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Abstract—Recent applications of deep reinforcement learning
(DRL) in surgical autonomy have shown promising results in
automating various surgical sub-tasks. While most of these
studies consider the rigid and soft body dynamics in the surgery
such as tissue deformation, only a few have investigated the
situation where fluid is present. However, the presence of fluids,
particularly blood, is common in surgeries, and interacting
with them adds additional challenges to task automation. In
this work, we investigate the use of DRL in automating blood
suction, a common surgical sub-task where blood is removed
from the surgical field. We build a blood suction simulation
environment based on position-based fluids (PBF), train an
agent with domain-randomized environment parameters through
curriculum learning, and obtain a generalizable policy that can
be applied to various shapes of tissue and types of liquid. Real-
world experiments show that the agent can perform autonomous
suction in different tissue models with different amounts and
types of liquid, and only one of the 50 trials resulted in more
than 3 ml of blood remaining.

Index Terms—Medical robots and systems, reinforcement
learning, surgical robotics, laparoscopy.

I. INTRODUCTION

ALarge number of recent research in surgical robotics
focuses on the automation of surgical sub-tasks, such

as needle manipulation [1], [2], [3], suturing [4], [5], cutting
[6], [7], [8], vessel manipulation [9], tissue retraction and
deformation [10], [11], [12], [13]. However, most of these
studies focus on the manipulation of rigid and soft objects,
although fluid-related tasks are also common in surgeries, due
to the presence of body fluids, especially blood.

As bleeding is inevitable during surgery, blood is often
present in surgical scenes. In practice, surgeons usually clear
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Fig. 1. Sim-to-real transfer of a blood suction agent. (a) Snapshots from the
simulation environment and (b) Snapshot sequence taken from a real-world
trial.

up the field at times by suctioning blood out of the field using
a suction tool. Thus, it is an essential and common auxiliary
task that involves a considerable amount of time and effort
and leads to intermittent interruption of the primary surgical
operation. Therefore, automating this process can significantly
reduce the workload of surgeons.

Only a few studies have been conducted to automate blood
detection and removal in surgeries [14], [15], [16]. In [14], a
3D-printed soft robot manipulator is used for blood suction.
However, this work is focused on the design and control of the
robot manipulator, instead of the optimality of the generated
path for suction. In [15], optical flow is used to track the
blood flow from the image, and a trajectory for suction is
generated to maximize the ability to remove blood while
moving upstream toward the bleeding location. However, this
work uses a computational trajectory planner based on the
initial detected blood region and the flow, and the trajectory
is executed in an open-loop manner. The time spent on blood
detection and trajectory generation results in a response time
of a few seconds in trajectory planning, which is not ideal
when blood needs to be cleared instantly.

Authors of [16] implemented a differentiable position-based
fluids (PBF) model of the blood and used model predictive
control (MPC) to generate a suction trajectory that minimizes
a cost function determined by the distance between blood
particles and a target height. However, the requirement for
an accurate model of the bleeding surgical scene can limit
the use of this approach, as the quality of the planned
trajectory is affected by the accuracy of the model, making
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identifying an appropriate set of fluid parameters such as
cohesion necessary, which is typically challenging when using
PBF. Furthermore, the need for a differentiable simulator,
as well as the optimization process for solving MPC by
forward-stepping the simulation at each step, potentially limits
the scale of the problem that this method can address. For
instance, if tissue deformation and tool-tissue contact are
further considered, the forward-stepping of the simulation will
be more computationally expensive at each step.

Recent advances have shown success in applying deep
reinforcement learning (deep RL, DRL) to automating surgical
sub-tasks. RL is known for better adaptability and gener-
alizability, as it can continuously learn and adapt to new
scenarios without requiring a predefined model, potentially
handling unexpected variations in surgical environments more
robustly. Furthermore, it enables learning a model-free policy
that directly takes the raw sensory data as input, such as the
images, thereby reducing or eliminating the need for manual
feature extraction and is generally faster than model-based
approaches such as MPC during execution because of the fast
inference of neural networks.

In this work, we build a fast blood suction simulation
environment for RL using GPU-based PBF by leveraging
Nvidia PhysX1. We train an agent that utilizes a binary image
mask of the blood region and tissue shape as input to automate
blood suction. The agent is first trained in the simulation
environment, and then transferred to the real-world setup, as
shown in Fig. 1.

The main contributions of this work are as follows:
1) We build a blood suction simulation environment for RL

training using PBF based on Nvidia Physx 5, Unity, and
ML-Agents that enables randomized tissue shapes and
liquid parameters for curriculum learning;

2) While the task difficulty increases as the learning cur-
riculum advances, a blood suction agent that observes
the tissue shape and the binary image mask of the blood
is trained to remove blood from various shapes of tissue
with different liquid properties;

3) We show through real-world experiments that the trained
agent can perform autonomous blood suction in different
tissue models under a direct sim-to-real transfer, and
investigate the unique behavior patterns of the agent.

Although the problem considered in this work is simplified,
the results have shown promise in scaling up the problem to
more complex situations, such as training RGB image-based
end-to-end policies and considering more realistic surgical
simulations including tissue deformation.

II. RELATED WORK

A. Surgical Autonomy using DRL

DRL has been applied to a number of surgical sub-tasks,
including needle manipulation [2], [3], suturing [5], tissue
manipulation [11], [12], [13] and cutting [6], [7], [8]. While
DRL performs well in many rigid manipulation tasks and
some soft object manipulation tasks, tasks involving more

1https://developer.nvidia.com/physx-sdk
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Fig. 2. An example of the simulation environment. (a) rendered scene; (b)
the depth of the tissue at each location; (c) synthetic binary image mask
representing the blood region.

complex dynamics, such as soft tissue cutting and blood
suction, continue to pose significant challenges due to the
difficulty in simulating the manipulation and training agents
in these environments.

B. Surgical Robotics Simulation

High-speed and realistic simulation environments are es-
sential for training DRL agents and for achieving sim-to-real
transfer. A number of surgical simulation environments for
this purpose have been proposed in recent years, including
dVRL [17], AMBF-RL [18], UnityFlexML [19], SurRoL
[20], LapGym [21], and Surgical Gym [22]. Most of these
simulators do not provide straightforward integration of fluid
manipulation. While UnityFlexML is based on Nvidia FleX,
which supports PBF, the discontinuation of FleX makes it
inadvisable to develop new environments based on it.

C. Fluid Simulation and Manipulation

This work is also related to the recent research on robotic
manipulation involving fluids and the development of fluid
simulation environments for robot learning. A few examples
of previous work are [23], [24], [25], [26]. To simulate
fluids, these studies have utilized Navier–Stokes equations,
material point method (MPM), and PBF. PBF is generally
more efficient and is often used when learning is involved.
Most of these studies focus on daily tasks such as pouring
and fluid mixing, and none of them considers liquid suction.

III. METHODOLOGY

A. Problem Formulation

Without loss of generality, we consider blood suction within
a square-shaped footprint of tissue and assume that the blood is
detected and segmented separately from regular RGB images
to obtain an image mask. At each action step, the current
observations including the blood region mask are passed to the
policy to obtain the next step movement of the suction tool.
This differs from [15], where optimal suction tool trajectories
are generated beforehand based on initial knowledge about the
blood flow, and then executed in an open-loop manner.

B. Simulation Environment Overview

To build a blood-suction learning environment, it is impor-
tant to simulate fluid flow efficiently, as fast simulation can
result in faster training in terms of the wall-clock time. PBF is
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one of the most commonly used approaches for efficient fluid
simulation [27]. Compared with the other approaches such as
smoothed particle hydrodynamics (SPH) and material points
method (MPM), PBF offers a balance between computational
costs, simulation stability, and visual plausibility, and has
become increasingly popular in recent years for both game
development and real-time simulation.

We build our simulation environment based on Nvidia
PhysX 5 SDK. PhysX is a real-time physics engine that
allows various physical simulations with GPU optimization.
Specifically, we utilize its capability of high-performance PBF
simulation for simulating blood suction in this work. With
PhysX 5 as the low-level physics engine, we build our simu-
lation environment in Unity, a 3D game development software
that has shown potential in both medical simulations and RL
environment development. It is worth noting that the current
built-in 3D physics engine of Unity is PhysX 4.1, which does
not support PBF. Particularly, the Machine Learning Agents
Toolkit (ML-Agents) for Unity [28] is utilized for building the
RL environment.

The simulation environment consists of a square-shaped
footprint of tissue with random depth at different locations, a
fixed amount of blood, and a suction tool, as shown in Fig. 2.
The binary image mask is from the top view and is synthesized
through the orthographic projection of each blood particle.

C. Suction Model

In PBF [27], the fluid is represented by a large number
of particles with positions xi and velocities vi. During each
simulation step, the velocities of the particles are first predicted
based on the external forces fext(xi), such as gravity:

vi ← vi +∆τ fext(xi). (1)

Here, ∆τ is the simulation time step. The next-step positions
can thus be predicted by pi = xi+∆τvi. pi is then iteratively
corrected by solving positional constraints, such as collision
[27]. Finally, the velocities are updated based on the predicted
position change of the particles, and the positions are set to
the predicted ones using vi ← (pi − xi)/∆τ and xi ← pi.

To simulate suction, we apply an additional external force
to modify the velocities of each particle at the beginning of
each simulation step in (1). Given the the suction force scale
Fs, and the mass of the i-th particle mi, suction is simulated
by a spherical cone-shaped force field applied at the end of
the suction tool,

fsuction =
Fs

mi
· xo,i

∥xo,i∥
·
(

1

∥xo,i∥
− 1

rs

)
(2)

if
arccos

(
xo,i · Fc

∥xo,i∥

)
≤ θs, and ∥xo,i∥ < rs.

where xo,i is the position vector pointing from the force center
to the i-th particle, Fc is a unit vector representing the central
axis of the spherical cone, θs is the cone angle, and rs is
the radius of the force field. Increasing distance from the
force center results in a gradual decrease in force to zero.
Since all particles will be looped over at each simulation

step, a strict cut-off value of rs is used to allow early-
stopping of the computation if a particle is outside the force’s
effective range to increase the computation efficiency, unlike
in [16] where a 2D Gaussian function is applied across all
particles as suction displacement. Time-consuming operations
such as exponentiation are also avoided. A faster simulation
allows a higher time scale to speed up the simulation during
training, thus reducing the clock time needed, as discussed in
Section III-G. During simulation, the particles are removed
after reaching a certain height threshold above the tissue.

The orientation of the suction tool is fixed such that Fc is
always pointing downwards. As we assume that the shape of
the tissue is known to the agent, the height of the suction tool
is manually kept at a fixed distance from the tissue at each
location. Therefore, the action of the agent is simply the 2D
movement of the suction tool within the tissue area.

D. Tissue Shape Generation

Introducing randomness in the shape of tissues plays a
pivotal role in enhancing the robustness and generalization
capabilities of the agent, enabling it to handle a broad spectrum
of scenarios. Such randomness simulates a wide range of near-
to-real challenges for the RL agent and mirrors the unpre-
dictability and diversity present in actual surgeries. While other
methods, such as Perlin noise or fractal-based approaches,
can introduce randomness for a given surface, Bezier surfaces
[29] offer distinct advantages due to their simplicity and well-
defined mathematical formulation. This enables us to adjust
the level of smoothness and control the surface’s shape while
maintaining a balance between the randomness and realism of
the tissue’s structure. A Bezier surface S can be defined as

S(u, v) =
n∑

i=0

m∑
j=0

Pi,j ·Bn,i(u) ·Bm,j(v), 0 ≤ u, v ≤ 1 (3)

where S(u, v) represents the Bezier surface, Pi,j are the
control points, and Bn,i(u) and Bm,j(v) are the Bernstein
basis (or blending) functions for the parameters u and v
defined as

Bn,i(u) =
n!

i! · (n− i)!
· ui · (1− u)n−i.

Adjusting the positions of control points generates a variety
of tissue shapes with controlled randomness.

E. Reward and Observation Design

As a simplification, similar to [16], we consider the main
objective as removing as much blood as possible. The reward
function consists of a reward for the amount of blood removed
during each step, an extra terminal reward for removing
all blood, and an action penalty for tool movements. The
number of particles being removed during each step is used
to determine the amount of blood being suctioned out:

r(st, at, st+1) = N t
p −N t+1

p + C1 δ(N
t+1
p )− C2∥at∥, (4)

where N t
p is the number of active particles at time step t,

δ(N t+1
p ) indicates whether there is active particles remaining,
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TABLE I
VALUES/RANGES OF ENVIRONMENTAL PARAMETERS IN EACH LESSON

Parameter Lesson 0 Lesson 1 Lesson 2
Control points grid size [6, 8] [4, 10] -

Penalty scale C2 0 0.01 0.02
Friction coefficient [0.05, 0.1] [0.02, 0.2] -
Viscosity parameter [4, 8] [4, 15] [1, 15]

Surface tension 0.05 [0.05, 0.08] [0.05, 0.1]
Cohesion 25 [10, 30] [5, 50]

and ∥at∥ is the norm of the actions. C1 and C2 are two
weighting factors.

Due to the complex dynamics of the environment introduced
by different shapes of the tissue and the fluid, designing an
appropriate observation space is essential to ensure efficient
learning of the task. In order to provide more information
regarding the dynamics of the environment, the observation
includes the tissue depth map, the binary image mask of the
blood, and the suction tool location. The binary image mask
is stacked with the ones from 3 previous steps to capture the
temporal feature, and the tool location is also stacked with the
ones from 4 previous steps.

F. Randomization and Curriculum Settings

As discussed in Section III-D, the shape of the tissue is
randomized during each episode to enhance the robustness of
the trained agent to various tissue shapes during the surgery. To
further facilitate a more generalizable policy that can deal with
the various physical properties of the blood, such as cohesion
and viscosity, the fluid-related parameters are also randomized
throughout the training. Furthermore, the initial position of the
suction tool and the position of the blood from where it drops
and flows in the tissue are randomized at each episode as well.
This procedure is known as domain randomization (DR) [30].

While randomization of the environment parameters in-
creases the generalizability of the trained policy, large vari-
ations in the environment can make the learning slow or limit
the performance of the trained model. Furthermore, the action
penalty regarding the motion of the tool also impedes the train-
ing of the agent as it limits the exploration by favoring smaller
movements. To overcome such issues, we utilize curriculum
learning [31] by starting from simpler environments with fewer
fluid variations and without action penalty, and eventually
approaching the more complex situations. The randomized
parameters and their values or ranges during each lesson are
listed in Table I. The parameters that have a sampling range are
sampled uniformly during training. We show in Section IV-A
that this approach outperforms training without a curriculum.

G. Training Settings

The ML-Agents Toolkit is utilized for training. The physics
simulation (environment) step size is 0.02 seconds. However,
the decision (action) frequency is lower than the simulation
steps and is set to be once per 0.2 seconds. At the beginning
of each episode, 3,000 fluid particles are dropped from a small
distance above the tissue and flow in accordance with its shape.
During each episode, the maximum allowed environment steps
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Fig. 3. Training settings. (a) Policy network architecture; (b) Training with
parallel simulation environments.

is 1,000, while the first 100 steps are used to drop and
stabilize the fluid without agent actions being taken. An
episode terminates if the maximum number of steps is reached,
or if all the fluid has been removed.

The size of the tissue shape depth map and the blood region
mask are both 50x50 pixels as input to the policy and the value
networks. Soft actor-critic (SAC) [32] is used and a total of
3 million environment (physics) steps are trained. The policy
network architecture is shown in Fig 3a. The learning rate is
0.003, the batch size is 128, the replay buffer size is 50,000,
the initial entropy coefficient is 1.0, and the discount factor γ
is 0.95. To accelerate training, experiences are collected from
8 parallel simulation environments, as shown in Fig 3b. The
simulation runs at a higher speed than the actual clock time
at a time scale of 2. A higher time scale can cause unreliable
simulation performances, as each PhysX step takes just under
0.01 seconds. Training and evaluations are run on PCs with
Nvidia RTX 4070 and 3070 GPUs. Training takes 1.3 to 1.6
clock-time days.

IV. EXPERIMENTS AND RESULTS

A. Training Results

To evaluate the efficacy of using a learning curriculum, an
agent is also trained without a curriculum directly using the
final values or ranges of the parameters in the last lessons as
a comparison. The learning curves of the agents trained with
and without curriculum are shown in Fig. 4a. Furthermore,
both of the trained models are evaluated for 1,000 episodes,
and the frequency distribution regarding the cumulative reward
of all evaluated episodes is shown in Fig. 4b. While the
agent trained with a curriculum has only a slight advantage
in terms of accumulative reward over the one without a
curriculum, the frequency distribution clearly indicates that
training with a curriculum results in higher generalizability to
different environment variables, as more episodes tend to have
a higher cumulative reward. Since the same seed is used when
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evaluating both agents, the Wilcoxon signed-rank test can be
used to examine the statistical difference between the two
agents’ performances. A one-tailed test is conducted and The
p-value of the test is 0.0196, rejecting the null hypothesis at the
5% significance level, indicating that the two agents generate
statistically different outcomes in terms of the cumulative
reward in various episodes, and the performance of the agent
using the curriculum is generally better. Indeed, when the
curriculum is used, the agent can achieve a cumulative reward
of more than 87.5 in 69.2% of the episodes, 5.7% higher
than that achieved by the agent without using the curriculum.
The standard deviation of the cumulative reward using the
agent with a curriculum is 7.49, while for the agent without
a curriculum, the value is 8.06. The lower standard deviation
further suggests that the former one has a more consistent
performance across all variations of the environment.

The performance of the agent is also compared with a
human operator performing the task in the simulator through
a joystick controller while watching the top view of the scene.
Both the agent and the human operator perform blood suction
for 50 trials in the same environments, and the blood remaining
at each step is recorded, as shown in Fig. 4c. Among the 50
trials performed by the agent, there are three cases in which
more than 5% of blood remains and one case in which more
than 25% remains, leading to a high standard deviation at the
end. Such edge cases may be difficult to avoid due to the
sparser reward when less blood remains. Despite cases where
the agent fails to remove all blood, the performance of the
agent is generally close to that of a human.

B. Real-World Experiment Setup

In real-world experiments, the patient side manipulator
(PSM) from the dVRK is utilized to grasp and hold a silicone
tube acting as a suction tool. The tube is connected to a
small pump for suctioning. Liquid with a red color is used to
simulate the blood. 3D-printed box containers with a curved
bottom surface are used as the tissue models where the fluid
is poured into. The experiment setup is shown in Fig. 5.

Three tissue models (120 mm × 120 mm) are generated
using the same approach discussed in Section III-D and 3D-
printed. They are labeled as Tissue 1, 2, and 3 with the control
point grid sizes being 5, 8, and 10, respectively, with increasing
shape complexity. The tissue models are registered in the robot
Cartesian space.

Two different types of liquid are used during the exper-
iments. One is a commercially available beverage with a
red hue, the density of which is approximately 1.08 g/ml
(“regular”). Another one is the same liquid but with a large
amount of sugar added, resulting in a more viscous and heavy
liquid whose density is 1.32 g/ml (“viscous”). For each tissue
model, 4 sets of experiments are conducted with different
amounts and types of liquid injected into the tissue model:
(a) 10 ml of regular liquid; (b) 10 ml of viscous liquid; (c)
15 ml of regular liquid; (d) 15 ml of viscous liquid. One
exception is that due to the simplicity of the tissue shape,
the 15 ml configurations (c) and (d) are not tested on the
tissue model with control point grid size 5 since there is no
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significant difference in terms of the resultant blood regions
and the suction tool trajectories, as liquid tends to flow to
the only small valley of the tissue model. For each set of
experiments, 5 trials are conducted. The liquid is poured from
different positions in each trial, and the initial position of the
suction tool is also randomized.

During the experiments, two side-by-side webcams (Log-
itech International S.A., Lausanne, Switzerland) are positioned
above the setup and the tissue model position in the image
is specified manually. The binary mask of the blood region
is detected by manually setting thresholds in the hue, satu-
ration, and value (HSV) color space. Detection results from
both cameras are merged through naive feature-matching and
projective transformation to resolve the problem of the PSM
tool obscuring the field of view. The shape of the tissue is
assumed to be known, and the suction tool is always kept
at a certain distance above the tissue surface, the same as in
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the simulation. The action frequency of robot movement varies
from 1 to 5 Hz, depending on the travel distance of the suction
tool during each step, which is generally lower than the one in
the simulation. A precise scale under the whole setup is used
to measure the weight change of the liquid inside the tissue
model during the suction process. However, as the suction
tool occasionally touches the tissue model due to inaccurate
registration, the measurement of the weight can be noisy, and
the valid data samples are selected manually.

C. Performance in the Real World

For the sake of concision, the sets of experiments are
labeled using the format “T{1, 2, 3} {R, V}{10, 15}”, where
the number following “T” stands for the ID of the tissue
model, “R” or “V” specifies whether the liquid is regular (R)
or viscous (V), and the following number indicates the volume
of the liquid used for each trial (10 ml or 15 ml). To denote
individual trials within a set of experiments, an additional
number is appended at the end. For instance, T2 V10 refers
to experiments with the second tissue model using 10 ml of
viscous liquid, and T2 V10 2 indicates the second trial in this
set of experiments.
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Fig. 6. Blood remaining after each trial in the 10 sets of experiments.

We group the 10 sets of experiments under different tissue
and liquid configurations and present the final remaining blood
volume measured using the precise scale in Fig. 6. In general,
most trials using the regular liquid ended up with less than 1
ml of liquid remaining. In the trials using the viscous liquid,
the amount of blood remaining varied between 0.3 and 2.8
ml, with an outlier of 3.5 ml. For the same tissue model and
the same amount of liquid injected, there tends to be much
more viscous liquid remaining compared with the regular one.
This is due to the higher difficulty of suctioning vicious fluid,
as more precise positioning of the tools is needed to create
a larger contact area between the tube and the liquid and
generate enough force to suction the viscous liquid. In general,
more than 90% of the regular liquid and more than 80% of
the viscous liquid can be removed, except for two trials. Given
the small amount of liquid initially injected, the performance
can be considered satisfactory.

As the complexity of the tissue model increases, the amount
of blood that remains tends to increase. In experiments involv-
ing viscous liquid, this trend is more prominent. The increase
in the volume of remaining liquid is largely related to the
increased number of valley regions of the tissue, as the small
amount of remaining liquid in the valleys can be undetectable
by the blood detection algorithm, or inaccessible due to the
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Fig. 7. Snapshots of example suction trials taken from the camera and
the initial blood region masks augmented with the suction tool trajectories.
Trajectories are marked using gradient colors starting from red and ending
with magenta. (a) is taken from trial T1 R10 1, (b) from T2 R15 3, (c)
from T3 R15 5, and (d) from T3 V10 1.

0 5 10 15 20
Time (seconds)

0

5

10

15

20

B
lo

od
 re

m
ai

ni
ng

 (m
l)

T1_R10_1
T2_R15_3
T3_R15_5
T3_V10_1

Fig. 8. Suction curves of example trials shown in Fig. 7. Due to inaccuracies
in measurement and operation, the initial amount of liquid injected can slightly
deviate from 10 or 15 ml.

small distance between the suction tube and the tissue. To
record the amount of blood at each step and obtain suction
curves as shown in Fig. 8, this small distance is necessary
since it is not possible to measure the weight accurately if the
suction tube is in contact with the tissue model on the scale.
The more prominent trend regarding viscous liquid may be
attributed to the difficulties associated with suctioning vicious
fluids discussed previously, as we do not find a significant
difference between using regular liquid and viscous liquid in
terms of the quality of the suction tool motion based on the
recorded trajectories of the tool.

Out of the 50 trials conducted, only one trial (“T3 V10 4”)
ended up with a significant amount of liquid remaining (around
3.5 ml) due to the suction tool staying in one area. Our analysis
of the binary mask detected at each step revealed an incorrectly
detected area of blood in the region where the suction tool
stays. As the incorrect detection persists, the suction tool is
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stuck in the area and does not move to another location.
Fig. 7 shows snapshots taken from 4 trials, and the initial

binary mask of the blood region augmented with the suction
tool trajectory. Fig. 8 displays the amount of blood remaining
in the tissues over time in the same 4 trials.

Two prominent behavior patterns of the suction policy in
the experiments are further discussed in Section V-A.

V. DISCUSSION

A. Behavior Patterns in the Experiments

Tendency to visit local valley regions of the tissue. One
pattern of the suction tool motion is that it tends to directly
visit the local valleys of the tissue model. For instance, in
Fig. 7d, the initial trajectory of the tool is towards the valley of
the tissue model on the left, rather than the nearest blood pixel.
This behavior is learned through training as going directly
to the valley area where blood accumulates should generally
result in a higher immediate reward and less penalty for
actions.

Favoring large blood areas. Another typical pattern of the
agent’s behavior is that it tends to go to larger areas of blood
first, even if there is a smaller area closer to the current tool
position, one example of which is shown in Fig. 7a. This is
related to the reward function and the discount factor as the
agent will be more likely to receive a higher immediate reward
if it goes to a large area first and removes a large amount of
blood. Whether this behavior is desired or not depends on the
judging criteria, as a surgeon might choose to either remove a
large amount of blood first or start with a smaller and closer
one depending on the situation. This behavior pattern makes
the agent more robust to noisy detection results of the blood
region. However, in some cases, it can result in the tool moving
between blood regions back and forth.

B. Choice of Observation

The learning curves of agents with different observation
spaces trained for the first lesson are presented in Fig. 9. It is
shown that in the absence of the tissue shape or stacking of
the recent binary masks and the positions of the suction tool,
training performance deteriorates. This is generally caused by
the fact that less information is available to the agent, such as
when the tissue shape is not provided, the valley regions of
the tissue are unknown to the agent, and therefore the amount
of blood at each location and the possible blood flow in the
next few steps cannot be inferred. The number for the stacked
observations of the blood masks and suction tool positions was
determined experimentally through trial and error, while also
considering the increase in memory usage.

C. Limitations and Future Work

Several simplifications are made in this work, one of which
is the lack of continuous addition of blood during suction,
although in reality there can be a bleeding point that continues
to add blood to the field. However, simulating this situation
significantly adds to the complexity of the simulation environ-
ment, as the bleeding speed, initial position and direction of
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Fig. 9. Learning curves of agents with other configurations of observation in
the first lesson (exponentially smoothed).

the blood can have large variations. We will simulate active
bleeding and develop an agent that can handle this situation to
increase the applicability of our agent in real surgeries in future
work. Additionally, we have assumed that the deformation of
the tissue is insignificant during suction, and a rigid tissue is
used. In practice, the tissue shape topology can be obtained
through a depth camera, or 3D reconstruction using stereo
computer vision algorithms by utilizing the stereo endoscopic
camera before bleeding happens. However, in reality, the tissue
shape can change due to deformation caused by tool-tissue
contact. Furthermore, there can be cases where the tissue shape
cannot be represented by a Bezier curve, such as when a cut
happens. Further investigation is needed to assess whether the
agent trained on tissue represented by a Bezier curve can be
applied to more realistic and complex shapes. Future work
will include the simulation of more realistic tissue shapes and
tissue deformation, and the agent will be adjusted accordingly
to observe only the shape of the visible area of the tissue and
output the 3D motion of the suction tool.

Although visually plausible by tuning the force parameters,
the suction is approximated by a cone-shaped force field
for simplicity and computational efficiency, while in reality
suction is largely caused by the pressure difference and the
mechanism is much more complex. While computational
efficiency is an essential aspect of our proposed method,
we have not quantitatively compared the performance of the
proposed simulator with existing fluid simulation solutions,
such as the ones proposed in [16], [26]. Preliminary trials
indicate that optimizing the simulation speed increases the
maximum possible framerate and allows a higher time scale
without causing simulation instability, which improves the
training speed in terms of wall-clock time. Further experiments
are needed to provide an in-depth analysis and comparison.
We plan to enhance the simulation by adding more realistic
features and providing quantitative profiling results of the
simulation in the continuation of this work.

In this work, the binary mask of the blood region is man-
ually extracted using traditional computer vision algorithms.
The detection of blood is more challenging in real surgeries
given that the background color can also be close to red. As a
next step to address this limitation, we will train an RGB and
depth image-based policy without the need for manual feature
extraction by building more realistic simulation scenes and
using DR and domain adaptation (DA) in the image domain.
To achieve this, more realistic fluid rendering and simulation
for soft tissue and tool-tissue contact will be achieved in future
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work.
Further studies are needed to examine and improve the

choice of the reward function, to account for actual surgical
requirements. The current reward that considers the removal
of blood and the travel of the suction tool might not reflect
the actual optimality of the task. Expert demonstrations and
feedback can also be utilized in future work.

VI. CONCLUSION

This work explores an RL approach for autonomous blood
suction in robotic surgeries. A blood suction simulation en-
vironment was developed for RL training using PhysX 5
and Unity, and an agent that utilizes the synthetic blood
region mask, the tissue shape, and the suction tool position
was trained for autonomous blood suction. We showed the
importance of using domain randomization and curriculum
learning to achieve a more generalizable policy and showed
through experiments that the trained policy can be directly
transferred to the real world. In the experiments, the agent was
able to perform autonomous suction in various tissue shapes
with different amounts and types of liquid, and less than 3
ml of blood remained in the 50 trials, except for one failure.
Future work will mainly focus on improving the realism of
the simulation in terms of the blood property, tissue shape
and deformation, and fluid rendering to allow an RGB image-
based policy for real surgical scenarios.
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