = ann(1) = 1.
The fact that each attention dynamics is exclusive for its attention
point or argmaxt a

n
i (t) = i/n is proved in Appendix B for

the Bernstein basis. Moreover, the Bernstein polynomial-based
approximation PA

n (t) is always at least as smooth as the given
demonstration F(t). In other words, if F(t) has Cr continuity (i.e.,
dkF(t)
dtk

exists and is continuous on [0, 1] for k = 1, ..., r) all

derivatives of PA
n (t) up to order r uniformly converge to their cor-

responding derivatives of F(t) [16]. In view of the above-mentioned
properties, the Bernstein basis is an ideal choice for attention
dynamics in the presented VAP trajectory encoding paradigm for
very smooth trajectories, however, as we will elaborate later, it may
not be optimal for encoding dexterous trajectories with sharp turns.

D. Contributions

Our methodology introduces significant improvements to
the problem of MP-based trajectory generation by utilizing the
explainable and mathematically intuitive features of Bernstein
basis to address challenges in encoding dexterous maneuvers and
sharp turns. Please note that trajectory encoding using the Bernstein
basis is not a new idea and has been applied in various domains,
including simple hand-reaching motion modeling [17], mobile
robot path planning [18]–[20], autonomous driving [21], [22],
and other fields, often referred to as B’ezier curves in computer
graphics. Our investigations suggest that, despite the aforementioned
advantages of the Bernstein basis, it may not be ideal for the
accurate and meaningful encoding of dexterous human hand
trajectories, particularly in the context of surgical trajectories. This is
attributed to the extra-smooth nature of B’ezier curves, which is not
analogous to the frequent abrupt changes observed in trajectories
performed by humans. This contradiction between the nature of
Bézier curves and that of human-performed trajectories causes three
main problems. First, to compensate for the ultra-smooth behavior
of B’ezier curves, the optimization (4) generates a far-reaching VAP
for sharp turns within the trajectory, which is not meaningful in the
human sense (we will elaborate on this later). Secondly, to maintain
tracking of the trajectory after a sharp turn, the optimization process
described by (4) generates an additional distant VAP in the opposite
direction, aimed at neutralizing the impact of the preceding far
VAP. The iterative back-and-forth pattern in attention points results
in a squiggly approximation for the trajectory, leading to the third
problem: high encoding error in the vicinity of sharp turns.

One contributing factor that renders the Bernstein basis imperfect
for encoding human trajectories is the substantial overlap between
bases. This overlap results in an ultra-smooth approximation but
comes at the expense of merging the attention effects of nearby
VAPs, where ‘near’ is defined in terms of order and not, for instance,
Euclidean distance. In other words, the significant overlap between
attention dynamics prevents samples on PBernstein

n (t) from exclu-
sively belonging to one particular VAP, resulting in the generation of
zigzag VAPs in the vicinity of sharp turns. To address this limitation,
we propose a modification to the Bernstein basis that regulates the
overlap between attention dynamics, resulting in meaningful VAPs
and accurate trajectory encoding. To achieve this, we multiply each
attention dynamics ani (t) by a Gaussian distribution centered at
t=i/n (the time at which the maximum value of ani (t) occurs, as
proven in Appendix B) with a variance of d/δ. The hyperparameter δ
will be determined for each given trajectory through an optimization
process aimed at minimizing the encoding reconstruction error. As
a result, the NBernstein attention dynamics is given by

zn,δi (t) :=
N
(
i
n ,

d
δ

)
ani (t)∑n

j=0z
n,δ
j (t)

=

(
n
i

)
N
(
i
n ,

d
δ

)
(1−t)n−iti∑n

j=0z
n,δ
j (t)

(6)



SOLEYMANI et al. VAPs: ENCODING OF HUMAN MOVEMENT CHARACTERISTICS 5

Fig. 2: The advantages of the proposed attention dynamics (6) compared to Bernstein basis in terms of encoding error and generating
meaningful attention points. (a) Trajectory encoding quality and reconstruction error based on Bernstein basis (0.25) versus (b) our
proposed attention dynamics (0.04), achieving an 84% improvement, especially in sharp turns and the right side of the trajectory. (c)
Attention points from (6) accurately replicate human focus on key trajectory segments, offering a more intuitive and interpretable approach
ideal for high-risk tasks like surgery, unlike (d) Bernstein basis, which lacks this intuitive alignment.

where
δ = argmin

δ

∣∣∣∣∣∣F(t)−P NBernstein
n (t)

∣∣∣∣∣∣2
2

(7)

and the denominator in (6) is included to satisfy the normalized
totally positive condition required for the final basis. Bases ψi in
Fig. 1(d) represent NBernstein basis, while ϕi represent Bernstein
basis. To introduce “spread” dynamics, we modify the Gaussian
component in (6) to allow for a broader or narrower focus on specific
VAPs. By adjusting the variance parameter δ, we control how
long each attention point pi influences the trajectory over time. A
higher δ value results in more spread-out attention dynamics, which
generates smoother transitions between VAPs, reducing abrupt
changes in trajectory, as shown in Fig. 1(c). For multiple VAPs, the
final attention dynamics balance all VAP effects over time. Each
VAP pi has a Gaussian component with a center and spread, where
adjusting variance δ controls the influence of each VAP, yielding
smoother or sharper transitions. The attention dynamics (6) exhibits
all three properties of the Bernstein basis discussed in Section II-C,
with significantly reduced encoding loss for dexterous trajectories.
Please note that our approach differs from related work, such as [23],
which assumes a Gaussian distribution over the weights of Bernstein
basis functions (i.e., elements of the matrix P) and attempts to learn
those parameters during the trajectory encoding process.

The VAP approach offers key benefits over direct trajectory
mimicry, especially for human-like, dexterous movements (see Fig.
2). Unlike curve fitting, VAPs simplify the trajectory into critical,
interpretable points, making it efficient, adjustable, and precise. Fig.
2 illustrates two advantages of the proposed NBernstein basis
compared to the original Bernstein basis—specifically, in terms of
lumped encoding error and the generation of meaningful VAPs
in human terms. Further comparisons of the advantages of the
NBernstein basis against other MP-based approaches, as discussed
in Section I, will be explored in Section IV-B. Please note that
Fig. 2 illustrates a realistic and challenging suturing task from the
JIGSAWS dataset [24]. This dataset includes skill-intensive tasks
performed by participants across a wide range of expertise, providing
a rigorous basis to validate our approach. Deeper and further
applications of the VAP method on complex trials from JIGSAWS
will be investigated in Section III, with additional theoretical and
practical details. According to Fig. 2(a) and Fig. 2(b), we achieved
63% reduction in reconstruction error (i.e., ||F(t)−PA

n (t)||2) for

the encoding of a minimally invasive suturing task and preserved im-
portant local variations within the trajectory. While visual differences
in Fig. 2(a) may appear subtle, the discrepancy on the trajectory’s
right side can impact high-precision tasks, like robotic surgery, where
even minor deviations risk task failure or error accumulation. More-
over, the NBernstein-based encoding avoids the issue of squiggly
reconstruction. This not only reduces the reconstruction error but
also mitigates the risk of potential danger arising from unnecessary
and uncontrolled motions, particularly in safety-critical tasks such
as autonomous robot-assisted surgeries. The NBernstein attention
dynamics also outperforms the Bernstein basis in terms of generating
more meaningful and interpretable VAPs. This issue is illustrated
in Fig. 2(c) and Fig. 2(d). As illustrated in Fig. 2(c), the generated
VAPs for the trajectory based on the NBernstein basis form a rough
sketch of the trajectory and are situated in its vicinity. Furthermore,
we observe distant VAPs for sharp turns and nearby ones for smooth
and predictable segments, aligning with our intuitive expectations.
However, as depicted in Fig. 2(d), the VAPs generated by the original
Bernstein basis can reach magnitudes on the order of 109 meters for a
simple minimally invasive surgery task. In addition to the previously
mentioned problems, this behavior is not intuitive in human terms.
Please note that this issue is specific to dexterous trajectories. For
super-smooth motions, such as reaching tasks, there is no significant
difference between NBernstein and the Bernstein basis in terms of
reconstruction loss or interpretability of generated VAPs.

E. Properties of the VAPs

Building upon the simplicity and intuitiveness of the VAP
approach in encoding dexterous trajectories, there are no predefined
selection criteria for attention points; instead, these points are
dynamically determined and optimized by the intrinsic nature of
the expert’s demonstration. The inherent skills-related behaviors
exhibited during the demonstration, especially in how the user
performs maneuvers and addresses critical points in delicate
scenarios, guide the optimization process to generate explainable
and task-related attention points. The VAP approach also exhibits
other appealing properties and applications, as follows:

1) Spatial and Temporal Invariance: An interesting property of
the VAP encoding approach is that generating a scaled version of the
demonstrations does not require collecting new data or computations
from scratch; we can simply multiply all VAPs to create similar geo-
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metric trajectories. In terms of temporal invariance, we can generate
trajectories with an arbitrary number of sample points m based on
the given VAPs. The execution speed of the trajectory is influenced
by the assigned time intervals between consecutive timestamps.

2) Movement Recognition: Given the temporal and spatial
invariance of the VAP approach, trajectories that are topologically
similar tend to be represented by a similar set of VAPs. In other
words, trajectories that are similar in shape but differ in speed and/or
amplitude will result in a similar tensor of VAPs. This feature can
be incorporated into applications such as task identification and
classification of the user’s skill level, which will be elaborated in
Section III. Further theoretical and technical advantages of the
proposed VAP approach are detailed in the two following sections.

III. APPLICATIONS OF VAP TRAJECTORY ENCODING

A. Basic Application: Highlighting Surgical Skills

In this section, we will discuss how VAPs analyze the precision
and consistency of surgical trajectories, offering a nuanced and
reliable identification of surgical skill levels compared to prior
supervised and unsupervised methods. As emphasized in our
previous studies, dependable methods for autonomously assessing
surgical skills with informative and instructive feedback are crucial in
surgical training programs [10], [25]–[29]. Discovering skills-related
features that are meaningful in human terms is a fundamental step
in studying human performance trajectories and finding an effective
way for automating them [30]–[32]. In this section, we will show
that the amount by which a trajectory F(t) deviates from its ideal
smooth encoded polynomialP NBernstein

n (t) is expressive in terms of
revealing skills-related features of executed surgical tasks. Intuitively,
this deviation can be interpreted as the error between the human-
executed trajectory from its nearest machine-executed counterpart.
This suggests that encoding surgical trajectories using NBernstein at-
tention dynamics preserves connections with the underlying skillful
behaviors of the user, providing a meaningful and intuitive repre-
sentation of surgical trajectories. By concatenating the introduced
deviations for both translational (i.e., along the ı⃗, ȷ⃗, and k⃗ directions
in Cartesian space) and rotational (i.e., around the roll, pitch, and yaw
angles) components of each hand and feeding the resulting feature
vector to the t-distibited stochastic neighbor embedding (t-SNE)
data visualization technique, we will arrive at the illustration shown
in Fig. 3(c). To understand why we employ the t-SNE method,
please refer to [25]. As depicted in Fig. 3, the outcomes of this study
align with the previous skills evaluation results presented in Fig. 3(a)
and Fig. 3(b), which were published in [25] and [10], respectively.

At first glance, trials of the participants with the same level of
expertise (i.e., experts Exi, intermediates Ini, and novices Noi)
tend to cluster near each other. Furthermore, the trials of each user,
especially those of the experts, exhibit a high level of coherence,
indicating consistency in performing the executive task. In addition
to the interpretations mentioned earlier, the results presented in Fig.
3 align with the outcomes of the objective assessment of technical
skills method, known as global rating scores (GRS), assigned by
a professional gynecologic surgeon during a suturing task. For
instance, the trials of In2 cluster near expert trials, suggesting that this
user, despite the assigned skills class label, may have a higher level
of expertise comparable to experts. Please note that assigned labels
in JIGSAWS are roughly based on working hours with the da Vinci

Surgical Systems. This hypothesis is well supported by the fact that
GRSIn2 =3.1±0.57 out of 5 is very close to GRSEx1 =2.64±0.47
and GRSEx2

= 3.2± 0.3, and evidently higher than GRSIn1
=

2 ± 0.54 or other novice participants (GRSNo1 = 1.75 ± 1.07,
GRSNo2 =1.66±0.3, and GRSNo3 =2.8±0.84).

The merit of employing such an explainable approach, as opposed
to its purely data-driven counterparts that prioritize high classifica-
tion accuracy, lies in its ability to highlight the aforementioned label-
free information. Please note that our presented method, which uti-
lizes these meaningful representations, is unaware of the skills labels
of participants. In other words, both feature extraction and visualiza-
tion are entirely unsupervised. It is noteworthy that under situations
in which the assigned labels are coarse-grained (e.g., if a participant
has 20 to 100 working hours with the da Vinci Surgical System, they
are classified as intermediate regardless of their inherent skill level),
high-capacity classifiers such as deep learning models tend to be less
reliable as they try to extract features (or maybe artifacts) to classify,
for instance, In2 as intermediate when he/she is actually an expert.

B. Advanced Application: Autonomous Robotics

Autonomous robotic surgery remains an open research area due
to its clear technical challenges and issues arising from ethics and
regulation. In several instances, such as autonomous suturing or knot-
tying tasks, we heavily relied on expert demonstrations to generate
the final trajectory commands. Unfortunately, demonstrations are
imprecise, containing sharp turns, being contaminated with hand
tremors, and are not optimal. To overcome such challenges, we
require a trajectory encoding approach that returns the nearest
smooth trajectory to a given demonstration and encapsulates
dexterous maneuvers in terms of a low-dimensional representation
for tractable further optimizations.

We considered the 2D navigating task of the da Vinci Surgical
System through a squiggly narrow passage in a tissue phantom made
from plastisol. This phantom creates a soft environment similar
to a real surgical scene (see Fig. 4(a)). This task is a simplified
version of trajectory planning in a densely filled environment [33]
and simulates the blood suctioning task in a surgical scenario [34].
Moreover, in contrast to other simple surgical benchmark tasks
such as peg-in-the-hole or peg transfer, this task involves sharp
turns. In the following sections, we address and solve the technical
challenges associated with this task step by step.

1) Trajectory Cloning: One problem with human demonstrations
is that they are not exact. In other words, the source or sink points
may not be the same for several trials due to human errors (see
Fig. 4(a)). For the source, without loss of generality, we can address
this problem by setting all the initial points to zero (please note that
in our method, shifting trajectories will result in a corresponding
shift in their attention points). For the sink point, we need to
relocate it to the desired stop point while maintaining all the relative
variations within the trajectory. In simpler terms, we aim to shift
the endpoint and adjust all preceding trajectory points so that the
relative local variations within the trajectory remain unchanged
after the modification (see Fig. 4(b)). Having VAPs simplifies this
problem in terms of dimensionality, complexity, and computational
cost, as we can modify the VAPs instead of all trajectory timestamps.
This means we can set the sink to the desired endpoint and modify
VAPs while preserving their relative displacements. Taking minimal
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Fig. 3: Comparison of skill evaluation results across different methods using the JIGSAWS suturing task dataset [24]. Each subplot
visualizes the clustering of trajectories based on skill level, with t-SNE used to reduce dimensionality for clearer differentiation between
novice, intermediate, and expert performances. (a) Skills clustering from a previous domain-adaptive model [25], showing sharp
differentiation between skill levels. (b) Clustering from a surgical task-focused method [10], reflecting precision in skill classification.
(c) The proposed VAP-based approach, achieving similar sharp separation and consistent clustering.

Fig. 4: The process of trajectory cloning to address boundary point mismatches in human demonstrations. (a) Initial human demonstrations
in a 2D navigating task performed with the da Vinci Surgical System, highlighting variability in boundary point locations. (b) Adjustment
of a sample demonstration’s boundary points to align with desired targets, preserving key trajectory characteristics. (c) The outcome of
trajectory cloning across all demonstrations, showing consistent alignment to the intended boundary points while maintaining the original
movement patterns. (d) Result of applying the optimization method (13) to achieve a smoother, energy-efficient trajectory that retains
core trajectory variations from the demonstrations.

inspiration from the pose-graph optimization in the landmark-based
simultaneous localization and mapping (SLAM) problem [35], we
generate the incidence matrix as follows

CP =

 − − − −

ξ0p1
ξp1p2

... ξpn−2pn−1
ξpn−1ς

− − − −


d×n

(8)

where ξxy = y − x for arbitrary vectors x and y. In other words,
each row of CP contains all of the relative variations between
corresponding axes of source, attention, and sink points. If we
change ς to ς̄, rows of CP no longer are in the same direction of
their corresponding rows in CP̄. Our goal is to modify VAPs pi in
P to fabricate p̄i for all 1 ≤ i ≤ n−1 and create P̄ in such a way
that corresponding rows in CP and CP̄ are in the same direction
(i.e., identical local relative variations between VAPs before and
after the modification). As a result, our problem will turn into an
optimization problem as follows

p̄1, ..., p̄n−1 = argmin
p1, ..., pn−1

d∑
i=1

cosineLoss
(
CP

i,:,C
P̄
i,:

)
(9)

where CP
i,: and CP̄

i,: are ith rows of CP and CP̄, respectively.
The results of this approach are depicted in the transformation of
trajectories from Fig. 4(b) to those in Fig. 4(c). One interesting
observation is that the deviation resulting from the endpoint
modification diminishes as we backpropagate through the trajectory
in time. This procedure will clone a similar trajectory with identical
local variations compared to its ancestor but with a different endpoint.
This observation also makes intuitive sense: the user’s deviation
from the intended sink point does not occur instantaneously at
the end. The error onset happens before completing the task and
propagates while approaching the final goal. That is why modifying
the sink while keeping all VAPs the same is not a good idea.

2) Trajectory Curvature Constraints: Due to task constraints and
kinematic limitations, such as nonholonomic constraints in mobile
robots [36] or joint limits in manipulator robots [37], a feasible
end effector path must exhibit bounded curvature characteristics.
The curvature is the amount by which a curve deviates from
being a straight line; sharper turns result in higher curvatures.
Assuming each demonstration component (see Section III-B) as
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Fig. 5: t -SNE visualization of suturing trials using curvature
(κ) analysis for translational and rotational hand data. The plot
reveals an accurate skill-based clustering, with curvature features
distinguishing expertise. The same legend from Fig. 3 applies here.

F = [x, y, z]⊤, the curvature will be defined as

κ(F) :=
||Ḟ×F̈||2
||Ḟ||32

=

√∑
cyc (ẍż−z̈ẋ)

2(
ẋ2+ẏ2+ż2

)3
2

(10)

where the dot denotes differentiation with respect to the time
parameter t, ‘×’ is the vector cross product, and

∑
cyc denotes the

cyclic sum that cycles through all the variables x, y, and z. The
unit of κ can be interpreted as radians per meter. Additionally, we
can interpret the curvature of a curve as the reciprocal radius of
a circle with the same curvature tangent to the given point of that
curve—commonly known as the osculating circle, which is the
circle that best approximates the curve near this point.

In addition to the previously mentioned significance of curvature
in autonomous path planning and subjective studies on the relation-
ship between curvature and the user’s skill level [38], our observa-
tions suggest that the maximum value, minimum value, and temporal
variations of κ convey crucial information regarding the execution
quality of surgical tasks. Please note that due to the presence of a few
points in κ that are much larger than the bulk of the data (i.e., sparse
sharp turns within the trajectory), we investigate κ in logarithmic
scales to respond to skewness towards large values. To highlight the
temporal variation of κ, we use the fast Fourier transform (FFT) for
each trajectory component [27]. If we calculate the minimum and
maximum values of each component for two hands, concatenate
them with temporal features extracted by FFT, and feed the resultant
feature vector to t-SNE data visualization method, we will have an
illustration shown in Fig. 5. It is beyond dispute that the pattern of
surgical trials shown in Fig. 5 is similar to the patterns shown in Fig.
3. The consistency between the representation based on curvature
analysis and other surgical skills evaluation methods presented in
this paper and other work of authors reinforces the fact that trajectory
curvature analysis plays an important role in synthesising trajectories
for autonomous robotic tasks.

3) Trajectory Economy of Motion: As authors stated in [25],
trajectory economy of motion reflects the total energy demand for
accomplishing a task and is akin to the level of expertise of the
user, i.e., more energy economic motions reflects higher user’s
skills level. This is because surgeon’s high energy consumption
results in higher energy injection and higher execution velocity in
the patient-side robot which increases the risk of danger and trauma
in an operation. Inspired by [25], we define energy loss for a given

discrete trajectory τ [t] = {τi}Ti=1 as

LEnergy =
1

2

T∑
t=1

τ̇2[t] (11)

where τ̇ [t] and T are time derivative and the total number of time
samples of demonstrated trajectory τ [t], respectively. For further
details on this loss and possible complications, please read Section
II-C of the authors’ recent work [25]. It is worth mentioning that
although the clinically accepted metric of total path length [38] is
considered as a plausible skills-related feature, we do not consider
it in our optimization procedure. This is because empirically
and theoretically we observed that this constraint will force the
optimization algorithm to return a straight line which deteriorates
important variations within the trajectory (for the theoretical
proof see Appendix C). Moreover, based on (A.2) in Appendix
C, minimizing LEnergy as an upper bound for the total path length,
eventually minimizes the total path length of the trajectory without
destroying its valuable temporal variations.

4) Trajectory Optimization: In addition to the mentioned desired
improvements, it is crucial for the final optimized trajectory τ⋆ to
remain similar to the original demonstrations. As a result, the lumped
reconstruction error between τ⋆ and all of the demonstrations τ i

LRecons =
1

N

N∑
i=1

||τ⋆ − τ i||22 (12)

should be minimized in the trajectory optimization process as well.
As a result, the optimized trajectory τ⋆ will be achieved from the
following optimization

p⋆1, ..., p
⋆
n−1 = argmin

p1, ..., pn−1

( LRecons + αmax(κ)︸ ︷︷ ︸
LCurv

+ β LEnergy)

(13)
where α and β are weights determining the relative importance of
curvature and energy losses compared to the reconstruction loss,
respectively. The value of the hyperparameters α and β totally
depends on the precision of the task and physical properties of
the surgical environment (e.g., presence of sensitive organs or hard
objects such as bones).

5) Experimental Results: Due to the flexible environment of
the surgical scene shown in Fig. 4(a), we set α=5e−4 and β=50
to achieve a well-behaved trajectory in terms of energy demand
and curvature properties out of original demonstration with no
concern about damaging the surgical tool or tissue. We initialized
our optimization with the average trajectory τ̄ shown in 4(c) and
converged to the optimal trajectory τ⋆, as depicted in Fig 4(d), which
is 8.1% and 9.8% superior to the average of the total demonstrations
τ i (∀i = 1, 2, ..., 10) in terms of curvature properties and economy
of motion, respectively. Moreover, it exhibits minimal kinematic
deviation from its original human demonstrations (video).

IV. DISCUSSIONS

A. Encoding Manipulability

From another perspective, we can think of attention dynamics
A in (3) as a scaling factor of the input VAPs within matrix P to
produce the output encoded trajectoryPA

n (t). In this case it is ben-
eficial to isolate the element-wise amplitude of P to quantitatively

https://drive.google.com/drive/folders/1Kgze3Rg9XfCe_8kyf2nakn47aQ96Gzgc?usp=share_link
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Fig. 6: The advantage of NBernstein relative to the original Bernstein
attention dynamics in terms of enhanced encoding manipulability
µ. Lower µ values for N Bernstein indicate improved balance
in encoding, allowing it to handle sharp trajectory changes more
effectively without generating extreme virtual attention points.

characterize the nature of A. To do so, we assume that source, sink,
and all VAPs are located inside a unit hypersphere or equivalently

||σ||2, ||ς||2, ||pi||2 ≤ 1, i = 1, 2, ..., n. (14)

(14) yields

||σ||22 + ||ς||22 +

n−1∑
i=1

||pi||22 = Tr
(
P⊤P

)
≤ n+1 (15)

where Tr(·) is the trace function of a given matrix. According to
(4), we have

Tr
(
P⊤P

)
= Tr

([
F(t)A†

]⊤[
F(t)A†

])
= Tr

([(
A†
)⊤

F⊤(t)

][
F(t)A†

])
⋆
= Tr

(
F(t)A†

(
A†
)⊤

F⊤(t)

)
(16)

where equality (⋆) comes from the fact that the trace function
is invariant under cyclic permutations. If we replace A† with its
singular-value decomposition form, i.e., A† = UΣV, (16) yields

Tr
(
P⊤P

)
= Tr

(
F(t)

[
UΣVV︸︷︷︸

=I

⊤Σ⊤U⊤

]
F⊤(t)

)
= Tr

(
F(t)U

(
ΣΣ⊤

)
U⊤F⊤(t)

)
*
= Tr

(
ζΣ2ζ⊤

)(15)
≤ n+1

(17)

where I is identity matrix, ζ=F(t)U, and (∗) holds since Σ is a
diagonal matrix. Considering ℘2

0, ℘
2
1, ···, ℘2

n as diagonal elements
of Σ2, (17) yields

n∑
i=0

w2
i

n+1
℘2
i ≤ 1 (18)

where wi are constant weights from matrix multiplications and trace
function in (17) and ℘i are singular values of matrix A† that shape
the diagonal elements of matrix Σ. Since we have

A =
(
A†
)†

= (UΣV)
†
= V†Σ†U† **

= V⊤Σ−1U⊤, (19)

singular values of A are equal to ℘−1
i . Please note that equality

(∗∗) holds from the fact that U and V are orthogonal matrices and
hence, their pseudo-inverses are equal to their transpose. In this way,
(18) represents the equation for an axis-aligned hyperellipse in a

new coordinate system obtained by rotating (i.e., via multiplying
matrices U and V) and scaling (i.e., via multiplying matrix Σ)
the original hypersphere introduced in (14). In other words, source,
sink, and VAPs defined under the condition (14) will generate the
encoded trajectory PA

n (t) inside the hyperellipse (18) with the radii
of ℘−1

i , i=0, 1, ..., n, which according to (19) are singular values
of attention dynamics A.

One elegant investigation here is examining the shape of
hyperellipse (18) to investigate whether its radii are proportionate
or not. For a given attention dynamics A, we define its encoding
manipulability as

µA=
max(℘−1

i )

min(℘−1
i )

=
max(℘i)

min(℘i)
. (20)

For large values of µ, we end up with a hyperellipse which is
simultaneously very thin and very stretched in particular directions.
This means that under the confined VAPs assumption, the maneu-
verability of encoded trajectory PA

n (t) in thin directions is very
low and basis A fails to accommodate large and abrupt variations
in those directions. As a result, the algorithm needs to generate
far VAPs to compensate the attention dynamics shortcomings in
those directions which is the source of other encoding problems
that was elaborated previously. On the other hand, when µA

decreases and approaches to 1, the hyperellipse transfigures to a
hypersphere (or isotropic hyperellipse) and we have a balanced
space for accommodating desired trajectories with variations in
arbitrary directions which results better encoding manipulability.

As shown in Fig. 6, the proposed NBernstein attention dynamics
enjoys better encoding manipulability (i.e., low µNBernstein

value de-
fined in (20)) compared to the original Bernstein basis for all possible
polynomial orders. Moreover, as the hyperparameter δ defined in
(6) increases (i.e., less overlap between bases), the µNBernstein metric
decreases as well. One may question that why we do not use familiar
power basis for our investigations. According to Fig. 7, NBernstein

attention dynamics for δ = 2 enjoys lower µ metric compared to
power basis for all polynomial with the order of n≥ 2 (since we
have at least source and sink points, the order of polynomial should
be at least 1). Please note that δ=2 is a conservative choice since
according to (6), each normal distribution has a variance equal
to the half of the length of the given trajectory which means a
mild affect on bases due to the long tail of N

(
i
n ,

d
δ

)
in (6). In

total, the proposed VAP approach benefits from better encoding
manipulability compared to the original Bernstein basis, power basis,
and, as will be shown in Section IV-B, the DMP method. This
enables more precise and skillful maneuvers around critical points of
interest, such as sensitive anatomical structures in robotic surgeries.

B. VAP vs. DMP

In this section we will highlight the advantages of our proposed
method compared to the popular trajectory encoding approach DMP.
The DMP formulation of a given demonstration y with forcing term
f is as follows [6]

ÿ = αy(βy(g − y) − ẏ) + f

where: f =

∑n
i=1ξiwi∑n
i=1ξi

x (g − y0)

ξi = exp
(
−(x−µi)/σ

2
i

)
, ẋ = −αx x

(21)
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Fig. 7: Relative encoding manipulability defined in (20) between
NBernstein and power attention dynamics for δ=2 and orders n≥1.
Lowerµ values indicate thatNBernstein achieves a more isotropic en-
coding space, balancing trajectory variations across all directions and
reducing the need for exaggerated VAPs to handle abrupt changes.

Fig. 8: Trajectory encoding performance of VAP approach vs. DMP.
The VAP method achieves significantly lower reconstruction error
for complex, sharp movements, thanks to basis functions tailored
for capturing rapid trajectory shifts and critical points of dexterity.

where g is goal point (i.e., sink), αyβy is the spring coefficient (or
the gain for P controller), αy is the damping term (or the gain for
D controller), and αx is the coefficient for the canonical dynamical
system, denoted as x which decays from 1 to 0 through time.
According to (21), the forcing function f is a normalized weighted
summation of Gaussian bases ξi that are activated as x converges
to zero. x in f is a diminishing term that benefits the stability of
the dynamical system and guarantees that the contribution of the
forcing term goes to zero when we approach to the sink point g.
The term g − y0 in f is spatial scaling term which is for the sake
of scalability of the solution and enables us to move the goal farther
away or closer to get a scaled version of the trajectory.

The first and the most important drawback of DMP compared
to our method is its need for sensing the acceleration profile of the
trajectory which can be troublesome in encoding human dexterous
demonstrations with high frequency contents caused by hand tremors
and sharp turns. This feature makes DMP to remain a good method
for robotic applications with streamlined monotonic movements
realized with symmetric bell-shaped velocity profiles such as
reaching tasks or wheeled robot motions. Fig. 8 illustrates the fact
that our method with lower number of basis compared to DMP can
encode dexterous trajectories with 97% lower reconstruction error.
This limitation of DMP can be theoretically investigated via the
concept of encoding manipulability discussed in Section IV-A. As
shown in Fig. 9, for n ≥ 4 VAP encoding approach with NBernstein

basis enjoys lower encoding manipulability than DMP with Gaussian
basis. Since dexterous trajectories require high-order polynomial
estimations, our method significantly outperforms DMP in
generating accurate encoding for such complicated demonstrations.

Apart from such limitations, DMP has extra hyperparameters

Fig. 9: Relative encoding manipulability defined in (20) between
VAP encoding approach with δ = 2 and DMP for orders n ≥ 1.
Lower µ values indicate higher encoding flexibility of the VAP
approach compared to DMP to accommodate abrupt trajectory turns.

such as αx, αy, and βy which makes it hard for the user to tune
the model for achieving desired outcome. As mentioned in Section
I, there is no meaningful interpretation for weights wi of the basis
functions ξi as their temporal locations (i.e., µi) constantly change
with different values for αx. However, as we showed before, the
coefficients in our method can be viewed as VAPs of the user while
performing the task and convey rough but important information
about the executive trajectory.

Admittedly, DMP provides an online approach that enables real-
time adaptation of trajectories in response to changes in goal position,
orientation, or other parameters, making it robust in handling
variable environmental conditions and unstructured scenarios. This
makes DMPs particularly effective for tasks like robotic reaching or
grasping, where continuous, smooth adjustments may be required
mid-execution. However, in highly structured tasks such as surgical
procedures, a pre-planned, consistent trajectory is often preferable.
Our VAP approach, as an offline encoding method, captures intricate
details of dexterous tasks and enables precise, modifiable execution
speed without altering the trajectory in response to new information.
This makes it particularly suitable for robotic surgery tasks,
where adherence to pre-defined paths, such as suturing or incision
placements, aligns with procedural checklists, anatomical constraints,
and dexterity requirements inherent in the surgical environment.
Additionally, our VAP approach allows precise modifications
to execution speed, timing, and trajectory scaling within a
pre-planned framework, preserving time-accurate precision and
ensuring smoothness through the differentiable basis functions. This
guarantees first and second derivative continuity across the trajectory,
making it ideally suited for surgical tasks where consistency and
smooth, precise motion are critical. In terms of computational
efficiency, DMP is roughly twice as fast as VAP due to its simpler
basis function, making it ideal for real-time applications. For offline
tasks, however, VAP’s added processing time is justifiable, as it
delivers detailed trajectory encoding suited for pre-planned, intricate
movements, which don’t require real-time adaptability.

C. Connections Between LCurv and LEnergy

In (13), sharp turns or sudden uncontrolled motions within a given
trajectory will be penalized explicitly by LCurv and implicitly by
LEnergy by minimizing instantaneous changes between two consecu-
tive timestamps. Under these circumstances, one may wonder if one
of these metrics is redundant for the trajectory optimization process.
However, the ablation study on hyperparameters α and β shown in
Table I suggests that not only they are not redundant but also they
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TABLE I: Ablation study on the correlation of LEnergy and LCurv.

α β LEnergy reduction LCurv reduction LRecons

5e−4 50 11.1⋆ 5.3⋆ 1e−5
5e−4 0 1.3 4.1 6e−6
0 50 8.8 0.9 4e−6

have a positive correlation with each other and together, they generate
τ⋆ which is better than just optimizing one parameter at a time.

D. Limitations and Applicability

The VAP method is tailored to replicate human expert movements,
generally within a frequency range of approximately 20 Hz [27],
which aligns well with the natural dynamics of human actions
in dexterous tasks. This design enhances VAP’s suitability for
applications focused on human-performed tasks. However, this
frequency constraint may limit its ability to achieve high-fidelity
reconstruction for movements that exceed typical human motion
dynamics. For example, applications generating synthetic trajectories
or modeling rapid, non-human-like motions might not benefit
optimally from VAP’s encoding approach. Moreover, VAP may face
challenges when applied to datasets generated by novice users, who
may perform unpredictable or unsteady movements. These novice-
level actions often include random, jagged, or unintended motions,
as well as potential hand tremors, which can result in high-frequency
fluctuations. Such variability could hinder VAP’s ability to generalize
effectively and may lead to suboptimal reconstruction performance.
Researchers are advised to consider these limitations when applying
VAP to datasets that involve non-expert performers or high-
frequency actions outside the scope of expert-level human behavior.
Notably, these limitations do not contradict the primary focus of this
study, which is to accurately encode dexterous trajectories performed
by users with a baseline level of expertise, ultimately supporting
autonomous replication of such tasks in surgical and robotic settings.

V. CONCLUSIONS

A new basis function for encoding dexterous surgical trajectories
to the low-dimensional user’s virtual attention points was
presented in this paper. It has been demonstrated that the proposed
method outperforms other existing MP-based trajectory encoding
approaches, such as DMP, showing a 97% improvement in the
accuracy of encoding agile movements with possible sharp turns.
Such representation allowed us to investigate, preprocess, and
optimize a given demonstration in a tractable, meaningful, and
intuitive manner. Incorporating the VAP approach complemented by
the trajectory cloning algorithm improves the curvature properties
and economy of motion of the raw demonstrations by 8.1%
and 9.8%, respectively, resulting in the generality and enhanced
performance of the proposed framework for real-world applications.
According to performed experiments in the fields of surgical skills
assessment and autonomous robotic surgery, the performance of
the proposed approach was tested in practice. While VAP currently
handles non-periodic trajectories effectively, incorporating a periodic
variant—similar to periodic DMP models—could extend its utility
for repetitive surgical tasks. The introduction of VAPs as a basis for
encoding trajectories is not limited to robotic surgery; it also paves

the way for the development of dexterous robotic systems across
various application domains, including exoskeletons, collaborative
robots, and futuristic technologies such as games or virtual reality.

APPENDIX

A. Stochastic Totally Positivity of Matrix A

To prove that the matrix A is a column-wise stochastic totally
positive, we have to show that

∑n
i=0a

n
i (t) = 1 and ani (t) ≥ 0 for

∀i = 0, 1, ···, n and all t∈ [0, 1]. These facts will be proved by
the following expression:

1 = (t + (1−t))
n
=

n∑
i=0

(
n
i

)
(1−t)n−iti =

n∑
i=0

ani (t). (A.1)

B. Calculating argmaxt a
n
i (t)

According to (5), for i = 0 and i = n it is obvious that
argmaxt a

n
i (t) is equal to 0 and 1, respectively. Assuming that

0<i<n, we will have

dani (t)

dt
=

(
n
i

)
(1−t)n−i−1ti−1[i(1−t) − (n−i)t] = 0

⇒ [i(1−t) − (n−i)t] = 0 ⇒ t =
i

n
.

C. Trajectory Total Path Length and User’s Economy of Motion

According to the definition of the economy of motion for a given
trajectory τ = {τi}Ti=0 discussed in Section III-B3, we have

LEnergy =
1

2

T∑
i=1

(τi − τi−1)
2

⋆⋆
≥ 1

2T

(
T∑
i=1

|τi − τi−1|

)2

=
1

2T
L2
Path

(A.2)

where LPath is the total path length of the executive trajectory and
inequality (⋆⋆) is derived from the famous RMS-AM inequality.
(A.2) suggests that

√
LEnergy is an upper bound for LPath and

minimizing the total energy demand for executing the task eventually
minimizes the total path length. However, jointly minimizing total
path length and total energy demand is not a good idea since the
algorithm tends to generate straight line connecting the source and
sink points which might mitigate important temporal variations. This
is because equality for (⋆⋆) holds when all summation elements
in (A.2) become the same, i.e., |τi− τi−1| = |τj − τj−1| for all
possible i and j which under the constraint of minimizing the total
kinetic energy τ should be a straight line.
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