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Abstract—The rise of Large Language Models (LLMs) has
impacted research in robotics and automation. While progress
has been made in integrating LLMs into general robotics tasks,
a noticeable void persists in their adoption in more specific
domains such as surgery, where critical factors such as reasoning,
explainability, and safety are paramount. Achieving autonomy in
robotic surgery, which entails the ability to reason and adapt to
changes in the environment, remains a significant challenge. In
this work, we propose a multi-modal LLM integration in robot-
assisted surgery for autonomous blood suction. The reasoning
and prioritization are delegated to the higher-level task-planning
LLM, and the motion planning and execution are handled by
the lower-level deep reinforcement learning model, creating a
distributed agency between the two components. As surgical
operations are highly dynamic and may encounter unforeseen
circumstances, blood clots and active bleeding were introduced
to influence decision-making. Results showed that using a multi-
modal LLM as a higher-level reasoning unit can account for these
surgical complexities to achieve a level of reasoning previously
unattainable in robot-assisted surgeries. These findings demon-
strate the potential of multi-modal LLMs to significantly enhance
contextual understanding and decision-making in robotic-assisted
surgeries, marking a step toward autonomous surgical systems.

Index Terms—Medical robots and systems, multi-modal large
language models, surgical robot, planning, laparoscopy.

I. INTRODUCTION

ROBOT-assisted surgery (RAS) has enormously changed
the way many surgeons operate. Surgical robots can

enhance accuracy and dexterity, provide better anatomical
access, and minimize invasiveness, surgery time, and the need
for revision surgery [1]. With the development of surgical
robots and the da Vinci Research Kit (dVRK) [2], along
with realistic surgical simulation environments [3]–[5], the
automation of surgical sub-tasks such as tissue retraction [6],
suturing [7], endoscopic camera control [8], cutting [9], and
body fluid removal [10], has been an area of research in the
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Assistant:
Pool 1 has a blood clot and Pool 4 is actively bleeding.

Input Prompt by User:
Look at this image of multiple blood pools. Please 
prioritize and suction the blood effectively.

High-Level Reasoning and Task Planning

Low-Level Motion Planning

Response:
1. Pool 4
2. Pool 1
3. Pool 3
4. Pool 2
Explanation:
Pool 4 is actively flowing, so it should be cleaned first to prevent the liquid
from spreading further.
Pool 1 contains a blood clot, which might complicate the suction process 
or require special handling, so it should be addressed next.
Pool 3 is the largest remaining pool, so it should be cleaned before Pool 2 
to tackle the larger volume.
Pool 2 is the smallest and presumably the least complicated, so it should
be cleaned last.

1

2

3

4

Deep Reinforcement Learning Agent

T=0 T=2s T=4s T=6s

T=8s T=10s T=12s T=14s

Fig. 1: The high-level task reasoning and planning for the blood
suction task is performed by the LLM, and the low-level motion
planning and execution is done by the DRL agent.

past few years. These are the building blocks of surgeries
that form the foundation for enhancing bottom-up surgical
autonomy [11], [12], and automating these commonly faced
sub-tasks provides the basic robot skills necessary for reaching
a more advanced level of autonomy, including the ability to
reason and plan tasks.

Autonomous execution of surgical sub-tasks is typically
learned through model-based methods [13] or data-driven
approaches like deep reinforcement learning (DRL) [14] and
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imitation learning [15], [16]. However, these methods often
lead to behavior that lacks human interpretability, explain-
ability, and adaptability in decision-making. They prioritize
maximizing cumulative rewards and efficient exploration of
the state space but do not implicitly account for the risks
of the actions taken, thus failing to assure safety standards
[17]–[19]. Moreover, DRL and imitation learning struggle
with dynamic adaptability, particularly in scenarios where
surgical conditions deviate from the norm due to unexpected
patient anatomy or sudden complications such as bleeding.
This inability to reason and act in unforeseen circumstances
underscores the need for a reasoning framework that can
adapt to challenges, ensuring efficacy and transparent decision-
making in autonomous surgical tasks. As surgical sub-tasks
involve physical interaction with patients, any automation and
decision-making by the robot must be clear and understandable
by the operator, resembling human-like behavior to ensure
safety and reliability.

Autonomous surgical planning in robot-assisted sub-tasks
demands a human-like reasoning unit capable of pre-
operatively planning task execution and intraoperatively mod-
ifying the plan to accommodate unforeseen circumstances.
This approach would enhance the explainability of the robot’s
decisions and minimize associated risks. Large Language
Models (LLMs), trained on vast amounts of text data, have
revolutionized natural language understanding and have been
adopted in various domains beyond NLP, such as planning and
interaction for robots. They can serve as a high-level reasoning
unit, breaking down given commands into smaller subtasks
to be executed by the robot’s lower-level systems, including
motion planning and control.

Integrating LLMs into robots poses challenges due to their
struggle with real-world complexities. While LLMs offer
general knowledge and expertise, they lack a connection
to tangible reality, leading to errors and potentially unsafe
recommendations. Extracting information from LLMs for
robots requires balancing theoretical knowledge with prac-
tical understanding to navigate dynamic environments and
facilitate effective human-robot interaction. An agent needs
to comprehend semantic aspects of the world, the range of
available skills, how these skills influence the environment,
and how changes in the world map back to language [20].
The integration of robotics and LLMs, as introduced through
Google’s SayCan [21], PaLM-E [22], and more recent methods
[23]–[30], presents immense opportunities for exploration in
domains such as surgical robotics.

By leveraging multi-modal LLMs in a zero-shot manner,
in this work we aim to surmount the limitations of current
autonomous systems, introducing a level of reasoning and
adaptability previously unattainable in robot-assisted surgeries.
Integrating images with text allows the multi-modal LLM to
capture important visual nuances, such as spatial relationships
and the presence of surgical tools near blood pools, which
may not be fully conveyed through text alone. This integration
is pioneering, as it combines the theoretical knowledge of
LLMs with the practical demands of surgical environments as
identified and communicated by the medical staff. We propose
an LLM-powered framework capable of high-level reasoning,
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Fig. 2: System architecture.

mid-level motion planning, and execution for autonomous
blood suctioning in robot-assisted surgeries. The reasoning and
prioritization responsibility is delegated to the higher-level task
planning LLM, and the motion planning and execution are
delegated to the DRL model, leading to a distributed agency
between the two components. Expanding on the foundation
laid with autonomous blood suctioning, our vision extends
beyond this surgical subtask and sets a precedent for the future
of autonomous systems in the surgical field.

The main contributions of this work are as follows:
1) We propose an LLM-powered framework for au-

tonomous robot-assisted blood suction, where task rea-
soning and planning are managed by the LLM, while
motion planning and execution are handled by a DRL-
trained agent.

2) We compare the performance of LLM reasoning to
random reasoning and no reasoning modules in terms
of blood removal time and tool movement.

3) We analyze how augmenting the prompts with context
and expert-defined guidelines influences the reasoning
capabilities of the LLM in zero-shot prompting. A user
study is also conducted to assess the similarity to human-
like behavior across the three modules.

The paper is structured as follows. Section II reviews
the integration of LLMs in robotics and surgery and their
impact on these fields. Section III introduces the methods
used, including the system architecture, multi-modal LLMs,
prompt augmentation, the simulation environment, and the
deep reinforcement learning module. Section IV presents and
discusses the experiments and results. Section V outlines the
limitations and future work, while Section VI concludes the
paper.

II. RELATED WORK

A. Large Language Models in Robotics

In a pioneering work in LLM-Robotics integration, Google
introduces SayCan [21], a method that aims to extract knowl-
edge stored within LLMs for physically grounded tasks. The
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Fig. 3: An example of LLM reasoning with (LRWC) and without (LRWOC) context-based prompt augmentation. The guideline provided to
the LLM is as context is as follows: Address active bleeding first, consider pool size next, and address the blood clot pool last, as coagulation
ensures that flow in this pool has ceased and will not propagate further.

LLM, ‘Say’, breaks down instructions into subtasks and evalu-
ates each skill’s contribution likelihood. Affordance functions,
‘Can’, assess each skill’s success potential in the environment.
This approach combines these factors to determine the ef-
fectiveness of each skill in fulfilling the instruction. In their
later work, PaLM-E [22], they propose an embodied language
model that processes multi-modal sentences, blending visual,
continuous state estimation, and textual inputs, leading to the
integration of real-world continuous sensor data into language
models and creating a direct connection between words and
sensory experiences.

While these recent works have shown great advancement
in the integration of LLMs into robotics, they mainly focus
on general tasks such as object manipulation. More specific
application domains, such as robot-assisted surgery, pose new
and important challenges that need to be addressed to ensure
the safety of patients in surgical operations. For instance,
despite advancements, existing LLM applications have yet to
fully tackle the real-time adaptation and decision-making re-
quired in dynamic surgical settings. Nevertheless, the success
of LLMs in broader robotics tasks can lay a foundational un-
derstanding that is crucial when approaching more specialized
domains such as robot-assisted surgery where data is scarce.

B. Large Language Models in Surgery and Surgical Planning

LLMs can assist in surgical planning by analyzing vast
amounts of medical literature, patient data, and clinical guide-
lines to suggest the most appropriate surgical approaches. This
includes evaluating the risks and benefits of different surgical
options and considering patient-specific factors such as age
and previous surgical history and can be used in various
surgeries such as joint arthroplasty [31], oral and maxillofacial
surgery [32], and orthopedics [33]. It has the ability to process
and generate complex language-based instructions, enabling
bidirectional communication with the medical team in real-
time in an intuitive, fast, and natural way. This capability is
essential for improved decision-making in dynamic surgical
environments, where rapid and accurate communication is
crucial for patient safety and successful outcomes [34].

Although an initial step towards integrating LLMs in robotic
surgery has been made in SUIFA [35] through tasks such
as needle lift and shunt insertion, the current gaps in the

literature include the adoption of LLMs as reasoning units in
the planning process of surgical tasks where decision-making
is crucial. In this work, we investigate the reasoning capability
of LLMs in prioritizing the suction of multiple blood pools
under different circumstances and integrate them into robot-
assisted surgery for autonomous blood suctioning.

III. METHODS

A. Blood Suctioning Task and System Architecture

Blood is among the most frequent types of fluids encoun-
tered in surgical settings, as bleeding is a common and some-
times unpredictable occurrence during operations. Surgeons
typically need to address bleeding promptly by clearing the
area and pinpointing its source before proceeding with other
tasks. Suction of the blood with the proper tool becomes
necessary to extract blood from the surgical site. Consequently,
this task is indispensable and often consumes significant
time and effort, and automating this process reasonably and
safely can alleviate the burden on surgeons. In a dynamic
environment, such as the human body, fluids such as blood
move around, forming pools with different conditions. For
instance, characteristics such as active bleeding, blood clots,
variations in blood pool sizes, and the closeness of blood pools
to critical organs or surgical instruments affect the priority with
which they need to be suctioned.

As shown in Fig. 1, an image of the tissue scene containing
multiple blood pools is annotated with bounding boxes around
each pool and passed to the multi-modal large language
model, along with the text prompt, “Look at this image of
multiple blood pools. Please prioritize and suction the blood
effectively.” The proposed system architecture, illustrated in
Fig. 2, depicts how the multi-modal LLM, as the high-level
reasoning unit, uses its reasoning capability to prioritize the
order in which the blood pools need to be suctioned and
informs the masking sensor accordingly. The pools are masked
in the order that they need to be suctioned and then fed into
the trained DRL agent, which acts as the lower-level motion
planner, along with the tissue height map, and leads to an
action taken by the suction tool. In complex scenarios where
additional information is needed for the LLM to prioritize
suction, human input can augment the initial prompt with
context.
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B. Multi-Modal Large Language Models

Our methodology leverages multi-modal LLMs to allow
for information from diverse modalities, including text and
images. In multi-modal LLMs, textual data undergoes process-
ing through a standard language model architecture. Feature
embeddings extracted from image inputs are concatenated with
the textual embeddings, yielding a multi-input representation.
This fused representation is then fed into a multi-layer neural
network, facilitating joint learning across modalities. In this
work, we employed the pre-trained OpenAI GPT-4V model
[36] for image understanding and reasoning.

As shown in Fig. 1 and explained in the system architecture
section, the multi-modal LLM accepts a text prompt and an
image of the labeled blood pools. The prompt outlines essen-
tial details about blood pools, including the presence of clots,
and signs of active bleeding. Each of these aspects is crucial
in deciding the urgency of suctioning blood pools during
medical procedures. Size indicates the amount of blood, while
clots indicate coagulation and cessation of blood flow. Active
bleeding is a significant signal that could suggest the potential
for blood to spread more extensively. By incorporating these
factors into the prompt, we equip the multi-modal LLM with
essential context for making informed decisions regarding
blood pool suctioning. The LLM conducts reasoning based
on the image and the prompt, yielding the proper priority for
suctioning the blood, and explains why this priority is chosen
in a zero-shot manner. Our zero-shot approach allows the
LLM to generate relevant responses for each prompt without
specific training examples, relying on its general understanding
of language semantics and prompt cues to address previously
unseen conditions effectively.

In scenarios where we encounter a combination of factors
concerning blood pools simultaneously, such as when both
active bleeding and a blood clot exist in two of the pools,
the LLM may lack consistency in reasoning due to the lack
of training on medical data. To address this, we activate the
switch as seen in Fig. 2 and exemplified in Fig. 3, and augment
the prompt with additional contexts providing a guideline
for the model in generating a consistent priority in complex
scenarios. This approach remains in a zero-shot manner as
we refrain from furnishing the model with specific examples.
Instead, we enhance the prompt through context augmentation
as part of a prompt engineering process.

C. Blood Suction Environment and Mask Sensor Mechanism

In our recent work [10], a blood suction simulation environ-
ment for RL was built using position-based fluids (PBF) based
on Nvidia PhysX 5, Unity, and Unity’s ML-Agents toolkit.
PBF is an approach that represents fluids using a large number
of small particles that interact with each other. PhysX is a real-
time physics engine with GPU optimization, which allows for
PBF simulation. With PhysX 5 as the low-level physics engine,
the main simulation environment was built in Unity. In this
model, blood is simulated as particles influenced by forces like
gravity and suction, with a spherical cone-shaped force field
applied to particles near the suction tool. The force decays with
distance to realistically simulate suction, removing particles

(a) (b) (c)

(d) (e) (f)

Fig. 4: Simulation Environment 1. The LLM reasoning prioritizes
suctioning the pools based on their size in the absence of surgical
complexities such as active bleeding and blood clots as seen in (a)-
(f).

once they reach a specified height threshold. We leverage the
existing simulation environment and further build upon it in
this work.

The simulation environment consists of a randomly gen-
erated tissue that contains the blood, the simulated blood,
and a suction tool. We simulated a fixed amount of blood
(4000 particles) through PBF and added suction force to
each particle within a suction range to simulate the effect of
suction. Particles that are suctioned close enough to the suction
tool will be removed and marked as inactive. To introduce
randomness in the shape of the tissue, Bezier surfaces with
random control points were used to generate random shapes.
The Bezier surfaces are represented by

S(u, v) =
n∑

i=0

m∑
j=0

Pi,j ·Bn,i(u) ·Bm,j(v), 0 ≤ u, v ≤ 1 (1)

where Pi,j are the control points, and Bn,i(u) and Bm,j(v)
are the Bernstein basis functions defined by

Bn,i(x) =
n!

i! · (n− i)!
· xi · (1− x)n−i. (2)

In this work, several features are added to the simulation
environment, including a module that would allow blood
to continuously add to a random pool representing active
bleeding, the addition of a capsule-shaped object representing
a blood clot that would be randomly positioned on the tissue,
and the ability to generate multiple independent blood pools.
We also developed a blood pool detector algorithm that takes
in the raw image of the scene along with the suction orders
from the multi-modal LLM and outputs the mask of the target
blood pool based on the priority reasoned by the LLM. This
mechanism would allow the agent to plan the suction motion
of only the target pool and would blind the agent to other
existing pools unless commanded otherwise by the LLM.

We developed four simulation environments. In Environ-
ment 1, as can be seen in Fig. 4, four independent pools
are randomly generated without the presence of a blood clot
or active bleeding. In Environment 2, active bleeding occurs
randomly in one of the pools for a fixed time interval, with no
sign of a blood clot. Environment 3 features the introduction of
a capsule-shaped object representing a blood clot, randomly
generated near one of the pools, indicating coagulation and
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(a) Environment 1 (No blood clot or active bleeding)
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(b) Environment 2 (Only active bleeding)
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(c) Environment 3 (Only blood clot)
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(d) Environment 4 (Both active bleeding and blood clot)
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Fig. 5: Progression in blood suction in the four environments.

the cessation of potential bleeding. Finally, Environment 4 in-
cludes a pool actively bleeding, while another contains a blood
clot. To test the realism of our simulation environments, visual
comparisons with real surgical environments were conducted,
ensuring our model visually reflects the dynamics of blood
flow and bleeding during real surgical procedures.

D. Motion Planning Using Deep Reinforcement Learning

In our recent work [10], an RL agent for completing
autonomous blood suction was obtained. To train this agent,
we used the following reward function, which consists of a
reward for the amount of blood removed during each step, an
extra terminal reward for removing all blood, and an action
penalty for tool movements. The number of particles being
removed during each step is used to determine the amount of
blood being suctioned out.

r(st, at, st+1) = N t
p −N t+1

p + C1 δ(N
t+1
p )− C2∥at∥ (3)

In the above equation, t is the time step, N t
p is the number

of active particles, δ(N t+1
p ) denotes whether there are active

particles remaining, and ∥at∥ is the norm of the actions. The
weighting factors C1 = 5 and C2 = 0.02 were chosen to
balance task efficiency and control stability, emphasizing blood
removal while discouraging excessive motion. Specifically,
C1 is set to a higher value to prioritize the reward for full
blood clearance, encouraging the agent to complete the task
efficiently, while C2 is relatively small, penalizing movements
without restricting necessary adjustments. The observation
includes the tissue height map, the binary image mask of the
blood (stacked with 3 from previous steps), and the suction

tool location (stacked with 4 from previous steps). The binary
image mask of the blood is synthesized from the current
positions of all active particles in the blood.

IV. EXPERIMENTS AND RESULTS

We investigate four reasoning modules in our experiments.
When the LLM, as the high-level reasoning unit, reasons
the sequence for suctioning blood pools without any addi-
tional context, it is termed LLM Reasoning Without Context
(LRWOC). If additional context is provided by the assistant,
leading to an augmented prompt for the LLM, we call this
LLM Reasoning With Context (LRWC). When the DRL agent
receives a randomly generated order based on a random
permutation of the number of blood pools, this is known
as Random Reasoning (RR). If the DRL agent proceeds to
suction blood pools solely based on its reward function without
input from a higher-level unit, it is termed No Reasoning (NR).

A. Comparison of LLM Reasoning with Random Reasoning
and No Reasoning

To evaluate the performance of the RR, NR, LRWOC,
and LRWC modules, we simulated the blood suction task
across 400 distinct scenes (100 scenes per environment). Fig. 5
illustrates the blood remaining percentage over time, providing
a comparative analysis of the different reasoning modules
across different environments. Additionally, Table I presents
key metrics such as the mean and standard deviations of the
time to suction the actively bleeding pool in Environments 2
and 4 (TAB), the time to suction 50% (T50) and 95% (T95) of
the blood, and total tool path length (TTPL).
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(a) Environment 2 (b) Environment 4

*
*

*
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Fig. 6: Time to suction the actively bleeding pool (TAB) in Envi-
ronments 2 and 4 by different reasoning modules.

In Environment 1 (Fig. 5a), the LLM reasoning module
reasons that larger volumes of blood must be addressed
first and prioritizes suctioning the pools based on their size,
resulting in a more rapid initial suction compared to the other
modules leading to a faster average T50. The NR module
shows a gradual decrease in blood remaining by suctioning
parts of pools as it moves between them, while the LR and
RR modules prefer to suction one pool before moving to the
next, resulting in intervals where the slope decreases indicating
movement between pools.

In Environment 2 (Fig. 5b), where active bleeding is present
in one of the pools, the LLM reasoning module gives priority
to suctioning the pool with active bleeding first, even if it is
smaller than others. This approach results in a faster TAB .
After addressing the pool with active bleeding, the LLM
then proceeds to prioritize suctioning the pools based on
their size, similar to the strategy observed in Environment 1.
Providing additional instructions as the augmented prompt did
not change the LLM reasoning in Environments 1 and 2 and
the focus remained on prioritizing active bleeding, followed
by pool size. This resulted in the same LRWOC and LRWC,
denoted as LR.

In Environment 3 (Fig. 5c), the presence of a blood clot
adds complexity to suctioning. LRWOC tends to prioritize
the suction of the pool with the blood clot potentially due
to its perceived complexity. However, the user can define
rules for the LLM to follow, tailoring its reasoning to specific
conditions. For this environment, we establish the following
rule: 1) Address active bleeding first, 2) Consider pool size
next, and 3) Address the blood clot pool last, as coagulation
ensures that flow in this pool has ceased and will not propagate
further. An example of this is shown in Fig. 3. This context
leads to a faster average T50 in LRWC, prioritizing blood
pool size after active bleeding. In Environment 4 (Fig. 5d),
both LRWOC and LRWC modules start by suctioning actively
bleeding pools. LRWC prioritizes larger pools next and saves
the pool with the blood clot for last, resulting in a faster T50

compared to LRWOC, which targets the pool with the blood
clot before proceeding based on pool size.

Fig. 6 illustrates the time to suction the actively bleeding
pool (TAB) in Environments 2 and 4 and shows statistically
significant improvement (*) when LLM reasoning is used.
Table I shows that the LRWC module results in smaller
standard deviations across all metrics and environments, indi-

TABLE I: Key metrics in comparison of reasoning modules ex-
pressed as mean±std (Time step = 0.02 seconds).

TAB T50 T95 TTPL

Environment 1
RR – 225±82 570±128 33.9±3.2
NR – 164±38 557±110 32.4±4.1
LR – 145±30 554±101 32.5±2.8

Environment 2
RR 363±176 223±89 573±130 33.3±3.4
NR 390±174 154±37 514±106 31.5±3.9
LR 128±50 161±28 523±95 33±2.8

Environment 3

RR – 222±71 563±124 32.4±2.9
NR – 166±34 466±98 31.2±4.2

LRWOC – 239±58 541±103 32.4±3.0
LRWC – 151±23 553±100 32.7±2.9

Environment 4

RR 359±178 227±86 535±120 33.7±3.2
NR 393±172 155±34 462±104 30.4±3.8

LRWOC 130±49 179±55 509±93 33.7±2.9
LRWC 130±49 137±18 470±90 32.9±2.8

cating more consistent performance. Although the NR module
exhibited a marginally smaller average TTPL, its inability
to reason and adapt to unforeseen circumstances makes it
unreliable in highly dynamic surgical settings.

B. Advantage of Multi-Modal LLMs

To further demonstrate the advantage of the multi-modal
LLM, we conducted an experiment to test its ability to capture
contextual details that may not be explicitly provided in text.
In this experiment, we presented the model with 10 images in
which a surgical tool was positioned near one of the blood
pools, using our original prompt without any mention of
the tool in text. The multi-modal LLM correctly recognized
the presence of the tool in 80% of cases (8 out of 10)
and incorporated this visual information into its decision-
making process, placing this priority right after the active
bleeding pool. Unlike hard-coded logic, which lacks flexibility
in unforeseen scenarios, the LLM leverages context awareness
and visual information to adapt to these conditions interpreting
nuanced visual cues that a text-only input or a hard-coded logic
might overlook.

C. User Study on Closeness to Human-Like Behaviour

To assess the similarity to human-like behavior exhibited
by the RR, NR, and LRWOC modules during blood suction, a
survey questionnaire was conducted involving ten participants.
The participants, consisting of graduate students and senior
researchers with no specialized medical backgrounds, were
chosen to assess how well a non-expert-defined context aligns
with broader, non-specialist perspectives in evaluating the
behavior of the RR, NR, and LRWOC modules. A total of
thirty-six videos were collected for the survey, divided among
three reasoning modules (RR, NR, LRWOC), with each mod-
ule contributing twelve videos from four environments (three
videos per environment), showcasing the blood suctioning
task. Participants were presented with pairs of videos and
asked, “If you were the human operator, which of the two
videos shown below would you choose to suction the blood
pools?”. This forced choice questioning process was repeated
to compare all combinations of LRWOC versus NR versus
RR.
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A second user study survey involved collecting nine videos
each of LRWOC and LRWC (in Environments 3 and 4), which
were then presented to the participants with the same question.
A human performance score was defined as the number of
videos selected by the participants normalized by the total
number of videos, as shown in Fig. 7. The objective of these
surveys was to investigate whether LLM reasoning aligns more
with actual human decision-making than random reasoning
and no reasoning modules and also to assess how providing
our user-defined context impacts the LLM’s ability to mimic
human decision-making. This research was approved by the
University of Alberta’s Research Ethics Board under approval
ID Pro00139696.

A one-way analysis of variance (ANOVA) test was used
in the first survey and a paired t-test in the second survey
to establish statistical significance among reasoning modules,
as shown in Fig. 7. The first study yielded a p-value<0.001,
showing that LRWOC had significantly more human-like
blood suction behavior. The second study also resulted in a
p-value<0.001. The user study results, indicating a preference
for the LRWC over the LRWOC module’s decision-making,
suggest that incorporating contextual understanding in robotic
surgery could bridge the gap between automated procedures
and the intuitive decision-making of humans.

Although results show a promising stride towards explain-
able surgical autonomy, a thorough evaluation process includ-
ing clinical trials is essential to establish the efficacy and
safety of LLM-powered robotic systems in real-world surgical
applications. Additionally, the development of new training
protocols for surgical teams on interacting with and oversee-
ing LLM-enabled systems, along with intuitive interfaces for
surgeons to interact with and override the system’s decisions
when necessary, will be vital for adoption.

V. LIMITATIONS AND FUTURE WORK

While the proposed method demonstrates the effective-
ness of multi-modal LLMs in reasoning and decision-making
within a simulated environment, several limitations and areas
for future work remain, particularly for transitioning to real-
world applications in surgical settings.

This study assumed that blood pools are separate and
independent, simplifying interactions within the environment.
Additionally, the current system operates below real-time
performance due to the generation speed of OpenAI’s GPT-4V,
which constrains its immediate applicability in time-sensitive
clinical tasks. The physical experiments demonstrated in our
previous work in blood suction [10] show the real-world
execution of this task and hence were not the main focus of
this study.

Simulation-based environments, while inherently limited
compared to real-world settings, offer the critical advantage
of encompassing a wide range of scenarios, including rare but
pivotal situations that are difficult to consistently reproduce
in physical setups. This simulation-first approach provides a
foundation to test and refine the system’s decision-making
capabilities across varied conditions, setting the groundwork
for application in real surgical environments.

*
* *

Fig. 7: Comparison on closeness to human-like behavior of different
reasoning modules.

Applying this framework to real surgical contexts intro-
duces practical challenges, such as accurate segmentation of
blood from live camera images, real-time pose coordination
of surgical instruments, and adapting to the dynamic and
complex environment of an actual operating room. Future
work will address these challenges by refining and validating
the framework’s applicability in real surgical tasks, exploring
predictive mechanisms and pre-emptive prompts to prioritize
time-sensitive actions. To enhance real-time feasibility, model
distillation, quantization, and smaller, task-specific models will
be investigated, enabling the system to better align with the
operational demands of clinical practice.

Ensuring the accuracy and safety of LLM-based decisions
is another priority. LLMs are prone to hallucinations, which
could impact decision reliability. To mitigate this, future
iterations will integrate rule-based checks and domain-specific
constraints, as well as feedback loops from medical experts,
to improve the system’s robustness and decision accuracy in
high-stakes environments. Gathering insights from medical
professionals will also help assess the LLM’s alignment with
expert-defined surgical priorities, refining its adaptability to
clinical needs.

Safety in surgical tasks is essential, and the current frame-
work will be expanded to address this by incorporating
force-based thresholds to control tool speed and acceleration,
collision detection, and Safe Reinforcement Learning (Safe
RL) techniques, such as reward shaping and risk-sensitive
policies, to enhance safe tool proximity to sensitive tissues.
Additionally, to better handle dynamic scenarios, future work
will explore mid-sequence task re-planning to adapt to external
disturbances and refine LLM reasoning capabilities through
reinforcement learning from human feedback, ultimately im-
proving the framework’s scalability to other surgical and
medical tasks.

VI. CONCLUSION

In this study, we proposed a multi-modal LLM integration
in robot-assisted surgery for autonomous blood suction and
investigated how the addition of a high-level reasoning unit
can influence decision-making and performance. Experiments
were conducted to analyze LLM reasoning in comparison to
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random reasoning and no reasoning modules. Active bleeding
and blood clots were introduced to influence decision-making
as is also common in highly dynamic surgical settings. Results
showed that the presence of a multi-modal LLM as a higher-
level reasoning unit can account for these surgical complexities
in decision-making and prioritization to achieve a level of
reasoning and explainability previously unattainable in robot-
assisted surgeries. The user study showed that incorporating
contextual understanding in robotic surgery could bridge the
gap between automated procedures and the intuitive decision-
making of humans.
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