
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. FEBRUARY, 2025 1

Adaptive Trajectory Learning with Obstacle Awareness

for Motion Planning
Huaihang Zheng1,3, Zimeng Tan2, Junzheng Wang1, and Mahdi Tavakoli3, Senior Member, IEEE

Abstract—In motion planning, efficiently navigating from a
start state to a goal state in spaces with narrow passages
remains a significant challenge. Recently, learning-based methods
have attracted considerable attention owing to their higher
inference speeds compared to traditional approaches. However,
the variability in state distribution on the expert path hinders the
training of neural networks, while the overly dense states may
lead to redundant decision iterations and unsatisfactory planning
efficiency. In this paper, we present a novel deep learning
framework for motion planning, termed Adaptive Trajectory
Learning with Obstacle Awareness (ATOA). Instead of per-
forming the conventional state-wise supervision that approaches
the next state, we propose to learn the trajectory along the
expert path. This mechanism not only mitigates the model’s
dependence on the expert paths but also has the potential to
yield more effective planning solutions. Additionally, obstacle
information is explicitly integrated by penalizing predictions
with obstacle collisions. To further enhance the planning success
rate, we introduce a confidence-driven path correction (CDPC)
module to adjust the infeasible local paths. Extensive experiments
demonstrate the effectiveness and superiority of ATOA compared
to prior approaches in handling complex scenarios. We make
code available at https://github.com/ZHHhang/ATOA.

Index Terms—Deep learning methods, motion and path plan-
ning, adaptive trajectory learning, obstacle awareness

I. INTRODUCTION

THE core issue in motion planning involves finding a path
from a start state to a goal state within a space containing

impassable regions. The generated feasible path is typically
required to possess specific properties, such as minimal length
and compliance with the robot’s dynamics constraints. How-
ever, the complexity of the environment and constraints on the
paths significantly impact the computational burden. In many
cases, when goal states or surrounding environments change,
actuators need to halt their current actions and wait for the
motion planner to provide a new solution, which is undesirable

Manuscript received: September, 18, 2024; Revised December, 22, 2024;
Accepted February, 07, 2025.

This paper was recommended for publication by Editor A. Bera upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
supported in part by the Canada Foundation for Innovation, in part by the
Natural Sciences and Engineering Research Council of Canada, in part by
the Canadian Institutes of Health Research, in part by Alberta Innovates, and
in part by the National Natural Science Foundation of China under Grant
62173038.

1Huaihang Zheng and Junzheng Wang are with the Department of
Automation, Beijing Institute of Technology, Beijing 100081, China
hhzheng@bit.edu.cn; wangjz@bit.edu.cn

2Zimeng Tan is with the Beijing National Research Center for Information
Science and Technology, Department of Automation, Tsinghua University,
Beijing 100084, China tzm19@mails.tsinghua.edu.cn

3Huaihang Zheng and Mahdi Tavakoli are with the Department of Electrical
and Computer Engineering, University of Alberta, Edmonton T6G 1H9,
Alberta, Canada mahdi.tavakoli@ualberta.ca

Digital Object Identifier (DOI): see top of this page.

for real-time control systems. To address this, considerable
efforts have been dedicated to enhancing the computational
efficiency of motion planners [1], [2].

A key technique for accelerating planning is leveraging
prior experience to guide new planning tasks. This approach,
referred to as Learning-Based Motion Planning (LBMP), was
first introduced in [3]. In LBMP, classical planners or human
demonstrations are used to solve predefined problems, with
their solutions stored in a knowledge base. Once this repository
is established, learning-based planners learn from the stored
knowledge to generate feasible paths for new tasks. Initially,
LBMP was employed to enhance sampling distributions and
expedite the convergence of Sampling-Based Optimized Plan-
ners (SBOMP) [4]. Building upon this, Qureshi et al. [5]
developed a deep learning framework that iteratively predicts
subsequent states. Following this advancement, several plan-
ning neural networks tailored to specific scenarios have been
proposed [6]–[8].

Despite remarkable progress, several challenges still remain
in learning-based methods. First, a commonly used training
scheme is to approach the next state on the expert path [5], [6],
[9], where the expert path is typically generated by classical
algorithms and represented as a series of discrete points. While
classical algorithms yield near-optimal trajectories through
substantial computational effort, an important observation is
that a single trajectory can be represented by different sets of
discrete states. This variability poses a challenge to the training
of neural networks. Another issue is that mimicking the overly
dense states on expert paths may result in redundant decision
iterations, thereby reducing planning efficiency. Furthermore,
since the expert paths typically navigate around obstacles
to minimize path lengths, even small prediction errors can
lead to obstacle collisions, which is unacceptable in practical
applications [10]. That is, a single or few deviated predictions
during the step-by-step inference can cause an overall failure.
Therefore, an adaptive strategy to correct local paths involving
obstacle collisions is crucial for effective online planning.

To address these challenges, we propose a deep learning
framework called Adaptive Trajectory Learning with Obstacle
Awareness (ATOA) for motion planning. The key insight is to
replace the conventional training objective of learning the next
state on the expert path (referred to as path learning) with
learning the trajectory along the expert path (referred to as
trajectory learning). The latter approach enables the model to
adaptively learn intermediate states along the expert trajectory,
rather than strictly aligning with the discrete states on the
expert path, which not only mitigates the model’s dependence
on the expert paths but also has the potential to yield more
effective planning solutions. This mechanism is achieved by

https://doi.org/10.1109/LRA.2025.3544491



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. FEBRUARY, 2025

applying a state-trajectory deviation loss for trajectory approxi-
mation, a step length loss to maximize planning efficiency, and
a multi-class classification loss guiding the moving direction.
Additionally, an obstacle loss function is exploited to enhance
the planner’s spatial perception capabilities. During online
planning, a confidence-driven path correction (CDPC) algo-
rithm is introduced to reconstruct the infeasible local paths.

In summary, our main contributions are as follows:
1) We present a deep learning framework called ATOA for

motion planning, which adaptively learns the trajectory
along the expert path instead of the commonly used
state-wise supervision.

2) We propose an obstacle loss function to explicitly in-
tegrate the obstacle information by penalizing predicted
trajectories with obstacle collisions.

3) We propose a CDPC module to correct infeasible local
paths during online planning by selecting alternative
directions based on the predicted direction confidence,
which further enhances the planning success rate.

4) Extensive experiments in complex environments with
narrow passages demonstrate the effectiveness and su-
periority of ATOA compared to prior approaches.

II. RELATED WORK

Motion planning is a fundamental component for achieving
autonomous movement in robotics. Two popular categories of
classical algorithms are sampling-based planners [1], [11]–[13]
and optimization-based planners [14]–[17]. These algorithms
are widely used and can generate near-optimal solutions. How-
ever, as the dimensionality of the planning space increases,
the computational complexity escalates significantly, often
resulting in diminished performance.

In recent years, considerable interest has been shown in
integrating machine learning into motion planning. Some stud-
ies focus on optimizing specific modules in classical planners
[18], [19]. For example, Tenhumberg et al. [18] utilized net-
work predictions to warm-start an optimization-based planner.
Other researchers [20], [21] devoted to employing learning-
based method to bias sampling distribution in sampling-based
planners.

Beyond replacing specific modules in classical planners,
many researchers construct planners directly using neural
networks. This approach is known as Neural Motion Planning
(NMP) [22], [23]. Unlike classical algorithms, NMP is less
constrained by the dimensionality of the planning space and
enables rapid online planning at the expense of offline training
time. A mainstream approach in NMP is the supervised
learning-based planner [5]–[8], [22], which mimics the paths
generated by classical algorithms. As a pioneer, Qureshi et
al. [5] proposed an iterative planner network called MPNet.
Building upon this, MPC-MPNet [6] combined Model Predic-
tive Control (MPC), to address dynamically constrained prob-
lems. Despite their strengths, the effectiveness of these meth-
ods relies on the quality and quantity of expert paths. Another
category of NMP methods is reinforcement learning-based
planner, which has recently made breakthroughs in multi-
dimensional continuous motion planning [24]–[26]. However,

these methods face the challenge of escalating training diffi-
culty as planning accuracy and degrees of freedom increase.

III. PROBLEM DEFINITION

Following the definition in [27], let the n-dimensional state
space X ⊂ Rn consists of obstacle states Xobs ⊂ X and
permissible states Xfree = X \ Xobs. The goal of motion
planning is to identify a feasible path starting from a start
state xstart ∈ Xfree to a goal state xgoal ∈ Xfree, ensuring no
intersection with Xobs. In this paper, we represent the feasible
path as a tree structure T = (V,E), where the vertices V
are selected from Xfree and the edges E represent local paths
connecting pairs of vertices.

In practice, motion planning task typically begins in
workspace, as it is more intuitive for human perception. The
workspace W ⊂ Rm, also known as the environment, includes
obstacle regions Wobs and free regions Wfree = W \Wobs. The
start and goal points wstart and wgoal are initially specified in W
and subsequently mapped to the corresponding states xstart and
xgoal in the state space. The planner then constructs a feasible
tree T connecting xstart to xgoal, ensuring obstacle avoidance.

IV. ADAPTIVE TRAJECTORY LEARNING WITH
OBSTACLE AWARENESS FRAMEWORK

In this section, we present the Adaptive Trajectory Learning
with Obstacle Awareness (ATOA), which involves two phases:
(1) offline training with abundant pre-generated environments
and expert paths, and (2) online planning for adaptive predic-
tion using a confidence-based search strategy.

A. Offline Training

1) Network Architecture: As illustrated in Fig. 1, ATOA
consists of an environment encoder and a neural planner. The
encoder network E embeds the environment information into
a highly nonlinear latent space Z:

E(M)→ Z. (1)

The input environment is formulated as a binary map M,
with obstacle areas set to 1 and feasible areas set to 0. Based
on the convolutional neural network (CNN) architecture, the
encoder network involves five convolutional blocks and five
max-pooling operations alternatively, followed by three fully
connected layers. The convolutional layers progressively cap-
ture the fine-grained spatial details and abstract context.

The planner network, consisting of multi-layer perceptrons
(MLPs), takes Z as input and incrementally predicts a feasible
path. Detailed task definition are as follows.

2) Adaptive Trajectory Learning: The objective of ATOA is
to estimate a feasible path from the start state xstart to the goal
state xgoal, which is achieved step-by-step. That is, the network
is responsible for predicting an intermediate state x̃ from the
current state xc towards xgoal. Instead of the commonly used
state-wise supervision that enforces alignment between x̃ and
the next state on the expert path (termed path learning) [5], [7],
[9], we propose to infer the trajectory along the expert path
(termed trajectory learning). Trajectory learning enables the



ZHENG et al.: ADAPTIVE TRAJECTORY LEARNING WITH OBSTACLE AWARENESS FOR MOTION PLANNING 3

Latent space

Current State + Goal State

Environment mask

YFeasible

DMS

...

...

...

Convolutional

Batchnorm3d + ReLU

Fully Connected + ReLU

Max Pooling

Softmax

Predicted state

N

...

Environment Encoder Motion Planner

Fig. 1. Architecture of the proposed ATOA consisting of an environment encoder and a motion planner network. The n-dimensional state displacement is
described using hyperspherical coordinates. The planner network is responsible for norm regression and (n− 1) direction angle classification simultaneously.
p(θji )(i ∈ [1, n− 1], j ∈ [1, vi]) denotes the j-th predicted probability of i-th direction angle, where the i-th direction angle is divided into vi bins.

network to adaptively learn intermediate states, which not only
facilitates the model’s acquisition of the intrinsic properties of
trajectories but also has the potential to yield more effective
planning solutions.

Specifically, the state displacement from the current state
xc to the predicted state x̃ is described using hyperspherical
coordinates, and the network is responsible for norm ρ re-
gression and direction angle θ classification simultaneously.
Adaptive trajectory learning raises three key conditions: (1)
The predicted state x̃ is required to fall on the expert trajectory
while not necessarily aligned with the next state on the expert
path. (2) The direction θ should be oriented according to
the reference direction on the expert path. (3) The predicted
state is expected to have the maximum possible step length
ρ to minimize the number of iterations required to reach the
goal state. These conditions are achieved through carefully
designed loss functions, which are detailed below.

a) Trajectory Approximation: The intermediate state x̃
is encouraged to approach the expert trajectory E , which
is approximated as a series of discrete points e through
linear interpolation between neighboring states on the expert
path. The supervision is applied to the distance between the
predicted state x̃ and the nearest interpolated point e:

Ltra = min
e∈E
∥x̃− e∥2. (2)

b) Directional Consistency: The directional consistency
is built upon the assumption that the expert path indicates
the step-to-step movement direction from the start state to
the goal state. Specifically, the direction from the current
state xc to the intermediate state x̃ should align with the
direction to the next state xc+1 on the expert path. In an
n-dimensional state, the displacement between two states is
decomposed into a Euclidean norm ρ and (n − 1) direction
angles θ = [θ1, θ2, . . . , θn−1]. By equally dividing the feasible
range of i-th angle θi into νi bins, we convert the direction
prediction into a multi-class classification task, applying a
cross-entropy loss function to each direction:

Ldir =
n−1∑
i=1

Li
dir = −

n−1∑
i=1

νi∑
j=1

yji log p(θ
j
i ), (3)

where p(θji ) is the predicted probability for the j-th class
of the i-th angle, and yji denotes the ground truth label
that set to 1 for the correct class and 0 for the others. The
classification mechanism provides candidate directions along
with confidence probabilities, enabling the search strategy
to explore alternative feasible solutions when encountering
impassable sections, as detailed in Section IV-B2.

c) Maximizing Forward Efficiency: The objective is to
maximize the ratio of the distance between xc and x̃ to the
remaining path length from xc to xgoal on the expert path,
within the interval (0, 1]. This strategy allows for the largest
possible step length, thereby reaching the goal state with fewer
iterations. The loss is defined using a nonlinear function, where
the loss value decreases as the ratio approaches 1 and increases
when the ratio exceeds 1 to penalize outliers:

Lnorm = log(1 + exp(−k1(δ − 1))) + α(δ − 1), (4)

α =

{
0, if 0 < δ ≤ 1,

k2, if δ > 1,
(5)

δ =
∥x̃− xc∥2∑p−1

i=0 ∥xi+1 − xi∥2
, (6)

where x0 = xc and xp = xgoal, with (p − 1) intermediate
states on the expert path. k1 and k2 control the sensitivity of
the decrease and increase in values, respectively.

3) Obstacle Perception Module: Another crucial factor in
motion planning is obstacle perception. To enhance the spatial
modeling capability of the planner, we explicitly incorporate
obstacle information by penalizing predicted trajectories with
obstacle collisions. Specifically, obstacle regions Wobs defined
in the workspace are projected into the state space to form
Xobs. The boundaries A of Xobs are extracted to distinguish
the interior and exterior of the obstacle regions. The predicted
trajectory is formulated as a series of interpolated states
xp between the current state xc and the predicted state x̃.



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. FEBRUARY, 2025

Subsequently, the obstacle loss function is defined as follows:

Lobs =
1

Np

Np∑
p=1

exp

(
−k3 · ϕ(xp) min

xo∈A
d(xp,xo)

)
, (7)

ϕ(x) =

{
1, M(x) = 1,

−1, M(x) = 0,
(8)

where Np is the number of interpolated states. d(xp,xo) com-
putes the Euclidean distance between each interpolated state
xp and the obstacle boundary point xo. The sign function ϕ(·)
distinguishes between the interior and exterior of obstacles,
assigning higher costs to states within obstacles.

4) Total Loss: The total loss is derived by a linear combi-
nation of the individual losses, with λ1, λ2, and λ3 balancing
the contribution of each component:

Ltotal = Ltra + λ1Ldir + λ2Lnorm + λ3Lobs. (9)

B. Online Planning

This section introduces the online planning phase of ATOA,
as summarized in Algorithm 1. It involves several key com-
ponents: bidirectional path generation by the well-trained
planner network (PN), a direction and magnitude selection
(DMS) module, a state collision detection module (named as
IsFeasible module), and a confidence-driven path correction
(CDPC) strategy for reconstructing infeasible local paths,
which is outlined in Algorithm 2. We note that the input to
the IsFeasible module can be either a single state or a local
path, with the latter consisting of a series of discrete states,
each of which is checked to determine whether it lies within
the obstacle region Xobs.

1) Preliminary Bidirectional Path Generation (Alg. 1, Lines
1-16): Taking the start state xstart, the goal state xgoal, and
the latent embeddings Z as inputs, the planner network (PN)
conducts bidirectional path generation. This process is repre-
sented by three trees: TF = (VF , EF ) to grow forwards from
the start, TR = (VR, ER) to grow backwards from the goal,
and Ttotal = (Vtotal, Etotal) to combine TF and TR. The states
and the local path connecting corresponding states form the
vertices V and edges E, respectively.

The trees TF and TR are expanded alternately over
a total of Npre iterations (Lines 5-14). This is achieved
by swapping the roles of TF and TR in the end of
each iteration. Specifically, the output of PN consists of
a step length ρ and a direction probability matrix P =
{p(θ1),p(θ2), . . . ,p(θn−1)}T , with (n−1) angles. Each p(θi)
is composed of {p(θ1i ), p(θ2i ), . . . , p(θ

νi
i )}, where νi is the

number of divisions of the i-th angle and p(·) denotes the
estimated probability. The angle combination θmax with the
highest probability for each dimension (denoted as r = 0)
along with the estimated norm ρ forms the predicted state
displacement, pointing from the current state to the actual
state xnew (“Translate” function). xnew is then added to the
corresponding tree (Lines 7-10).

The process terminates if a feasible straight-line path exists
between V end

F and V end
R , which is checked by the IsFeasible

module (i.e., IsFeasible
(
V end
F , V end

R
)
, Lines 12 and 13). The

Algorithm 1: ATOA(xstart, xgoal,M)

1 E(M)→ Z;
2 TF = (VF , EF ), TR = (VR, ER), Ttotal = (Vtotal, Etotal);
3 EF ← ∅, ER ← ∅, Vtotal ← ∅, Etotal ← ∅;
4 VF ← {xstart}, VR ← {xgoal}, r = 0;
5 for i = 0 to Npre do
6 {ρ,P } ← PN(Z, V end

F , V end
R );

7 {ρ,θmax} ← DMS(ρ,P , r);
8 xnew ← Translate(ρ,θmax);
9 VF ← VF ∪ {xnew};

10 EF ← EF ∪ {(V end
F ,xnew)};

11 Ttotal ← Concatenate(TF , TR);
12 if IsFeasible(V end

F , V end
R ) then

13 break;
14 SWAP(TF , TR);

15 if IsFeasible(Etotal) then
16 return Ttotal;

17 else
18 Ttotal ← CDPC(Ttotal, Z);
19 if IsFeasible(Etotal) then
20 return Ttotal;

21 Tnew = (Vnew, Enew), Vnew ← ∅, Enew ← ∅;
22 for i = 0 to length(Vtotal)− 1 do
23 if IsFeasible(V i

total, V
i+1

total ) then
24 Vnew ← Vnew ∪ {V i

total, V
i+1

total };
25 Enew ← Enew ∪ Ei

total;

26 else
27 Tnew ← Tnew ∪ BIT∗(V i

total, V
i+1

total ,M);

28 if IsFeasible(Enew) then
29 return Tnew;

30 return ∅;

tree Ttotal, formed by combining TF and TR, is returned as
the final predicted path if all edges pass the IsFeasible module
without obstacle collisions (Lines 15 and 16). Otherwise, the
CDPC module is executed for local path correction (Lines 17-
20).

2) Confidence-Driven Path Correction (Alg. 1, Lines 17-
20 + Alg. 2): In this step, the IsFeasible module detects
and remove vertices in Vtotal that fall within the obstacle
region (Alg. 2, Lines 5-7). The edges that do not collide with
obstacles, along with their corresponding valid vertices, are
directly added to Tnew (Alg. 2, Lines 8-12). The remaining
unconnected vertices are subsequently processed for recon-
structing the infeasible local paths (Alg. 2, Lines 15-30).

Conditioned on the latent embeddings Z, CDPC follows
a bidirectional generation process similar to the preliminary
planning stage, taking unconnected adjacent vertices as new
start and goal state pairs. In each iteration, the DMS module
estimates the local path through a confidence-based search
strategy. Specifically, the angle probabilities p(θi) in P are
considered as independent distributions. The total probability
for each angle combination is calculated by multiplying the



ZHENG et al.: ADAPTIVE TRAJECTORY LEARNING WITH OBSTACLE AWARENESS FOR MOTION PLANNING 5

probabilities of its components. These probabilities are then
sorted in descending order, and the r-th highest probability is
selected. A threshold rmax is set to limit the number of search
attempts. Particularly, the predicted norm ρ is adaptively
adjusted to explore the space more cautiously with the lower
confidence (i.e., higher r), which is accomplished through a
dynamic weight w (Alg. 2, Lines 15-17):

ρ̃ = w · ρ, (10)

w =

[
(0.5 + k4) + (0.5− k4) sin

(
r

rmax
· π +

π

2

)]
, (11)

where k4 = 0.01 controls the maximum attenuation amplitude,
which is reached when r = rmax. Subsequently, the selected
angle combination θ̃ and the step length ρ̃ are combined to
form the predicted vertex. If a vertex or its corresponding edge
fails the collision detection by IsFeasible module, the new
vertex is discarded. The r value is then incremented by one,
and the next DMS exploration is awaited (Alg. 2, Lines 19-23).
Finally, CDPC outputs the corrected tree Tnew.

3) Replanning and Probabilistic Completeness Guarantee
(Alg. 1, Lines 21-29): Due to the difficulty of ensuring the
completeness of neural planners [10], planning failures may
occur in some cases. Therefore, we employ the probabilisti-
cally complete BIT* to replan the segments where the CDPC
module fails to find a feasible path. This scheme ensures that
BIT* operates efficiently without consuming excessive time.

V. EXPERIMENTS

In this section, we firstly evaluate the proposed method in
the 2D and 3D narrow passage environments. Ablation studies
are conducted on the training objectives and training data
preprocessing. Then, we extend ATOA to high-DOF robots
in both real and simulation scenarios.

A. Implementation Details

1) 2D/3D Dataset: We established 35 environment in both
2D and 3D scanerios, each facing the challenge of “narrow
passages”. We randomly generated 5,000 collision-free start-
goal pairs in each environment. In the first 30 environments,
feasible paths for the first 4,000 pairs were planned using
BIT* with a 5-second planning time limit per path and
allocated for training. The remaining 1,000 pairs in the first 30
environments, along with all pairs in the last 5 environments,
were designated for testing.

2) High-DOF Robot Dataset: We evaluated the proposed
method on Panda and Fetch robotic manipulators. For the
Panda robot, we established 20 environments in a laboratory
setting, with four open-top boxes randomly placed. We fixed
the last joint of the Panda robot and transformed the system
into a 6-DOF manipulator, resulting in a constrained planning
space. In each environment, we randomly sampled 50 end-
effector positions and computed collision-free configurations
via inverse kinematics. These configurations were paired to
form planning problems, with expert paths generated using
BIT*. Based on path lengths, the top 800 paths from the first
15 environments were selected as the training set, and the top
200 paths from the last 5 environments formed the test set.

Algorithm 2: CDPC(Ttotal, Z)

1 TF = (VF , EF ), TR = (VR, ER);
2 EF ← ∅, ER ← ∅;
3 Tnew = (Vnew, Enew);
4 Vnew ← ∅, Enew ← ∅;
5 for i = 0 to length(Vtotal) do
6 if IsFeasible(V i

total) then
7 Vtotal ← Vtotal \ {V i

total};

8 for i = 0 to length(Vtotal)− 1 do
9 if IsFeasible(V i

total, V
i+1

total ) then
10 Vnew ← Vnew ∪ {V i

total, V
i+1

total };
11 Enew ← Enew ∪ Ei

total;
12 continue;

13 VF ← {V i
total}, VR ← {V i+1

total };
14 r = 1;
15 for j = 0 to Nrec do
16 {ρ,P } ← NP(Z, V end

F , V end
R );

17 {ρ̃, θ̃} ← DMS(ρ,P , r);

18 x̃new ← Translate(ρ̃, θ̃);
19 if IsFeasible(x̃new) or not

IsFeasible(V end
F , x̃new) then

20 r = r + 1;
21 if r > rmax then
22 break;
23 continue;
24 VF ← VF ∪ {x̃new};
25 EF ← EF ∪ {(V end

F , x̃new)};
26 Tnew ← concatenate(TF , TR);
27 r = 0;
28 if IsFeasible(V end

F , V end
R ) then

29 break;
30 SWAP(TF , TR);

31 return Tnew;

The environment was represented as a voxel occupancy grid,
serving as the input of the network.

For the 8-DOF Fetch robot, two challenging datasets, “Thin-
Shelf” and “Cage” were generated on the MotionBenchMaker
[29] simulation platform. Each dataset comprises 40 environ-
ments, with 400 expert paths per environment planned by
BIT*, which were divided into a training set (30 environments)
and a test set (10 environments). The start state was defined
as the home (trunk) position of the robot, while the goal state
was a valid inverse kinematics placing the end-effector in
a grasping pose relative to a target object. Among different
environments, we varied the XY coordinates and related
orientation of the obstacles to the robot. Particularly, in the
test set, we partly customized the sizes of obstacles to enhance
planning complexity. Within each environment, variations in
the target object’s placement corresponded to different expert
paths.

3) Network Architecture: The encoder consists of 5 con-
volutional layers. The planner comprises a shared feature



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. FEBRUARY, 2025

TABLE I
COMPARISON OF BIT*, MPNET-SD, MPNET-LD, AND ATOA IN 2D AND
3D NARROW PASSAGE ENVIRONMENTS. RESULTS ON SEEN AND UNSEEN

TEST SETS ARE SHOWN OUTSIDE AND INSIDE PARENTHESES,
RESPECTIVELY. THE PERFORMANCE IS EVALUATED USING SUCCESS

RATE (%), PATH LENGTH, AND PLANNING TIME COST (IN SECONDS).

Method Success Rate Path Length Time Cost

2D

BIT* 100.00 (100.00) 47.02 (47.96) 1.81 (1.85)
MPNet-SD 53.25 (50.18) — —
MPNet-LD 82.33 (79.37) 44.33 (47.26) 1.36 (1.98)

ATOA 99.74 (99.10) 43.26 (44.17) 0.21 (0.24)

3D

BIT* 100.00 (100.00) 40.54 (42.09) 6.32 (6.19)
MPNet-SD 57.69 (42.63) — —
MPNet-LD 84.36 (81.35) 38.93 (39.12) 1.72 (2.28)

ATOA 99.45 (99.31) 36.95 (38.32) 0.26 (0.40)

extraction module, a norm regression module, and a multi-
head classification module to simultaneously regress the step
length and the (n− 1) direction angles. A Softmax operation
is appended at the end of each classification head. The number
of classes vi for the i-th head varies depending on the feasible
range of the direction angle in the system. During inference,
the center of the selected classification bin is used as the
predicted angle.

4) Hardware and Training Process: The experiments were
conducted on a 2.20 GHz 6-core Intel Core i7-8750H mobile
processor with 16GB RAM and an NVIDIA RTX 2060. The
neural networks were implemented using PyTorch and trained
on an NVIDIA RTX 3090. An Adam optimizer with a learning
rate of 0.0001 was employed for training.

B. Experiments in 2D/3D Datasets

In this section, we evaluate ATOA in both 2D and 3D
scenarios across seen and unseen environments. The “seen”
category refers to new start and goal state pairs within envi-
ronments encountered during training, whereas the “unseen”
category involves environments that were not included in the
training set. We compare the proposed method against an
advanced classical planner BIT* [1] and a learning-based
planner MPNet [5]. Specifically, BIT* was set to optimize
the path cost to within 110% of the ATOA path cost. If
ATOA fails to plan, there are no restrictions on BIT*’s path
cost. MPNet adopts the version described in [5], which uses
a voxel grid as the environment input. The ATOA and MPNet
(denoted as MPNet-SD) were trained using 200 randomly
selected paths from each environment in the training dataset.
To maintain consistency with the original version [5], we
retrained MPNet with 4,000 paths per environment (denoted as
MPNet-LD). Additionally, the classical planners in both ATOA
(as described in Section IV-B3) and MPNet were excluded to
ensure a fair comparison.

The planning performance is evaluated using the success
rate (%), path length, and time cost (in seconds), as listed
in Table I. The results on the unseen test set are shown
in parentheses. Due to the low success rate of MPNet-SD,
other metrics are not recorded, as a large number of difficult
cases with longer path lengths and more inference iterations
were not included in the analysis. It can be observed that:

(a) tA=0.26, CA=67.84,
tB=2.92, CB=67.41

(b) tA=0.29, CA=57.86,
tB=1.89, CB=57.43

(c) tA=0.31, CA=79.76,
tB=2.29, CB=78.89

(d) tA=0.23, CA=65.93,
tB=17.65, CB=65.45

(e) tA=0.37, CA=58.04,
tB=38.61, CB=58.03

(f) tA=0.35, CA=66.23,
tB=15.62, CB=65.57

Fig. 2. Qualitative comparison of ATOA (red) and BIT* (black) in 2D and
3D challenging environments. The planning times (t) and path costs (C) are
reported in each case, with red and green squares representing the start and
goal states, respectively. In these tasks, BIT* stops once it finds a path with
a cost no greater than that of the path generated by ATOA.

(1) ATOA achieves a higher success rate than MPNet and is
comparable to BIT*, which is attributed to the CDPC module
that corrects infeasible local paths by adaptively exploring
directions based on probabilities. (2) Compared to MPNet-
LD, ATOA demonstrates improved planning efficiency with
fewer inference iterations (e.g., 22.62 for ATOA and 262.76
for MPNet-LD on the unseen test set of 3D dataset) by
predicting the maximum possible step length. Under the 110%
ATOA’s path length constraint, BIT* requires significantly
more runtime to achieve satisfactory solutions, with runtime
increasing substantially as space dimensionality grows. (3)
ATOA requires less training data (around 5% of MPNet-LD),
indicating that the training objective of learning trajectory
can be more suitable for networks. (4) ATOA exhibits robust
generalization performance in unseen environments.

Fig. 2 presents challenging test cases where MPNet fails to
generate a feasible path within the limit of 1,000 iterations.
The red paths denote ATOA’s results, while the black paths
depict BIT*’s results when it first finds a solution with a
path length not exceeding that of ATOA. ATOA effectively
handles the complex environments and achieves significant
improvements in planning speed compared to BIT* with nearly
identical path lengths, especially in 3D settings.

C. Ablation Study

In this section, we conducted ablation studies on the unseen
test set of 3D dataset.

1) Training Objective: To verify the effectiveness of the
proposed method, we compared several variants of ATOA with
different training objectives: (I) regressing the state displace-
ment vector, (II) regressing the norm and unit direction vector
separately, (III) building upon (II), modeling the direction as a
(n− 1)-dimensional Gaussian distribution and estimating the



ZHENG et al.: ADAPTIVE TRAJECTORY LEARNING WITH OBSTACLE AWARENESS FOR MOTION PLANNING 7

TABLE II
ABLATION STUDY OF TRAINING OBJECTIVE ON THE 3D DATASET. THE
SUPERSCRIPT “⋆” DENOTES AOTA WITHOUT THE CDPC MODULE. SEE

SECTION V-C1 FOR THE DETAILED SETTINGS OF VARIANTS.

Variant Replanning Success Rate Path Length Time Cost

I ✗ 73.12 40.45 3.26
II ✗ 75.32 39.53 1.06
III ✓ 91.42 38.76 1.77

ATOA⋆ ✗ 80.18 38.05 0.38
ATOA ✓ 99.31 38.32 0.40

TABLE III
ABLATION STUDY OF TRAINING DATA PREPROCESSING.

Method Preprocessing Success Rate Path Length Time Cost

MPNet-LD ✗ 81.35 39.12 2.28
✓ 89.77 38.21 1.03

ATOA ✗ 99.31 38.32 0.40
✓ 99.68 38.15 0.39

controlling parameters, and (IV) based on (II), converting the
direction regression to a multi-class classification task (i.e.,
ATOA). The step length maximization loss (Eq. 4) is applied
in (II), (III), and (IV). Note that variant (I) and (II) do not
incorporate a replanning algorithm, as they cannot provide
alternative solutions. In variant (III), replanning mechanism
is achieved by resampling from the learned distribution. Both
performance of AOTA with and without the CDPC module
is reported, as shown in Table II. It can be observed that:
(1) Compared to the other objectives, direction classification
task (without CDPC module) achieves a sight performance
gain, which can be more favorable to the training of network.
(2) The replanning algorithm brings significant improvement
in success rate by reconstructing the infeasible predictions.
(3) The distribution-based approach (variant III) requires more
inference time than our method, as replanning via sampling
from the learned distribution introduces greater randomness.

2) Preprocessing of Training Data: Preprocessing training
data is a potential alternative to obtain effective solutions with
fewer intermediate states. We simplified the expert paths sim-
ilar to the shortcutting operation in the Open Motion Planning
Library (OMPL) [28]. After preprocessing, redundant states
on the expert paths are removed and the expert trajectories
are redefined with fewer states.

We compared the performance of MPNet [5] and AOTA
using both the original and preprocessed training data. The
results are shown in Table III, which indicates that: (1) Pre-
processing of training data leads to performance improvements
for both methods, particularly in terms of path length and time
cost metrics. (2) Even with the preprocessed training data,
AOTA demonstrates superior performance by directly learning
the reference trajectories and transcending the constrains of
expert paths. (3) The performance gains in AOTA are smaller
than MPNet, suggesting that ATOA is less dependent on the
quality of training data.

TABLE IV
EXPERIMENTS ON PANDA (REAL MANUSCRIPT) AND FETCH

(SIMULATION PLATFORM) ROBOTS. RRTC† DENOTES THE RRTC
ALGORITHM WITH LOCAL SIMPLIFICATION. FOR FETCH DATASET,

RESULTS ON THE ”THIN-SHELF” AND ”CAGE” DATASETS ARE SHOWN
OUTSIDE AND INSIDE PARENTHESES, RESPECTIVELY.

Method Success Rate Path Length Time Cost

Pa
nd

a RRTC† 88.10 78.34 13.54
FLAME 89.80 87.12 12.48

FIRE 92.30 83.34 8.98
MPNet-LD 83.50 63.41 7.63

ATOA 95.50 56.09 1.75

Fe
tc

h

RRTC† 75.30 (83.78) 49.48 (57.63) 43.15 (17.02)
FLAME 79.35 (88.65) 45.38 (55.25) 34.44 (15.58)

FIRE 84.35 (92.78) 44.38 (55.77) 13.82 (9.71)
MPNet-LD 68.10 (80.05) 43.91 (42.36) 9.26 (6.23)

ATOA 90.28 (94.33) 38.84 (39.58) 2.88 (2.47)

D. Experiments on High-DOF Robots
We further explored the effectiveness of ATOA in high-

dimensional state spaces on the Panda (in laboratory environ-
ment) and Fetch (on MotionBenchMaker [29] simulation plat-
form) robots. In addition to MPNet-LD, the proposed method
is compared with several state-of-the-art approaches: (1) RRT-
Connect (RRTC) [11] with local simplification, which is a
sampling-based bidirectional planner. The local simplification
is applied using the PathSimplifier operation in OMPL [28].
Although the inclusion of local simplification may slightly
increase the planning time of RRT-Connect, it significantly
reduces the average path length cost generated by RRT-
Connect. (2) FLAME [20], an experience-based algorithm
that leverages an octree-based environment decomposition to
estimate a global biased sampling distribution. (3) FIRE [21],
inheriting the insights from FLAME, which learns a similarity
function by extracting local representations from past solution
paths. FLAME and FIRE are both combined with a sampling-
based planner RRTC, where the learned distributions serve as
the basis for state sampling.

Quantitative comparisons are listed in Table IV, with several
predictions by our method illustrated in Fig. 3. Particularly,
sampling-based methods (RRTC, FLAME, and FIRE) are
theoretically capable of achieving a 100% success rate due
to their asymptotic completeness, but this is not achievable
in practical scenarios. Therefore, we set a timeout threshold
and consider planning to have failed if the planning time
exceeds this limit. It can be observed that the sampling-
based methods (RRTC, FLAME, and FIRE) typically exhibit
longer path lengths, as they do not continuously optimize
for path quality. In contrast, neural networks demonstrate
superior environmental perception and long-range modeling
capabilities, showcasing potential for quickly generating initial
trajectories. The replanning algorithm further enhances the
planning performance by correcting infeasible local paths. Ex-
perimental results demonstrate the superiority and robustness
of the proposed method, especially challenging scenarios.

VI. CONCLUSIONS
This paper presents a deep learning framework called Adap-

tive Trajectory Learning with Obstacle Awareness (ATOA)



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. FEBRUARY, 2025

Cage序号：1，3，5，7，9

bookshelf_thin序号：1，4，5，6，8

Cage序号：1，3，5，6，7，9

bookshelf_thin序号：1，4，5，6，7，8

一组6个（用在response中）

(a) Panda in Laboratory Environment

(b) Fetch on MotionBenchMaker Platform

Panda多的的倒数第二张

(a) Panda in Laboratory Environment

(b) Fetch on MotionBenchMaker Platform

(a) Panda in Laboratory Environment

(b) Fetch on MotionBenchMaker Platform

(a) Panda in Laboratory Environment

(b) Fetch on MotionBenchMaker Platform

(a)

(b)

(c)

(d)

Fig. 3. Qualitative results by ATOA on a) Panda in laboratory environment
and b) Fetch on the MotionBenchMaker simulation platform.

for motion planning. By replacing the conventional state-
wise training objective with trajectory learning, ATOA allows
the network to adaptively predict intermediate states, with
the potential for more efficient planning solutions. Obstacle
information is explicitly integrated by penalizing predictions
with obstacle collisions. CDPC module resolves infeasible
paths by exploring alternative routes based on direction con-
fidences. Experiments in both real and simulated experiments
demonstrate the superiority and effectiveness of ATOA. Future
work will include extending our method to partially observable
environments and multi-agent systems.

REFERENCES

[1] J. D. Gammell, T. D. Barfoot, and S. S. Srinivasa, ”Batch Informed Trees
(BIT*): Informed asymptotically optimal anytime search,” Int. J. Robot.
Res., vol. 39, no. 5, pp. 543–567, Apr. 2020.

[2] A. Knobloch, N. Vahrenkamp, M. Wächter and T. Asfour, ”Distance-
aware dynamically weighted roadmaps for motion planning in unknown
environments,” IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 2016–2023,
Jul. 2018

[3] D. Berenson, P. Abbeel, and K. Goldberg, “A robot path planning
framework that learns from experience,” in Proc. IEEE Int. Conf. Robot.
Autom., 2012, pp. 3671–3678.

[4] H. Ma et al., “Enhance connectivity of promising regions for sampling-
based path planning,” IEEE Trans. Autom. Sci. Eng., vol. 20, no. 3, pp.
1997–2010, Jul. 2023.

[5] A. H. Qureshi, Y. Miao, A. Simeonov, and M. C. Yip, ”Motion planning
networks: Bridging the gap between learning-based and classical motion
planners,” IEEE Trans. Robot., vol. 37, no. 1, pp. 48–66, Feb. 2021.

[6] L. Li, Y. Miao, A. H. Qureshi, and M. C. Yip, ”MPC-MPNet: Model-
predictive motion planning networks for fast, near-optimal planning under
kinodynamic constraints,” IEEE Robot. Autom. Lett., vol. 6, no. 3, pp.
4496–4503, Jul. 2021.

[7] J. J. Johnson, et al., “Dynamically constrained motion planning networks
for non-holonomic robots,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2020, pp. 6937–6943.

[8] G. Palomares, I. Becerra, and R. Murrieta-Cid, “Control inference neural
network for motion planning with dynamical systems,” IEEE Robot.
Autom. Lett., vol. 8, no. 12, pp. 8224–8231, Dec. 2023.

[9] F. Meng, L. Chen, H. Ma, J. Wang, and M. Q.-H. Meng, “NR-RRT:
Neural risk-aware near-optimal path planning in uncertain nonconvex
environments,” IEEE Trans. Autom. Sci. Eng., vol. 21, no. 1, pp. 135–146,
Jan. 2024.

[10] T. Barbie and S. Mukai, “ITIRRT: A decoupled framework for the
integration of machine learning into path planning,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., 2023, pp. 11313–11320.

[11] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in Proc. IEEE Int. Conf. Robot. Autom.,
2000, pp. 995–1001.

[12] A. M. Tahmasbi, M. S. Faghfoorian, S. Khodaygan, and A. Bera, “Zonal
RL-RRT: Integrated RL-RRT path planning with collision probability and
zone connectivity,” arXiv preprint arXiv:2410.24205, Oct. 2024. [Online].

[13] M. P. Strub and J. D. Gammell, “Adaptively informed trees (AIT*):
Fast asymptotically optimal path planning through adaptive heuristics,”
in Proc. IEEE Int. Conf. Robot. Autom., 2020, pp. 3191–3198.

[14] M. Zucker et al., “CHOMP: Covariant hamiltonian optimization for
motion planning,” Int. J. Robot. Res., vol. 32, no. 9-10, pp. 1164–1193,
Aug. 2013.

[15] D. Kularatne, H. Hajieghrary, and M. A. Hsieh, “Optimal path planning
in time-varying flows with forecasting uncertainties,” in Proc. IEEE Int.
Conf. Robot. Autom., 2018, pp. 4857–4864.

[16] J. Schulman et al., “Motion planning with sequential convex optimiza-
tion and convex collision checking,” Int. J. Robot. Res., vol. 33, no. 9,
pp. 1251–1270, Aug. 2014.

[17] B. Sundaralingam, et al., “CuRobo: Parallelized collision-free robot
motion generation,” in Proc. IEEE Int. Conf. Robot. Autom., 2023, pp.
8112–8119.

[18] J. Tenhumberg, D. Burschka, and B. Bäuml, “Speeding up optimization-
based motion planning through deep learning,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., 2022, pp. 7182–7189.

[19] N. Das and M. Yip, “Learning-based proxy collision detection for robot
motion planning applications,” IEEE Trans. Robot., vol. 36, no. 4, pp.
1096–1114, Aug. 2020.

[20] C. Chamzas, Z. Kingston, C. Quintero-Peña, A. Shrivastava, and L.
E. Kavraki, “Learning sampling distributions using local 3d workspace
decompositions for motion planning in high dimensions,” in Proc. IEEE
Int. Conf. Robot. Autom., 2021, pp. 1283–1289.

[21] C. Chamzas, A. Cullen, A. Shrivastava, and L. E. Kavraki, “Learning
to retrieve relevant experiences for motion planning,” in Proc. IEEE Int.
Conf. Robot. Autom., 2022: 7233–7240.

[22] A. Fishman, et al., “Motion policy networks,” in Proc. Conf. Robot
Learn., PMLR, 2023, pp. 967–977.

[23] W. Zhi, T. Zhang, and M. Johnson-Roberson, ”Instructing robots by
sketching: Learning from demonstration via probabilistic diagrammatic
teaching,” arXiv preprint arXiv:2309.03835, Sep. 2024. [Online].

[24] A. Faust, K. Oslund, O. Ramirez, A. Francis, L. Tapia, M. Fiser, and J.
Davidson, “PRM-RL: Long-range robotic navigation tasks by combining
reinforcement learning and sampling-based planning,” in Proc. IEEE Int.
Conf. Robot. Autom., 2018, pp. 5113–5120.

[25] S. Safaoui, A. P. Vinod, A. Chakrabarty, R. Quirynen, N. Yoshikawa,
and S. Di Cairano, ”Safe multiagent motion planning under uncertainty
for drones using filtered reinforcement learning,” IEEE Trans. Robot., vol.
40, pp. 2529–2542, Apr. 2024.

[26] P. Rousseas, C. P. Bechlioulis, and K. J. Kyriakopoulos, “Optimal motion
planning in unknown workspaces using integral reinforcement learning,”
IEEE Robot. Autom. Lett., vol. 7, no. 3, pp. 6926–6933, Jul. 2022.

[27] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846–894, Jun.
2011.

[28] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robot. Autom. Mag., vol. 19, no. 4, pp. 72–82, Dec. 2012.

[29] C. Chamzas, et al., “MotionBenchMaker: A tool to generate and
benchmark motion planning datasets,” IEEE Robot. Autom. Lett., vol.
7, no. 2, pp. 882–889, Dec. 2021.


