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A Bicycle Cranking Model for Assist-as-needed
Robotic Rehabilitation Therapy Using Learning
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Abstract—In recent years, demand for robot-assisted rehabil-
itation has increased due to the rising number of elderly and
disabled people. Rehabilitation robots help patients to enhance
muscle strength and recover motor functions, typically through
practicing reaching movements. In this paper, we are interested
in robot-assisted rehabilitation not only for simple trajectory
following tasks but also for cooperative therapy tasks that elicit
a force-based or an impedance-based behavior from the patient.
When a patient is unable to complete the task, determining the
minimum required assistance to be provided to the patient such
that the task is accomplished is of interest. In this paper, we
develop a Learning from Demonstration (LfD) framework in
order to compare the performance of a therapist in multiple
trials of the task (demonstrations in LfD terms) carried out
previously with that of the patient in live performance of the
task. Based on this performance differential, the LfD framework
helps to determine the minimum required adjustment in the
task’s difficulty level on a patient-specific basis for the task to
be completed. To encourage active and free participation of the
patient, a dynamic bicycle cranking model is used such that
provision of assistance (reproduction in LfD terms) is coupled to
the variability observed in the therapist’s behavior across various
trials of the task. Experimental results show that the proposed
framework effectively provides the patient with assistance as
needed during a cooperative therapy task.

Index Terms—List of keywords (Rehabilitation Robotics,
Learning and Adaptive Systems, Human detection tracking)

I. INTRODUCTION

THE number of disabled people has been on the rise due to
both an increase in the aging population and the number

of people who suffer from stroke [1], [2]. For post-stroke
disabilities, therapy exercises are prescribed to regain motor
function [3]. However, physical therapy resources are limited,
resulting in only limited outpatient therapy services being
offered to a patient [4], [5]. This demand has motivated the
incorporation of robotic systems into rehabilitation programs
as robots are able to perform controlled and reproducible
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Figure 1: The proposed LfD scheme in a robotic rehabilitation
system: (a) Learning (task demonstration by the therapist to the robot)
and (b) reproduction (robot assistance to the patient).

motions and are not subject to fatigue. Typically, rehabilitation
robots are geared toward practicing reaching movements such
that patients’ muscle strength and motor functions are restored
while freeing the therapist from repetitive actions required
during hand-over-hand therapy [6].

In this paper, we are interested in robot-assisted rehabil-
itation not only for simple trajectory following tasks but
also for cooperative therapy tasks that elicit a force-based or
an impedance-based behavior from the patient. For instance,
assume the rehabilitation robot is controlled to behave as
a self-closing door. If pulling this simulated door open is
the cooperative therapy task, the human user’s hand should
display a minimum required impedance. The challenge this
imposes is the need for task-specific programming of the
rehabilitation robot such that assistance in performing the
task can be provided to the patient. Given the limited com-
puter programming know-how available in clinical settings,
we present a novel rehabilitation robot programming strategy
using the Learning from Demonstration (LfD) framework
[7], [8]. In the LfD paradigm developed in this paper, after
qualitatively demonstrating [9] the task to the rehabilitation
robot by a perfect user[1] (the therapist), the robot learns the
desired behaviour and gains the ability to reproduce the task
in cooperation with an imperfect user (a patient) who only
affords a reduced contribution towards performing the task.

The proposed method is particularly useful for sophisticated
impedance-based rehabilitation tasks in addition to the simpler
position-following or force-following tasks. Fig. 1 illustrates
the overall idea of presented method which encompasses two
distinct phases. The following discussion is framed around a
cooperative therapy task involving opening a self-closing door
by the patient but not limited to it. The rehabilitation robot is
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controlled to behave similar to a self-closing door. During the
first phase (“learning phase”), the therapist interacts with the
robot to open the simulated door and complete the task Fig. 1
(a). Based on logged robot-therapist interaction data, the un-
derlying specifications and constraints of this impedance-based
task is statistically analyzed and learned by the computer-
based robotic system. During the next step, the therapist
is no longer in the rehabilitation loop (Fig. 1(b)) and the
system adaptively determines the minimum adjustment in the
task’s difficulty level on a patient-specific basis that facilitates
the task completion by the patient. To adjust the assistance
based on the learned variability of therapist’s behaviour across
multiple trials, we propose a dynamic bicycle cranking model
in the LfD framework. This is meant to encourage active and
free participation of the patient in the cooperative performance
of the task.

Previous research [10] has shown that key to an effective
therapy is to modify the difficulty level of exercises adaptively,
considering the state and progress of the patient. This has
motivated recent work on Assist-as-Needed (AAN) therapeutic
robotics. Squeri et al. [11] proposed the use of Bayesian mech-
anism to select the appropriate degree of assistance in human-
robot interaction for motor skill learning and rehabilitation.

Pehlivan et al. [12], [13] used adaptive control as opposed to
impedance control while using Gaussian radial basis functions
(RBF) to model the ability and effort of the patient. Similarly,
Wolbrecht et al. [14] proposed a control framework that is
capable of compliantly assisting patients only as needed in
completing reaching movements. Vergaro et al. [15] used
a combination of impedance and adaptive control to adjust
the amplitude of the force field according to the patient’s
performance. The force field generator provides an attractive
component directed from the patient’s hand to the target
position. In [16] Y. Koniyoshi proposed a method to analyze
the dynamic body motions by focusing on example of a roll-
and-rise motion for a humanoid. In this paper, both variety and
boundary conditions of a sample movement are evaluated and
a new approach for analyzing of humanoid motion is presented
considering the variance of the movement. In contrast to the
work presented above, the approach in this paper provides
adaptive assistance to a given patient in performance of tasks
based on the performance differential the robotic system ob-
serves between the behavior of the therapist in the demonstra-
tions phase and that of the patient in the reproduction phase.
The proposed paradigm allows for teaching a rehabilitation
robot the behavior expected from a perfect user (therapist) in
performing the task by physically demonstrating it rather than
explicitly programming the robot through machine commands.
Since the robot learning is based on several demonstrations of
the task performance by the therapist, the tolerable variance
in the human behavior for completing the task is captured.
This results in the ability to regulate the assistance provided
to the patient in the reproduction phase based on the variability
observed in the therapist’s behavior in the demonstration
phase.

The benefit of introducing LfD to the robotic rehabilitation
therapy can be evaluated from two different perspectives. First,
in rehabilitation robotics, conventional programming methods
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Figure 2: Dynamic cranking model of a bicycle in the i-th subtask
(top) and the bicycle model of an entire rehabilitation task perfor-
mance (bottom). In segments of the road where the slope is negative,
the bicycle will be coasting on its own (no therapeutic assistance
needs to be provided by the robot to the patient). In segments of
the road where the slope is positive, the bicycle will slow down or
halt, and the chain wheel needs to be cranked (therapeutic assistance
needs to be provided by the robot to the patient).

encounter difficulties. The formulation of robot actions for
the activities of daily living (one example of which is door
opening) is demanding because it strongly depends on the en-
vironment, which is unstructured and may change significantly
from one case to the other (in the self-closing door opening
example, each door comes with s different spring stiffness).
Since daily living activities can robustly be performed by a
normal human being without any difficulty, the most promising
way to alleviate the problem mentioned above is to take
advantage of the human experience and skill in performing
daily living activities and to transfer them to the robot via
LfD [17].

Another benefit of using LfD for rehabilitation robotics can
be evaluated when it comes to learning the variability of the
movement. In [18], it is shown that providing variability in
training enhances motor function recovery. It is also discussed
that fixed trajectory training strategies drive the spinal cord
into a state of learned helplessness. So, it is concluded
that variable training paradigms appear to be more effective
rehabilitative strategies. Since the nature of the LfD method is
based on determining the variance of the demonstrated motion
across different trials [7], it directly acts as powerful method
for serving variable training to patients. In contrast to the
similar work in the literature, we obtain this variability from
the behavior of a therapist in daily living activities in an LfD
context.
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II. SYSTEM MODEL

The proposed robotic assistance scheme that will be for-
mulated in an LfD context is analogous in operation to the
mechanics of a bicycle traveling on a road (see Fig. 2). Two
important parameters of this model are transmission ratio and
a hypothetical direction of power transmission. For a given
therapy task composed of n steps or subtasks, the slope of
the i-th segment of the road represents the difference between
the task difficulty index (TDI) and the patient’s motor index
(PMI) for the i-th subtask:

α(i) = TDI(i)− PMI(i) (1)

For a given task and a given patient, α(i) > 0 implies that
the patient cannot complete the i-th subtask of the task if not
provided with assistance. Conversely, the patient does not need
assistance in the i-th subtask if α(i) < 0.

In the bicycle in Fig. 2, the rear wheel rotates at a speed of
ωP (i) ≥ 0, which represents the rate of patient’s progress in
completing the i-th subtask. The chain wheel represents the
therapeutic input and is rotated by the rehabilitation robot at
a speed of ωT (i) ≥ 0.

In segments of the road where the slope is negative (α(i) <
0), the bicycle will be coasting on its own and, as long as
the chain wheel is cranked at a speed lower than the rear
wheel (ωT (i) < ωp(i)), it transmits no energy to the rear
wheel. The following are the analogous requirements for the
proposed robotic assistance scheme (see Fig. 2 (bottom)). In
subtasks where the PMI is greater than the TDI, the patient
does not require assistance in performing the subtasks, and
if therapeutic input from the rehabilitation robot is provided
at a rate lower than the patient’s progress rate, no assistance
should be transmitted to the patient.

Also, in a segment of the road where the slope is positive
(α(i) > 0), the bicycle (The model is quasi-kinematic and
ignores the dynamical effects causing the bicycle’s motion.)
will slow down or halt (depending on the road segment length),
and the chain wheel needs to be cranked at a speed higher than
the rear wheel (ωT (i) > ωp(i)) such that sufficient energy is
transmitted to the rear wheel in order to move the bicycle
to the next road segment. The following are the analogous
requirements for the proposed robotic assistance scheme. In
a subtask where the PMI is smaller than the TDI, the patient
cannot complete the subtask, and therapeutic input from the
rehabilitation robot should be provided at a rate higher than the
patient’s progress rate in order to provide sufficient assistance
to the patient to move to the next subtask. This model is used to
simulate the progress rate of the patient and assistance rate of
the therapist by means of physical variables such as cranking
and moving speeds. Therefore, it is possible to merge these
concepts to the LfD framework which will be presented in the
following section.

III. LEARNING THE TASK

In the context of human-robot interaction, the goal of the
learning phase is to analyze the sequences of the human
behavior captured during the demonstration of a task and
to retrieve underlying specifications and constraints of the

interaction. For instance, in rehabilitation applications, the
therapist demonstrates the ideal performance of the task to the
robot such that the robot can analyze the behavior displayed
by the therapist.

The use of statistical approaches such as Gaussian Mixture
Model (GMM) for coming up with a generalized form of
demonstrated behavior (which can involve motion, force or
impedance) has been reported in [19]. A GMM is a probabilis-
tic model obtained as a mixture of a finite number of Gaussian
distributions with unknown parameters. Gaussian distribution
is able to model the variability of the human’s actions in
performing the task across various trials.

In this paper, we present a learning model that is capable of
characterizing different rehabilitation tasks including position-
based (trajectory following), force-based, and impedance-
based tasks. For developing the GMM algorithm, knowing the
input and output vectors of the task model is of importance.
For position-based tasks, the input and output vectors are
time and position, respectively. Also, time and force are the
input and output vectors of a force-based task model. Finally,
position and force are assumed as the input and output vectors
of an impedance-based rehabilitation task.

In general, demonstrating a rehabilitation task by a human
to a robot involves a certain “trajectory” in the 3-dimensional
space of position, force and time – note the meaning of
trajectory is extended beyond the position versus time curve
in this paper. The trajectory demonstrated by the therapist
consists of force variables βf ∈ Rp and position variables
βp ∈ Rp, where p is the number of the degrees of freedom
(DOF) of the task, and the time variable βt ∈ R1. The task
is modeled as β =

[
βI , βO

]
where βI is the input vector and

βO is the output vector. For instance, for an impedance-based
task, βI = βp and βO = βf . A GMM can be rewritten as

f (β) =

K∑
i=1

πiN (β|µi,Σi) (2)

where

µi =

[
µI
i

µO
i

]
,Σi =

[
ΣI

i ΣIO
i

ΣOI
i ΣO

i

]
(3)

In the above, N denotes the probability density function
(pdf) of the multivariate (2p+ 1)-dimensional Gaussian. The
model parameters include the number of mixture components
(number of Gaussian distributions) K, prior weights πi, means
µi, and variances Σi.

In the presented approach, the output vectors are evaluated
in both of the Demonstration and Reproduction phases. There-
fore, we use βO

D and βO
R to denote the output vectors capturing

the behaviour of the therapist and the patient, respectively.
For the purpose of reconstructing a unified model of the

task, we apply Gaussian Mixture Regression (GMR) to the
GMM. GMR allows to extract a single generalized model
made up from the set of input/output pairs (dataset) that were
used to train the GMM. The generalized model encapsulates
all of the essential features of the dataset and can predict the
outputs using new inputs that are not necessarily in the dataset.
Position and time vectors are provided as query points and the
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Figure 3: Probabilistic encoding of the demonstration in the force-
position-time reference system for a trajectory following task. For
trajectory following tasks, the projection of the mesh in the position-
time coordinates characterizes the task. Similarly, the projection of the
mesh in force-time and force-position planes represents the essential
task data for force-based and impedance-based tasks respectively. We
have used different colors in this figure to show a mesh in a 3D space.

corresponding output force vector is estimated by the GMR
as [20], [21]:

f
(
βO|βI

)
=

K∑
i=1

$i.N 2p+1

(
µ̂i, Σ̂i

)
(4)

In the above,

Σ̂i = ΣO
i − ΣOI

i

(
ΣI

i

)−1
ΣIO

i

µ̂i = µO
i + ΣOI

i

(
ΣI

i

)−1 (
βI
i − µI

i

)
$i =

πiN
(
βI
∣∣ µi,Σi

)∑K
j=1 πjN

(
βI
∣∣ µj ,Σj

) (5)

So, the conditional expectation of output vectors is approx-
imated by a single Gaussian distribution with the following
parameters [20]:

f
(
βO|βI

)
= N2p+1

(
µ̂, Σ̂

)
µ̂ =

K∑
i=1

$i.µ̂i , Σ̂ =

K∑
i=1

$i
2Σ̂i

(6)

Fig. 3 depicts the probabilistic encoding of the demonstration
of a simple trajectory following task in the force-position-time
coordinate system after applying Gaussian process (GMM and
GMR) to the dataset.

Since the aforementioned 3D mesh contains essential data
that characterize the performance of a task in terms of the
required position, force and time, it can be useful for various
types of rehabilitation tasks. Although daily living activities
like door opening are a mix of impedance and trajectory
controls, we can simplify and model them in separate domains
(Impedance-based or Position-based) by choosing proper input
and outputs. This has been done before in the literature where
an input vector of force and output vector of impedance are
chosen to model a cooperative robotic rehabilitation paradigm.
[22] For trajectory following tasks, the projection of the mesh

in the position-time coordinates characterizes the task (Fig. 3).
Similarly, the projection of the mesh in force-time and force-
position planes represents the essential task data for force-
based and impedance-based tasks, respectively.

When a patient is unable to complete any subtask of a given
task for which the performance expected from a perfect user
was learned by the robot in the previous section, determining
the assistance to be provided to the patient such that the patient
can progress to the next subtask may be studied from a task
reproduction perspective. Reproduction is based on comparing
the performance of a therapist in demonstration of various
subtasks with that of the patient. Based on this performance
differential, the LfD framework helps to determine the required
adjustment in the subtask difficulty level on a patient-specific
basis for the subtask to be completed.

To calculate the performance differential, (6) interrogates
the previously-demonstrated behavior of the therapist to pro-
vide the expected βO for the present βI . In the conventional
LfD framework, where success in performing the task is the
key, exact task reproduction is the focus of the robotic system.
In robot-assisted rehabilitation, however, active participation of
the patient in therapy exercises is more important. Therefore,
in assist-as-needed therapy [2], external assistance is provided
only in subtasks that the patient is unable to take to completion
in order to promote active participation of the patient.

In order to develop the bicycle cranking model, which
governs the provision of therapeutic assistance to the patient
in the i-th subtask, we use a PID control law as follows:

ωT (i) = K.e(i) + I.

∫
e(i)di+D.

de(i)

di

ωP (i) = βO
R (i)

(7)

where
e(i) = step(βO

D(i)− βO
R (i)) (8)

Here, in each subtask i, βO
D(i) reflects the therapist’s

(demonstrated) behaviour using the model presented in (6) and
βO
R (i) shows the patient’s (reproduced) behaviour during the

task performance. Also, in (8), the function step is defined as

step (x) =

{
1 x ≥ 0
0 x < 0

Since the assistance should be stopped as soon as the pa-
tient’s performance in any subtask exceeds that demonstrated
by the therapist, we use the step function in (8) so that the
error is calculated unilaterally. In this step function, x is any
arbitrary variable. (Note that the therapist’s performance can
be greater than or equal to the patient’s performance, but
there is no need for assistance if the patient’s performance
is greater than or equal to the therapist’s performance). The
proportional term produces a therapeutic assistance in the i-
th subtask that is proportional to the error between the pa-
tient’s performance and the average demonstrated therapeutic
performance in the i-th subtask. A high proportional gain
results in a large assistance being provided for a given error.
The integral term provides assistance that is proportional to
not only the magnitude of the error but also the duration
of the error (i.e., across how many recent subtasks has the
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error persisted). This term accelerates the convergence of the
patient’s performance towards the demonstrated therapeutic
performance and theoretically (i.e., if a task is composed of
an infinite number of subtasks) ensures zero error at the end
of the task. Note that in the presented control law, the integral
term suffers from accumulated errors, which make this term
very large. A well-known technique known as integral anti-
windup can be used to reset the integral value. The derivative
term reacts in prediction to future errors and is meant to
slow down the rate of change of the assistance provided
to the patient. No term responds to the errors accumulated
from the past, it can lead to so much therapeutic assiste
that since the integraltance that causes an overshoot in the
performance of the patient compared to the demonstrated
therapeutic performance. However, given the unilateral error
condition imposed by the use of the step function in (8),
assistance will cease as soon as the patient’s performance in
a subtask exceeds that demonstrated by the therapist.

In the above PID law for provision of therapeutic assistance
to the patient, it is possible to adaptively change the P, I and D
gains such that the patient is actively engaged in the task, that
assistance is provided to the patient only as needed and when
needed, and that the variability in the therapist’s demonstrated
performance of the task in the learning phase is taken into
account.

K(i) = K0 −K ′(Σ2(i)− |e(i)|)
I(i) = I0 − I ′(Σ2(i)− |e(i)|)
D(i) = D0 −D′(Σ2(i)− |e(i)|)

(9)

where Σ2(i) refers to the variability in the therapist’s demon-
strated performance of the task in the learning phase, which
was calculated via GMR in (6). If in subtask i the patient
is close to the therapist’s average demonstrated performance,
then e(i) is close to zero and minimum assistance gains are
employed (e.g., K(i) < K0). If in subtask i the patient
deviates from the above but is still within the range of the
performances demonstrated by the therapist, then the assis-
tance gains are increased (e.g., K(i) = K0 when the patient
is following the extreme performances demonstrated by the
therapist). If in subtask i the patient deviates significantly from
the performances demonstrated by the therapist, the assistance
gains are further increased to bring the patient in line (e.g.,
K(i) > K0).

The above is a therapy model in which the provision
of assistance is coupled to the variability observed in the
therapist’s behaviour across various trials of the task. This
will lead to encouraging free participation of the patient as
therapeutic intervention (assistance) is more tightly enforced in
those subtasks where there is low variability in the therapist’s
behaviour in different trials of the task.

IV. RESULTS

The apparatus used is an HD2 Haptic Device (Quanser
Inc., Markham, Ontario, Canada) that provides 6-DOF position
sensing and 6-DOF force feedback. The device has a parallel
mechanism that is highly back drivable and has negligible
friction. Since the device uses capstan drives, the perceived
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Figure 4: Spring arrays for simulating the behaviours of the patient
and the therapist. (Top) First and during the demonstration phase, a
symmetric arrangement of three springs is used to pull the self-closing
door. These springs simulate the therapist’s behaviour. (Bottom) Next
and during the reproduction phase, by disconnecting two different
springs, two different patients with different disabilities are simulated.
In this phase, the robot generates the appropriate external assistance
to help each patient with perform the task.

endpoint inertia is low while the device has a rigid structure.
For the purposes of the experiments in this paper, the HD2
device is controlled to only allow movements in the two DOFs
that allow spanning the horizontal X-Y plane.

Each experiment consists of the two different phases shown
in Fig. 1. For the trajectory following task , a 2-DOF mass-
spring array is connected to the robot end-effector as shown in
Fig. 4. This mass-spring array emulates both a therapist in the
learning phase, and a patient affected by muscle impairment
in the reproduction phase. In the first phase, where a therapist
is to demonstrate the task performance to the robot, the
array’s springs are configured symmetrically around the line
of motion to be taken by the robot end-effector as the task
progresses. In the second phase, where a patient is to try to
move the robot in order to perform the task, some of the
array’s springs are removed such that the remaining springs
are no longer symmetric relative to the line of motion such
that motor deficiency is simulated. We employ two asymmetric
configurations of the springs in order to model two different
patients with different motor capabilities. The symmetric (i.e.,
therapist) and asymmetric (i.e., patient) configurations of the
mass-spring array are shown in Fig.4. Finally, in order to
evaluate the effectiveness of the proposed method when a real
human is involved, we report on the actual behavior of the
human in the impedance-based task. Two humans played the
roles of the therapist and the patient in this experiment for
both the demonstration and the reproduction phases.
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Figure 5: Encoding of the demonstrated behaviour by the therapist.
The experiment portrays a scenario simulating a Door Opening
Task.This figure illustrates the 3D representation of the trajectory
required for successful performance of the task, which consists of
time, force and position data. We have used different colors in this
figure to show a mesh in a 3D space.

A. Position-based task

One of the highly accepted robot-assisted therapeutic ap-
proaches for patients with neurological lesions uses technolo-
gies that provide efficient, optimal and affordable means of
movement therapy in order to improve motor function by
leveraging the brain and spinal cord plasticity [12]. This
will help patients regain their lost motor functions. In this
context, rehabilitation robots with position-based tasks are
seen as good candidates for accelerating neural recovery.
Given that the task under consideration is position based, the
input and output vectors of the assistance model are time and
position, respectively. For evaluating the performance of the
presented method for a trajectory-following task, the robot is
passive (i.e., uncontrolled) in the learning phase. The number
of demonstrations for an efficient reproduction of the task
depends on the teaching efficiency of the user; an expert
teacher produces demonstrations that explore as much of the
variations allowed by the task as possible [7]. In the literature,
the number of demonstrations is typically less than 10. For
example, in [7], a very complex task of chess piece movement
was learnt by a 21-DOF humanoid while the robot was shown
the task 4 to 7 times by an expert user. In our experiment,
a total of 5 demonstrations was found to be sufficient, each
lasting around 10 seconds and therefore resulting in around
1,000 sample points (100 Hz is the data logging rate). For
the demonstration, the aforementioned symmetric mass-spring
array serving as the therapist is connected to the robot end-
effector. The mass-spring array reaches equilibrium when the
robot end-effector reaches the target position at the end of the
motion. Since the human hand model is closer to a mass-
spring-damper system than a mass-spring system, a virtual
damper is implemented in the robot controller in order to
complement the physical mass-spring model of the human.

Some variability is introduced in the therapist’s demonstrated
performance by changing this virtual damping parameter ran-
domly. The results of the learning phase are given in Fig.
5. This figure depicts the 3D representation of the trajectory
required for successful performance of the task, which consists
of time, force and position data. In order to illustrate the
proposed method, we denote the variability of the therapist’s
behavior in the start, middle and stop of the motion by Σ1,
Σ2 and Σ3, respectively. As it can be seen, Σ2 is greater than
both Σ1 and Σ3. This is because the start and stop points for
the door are the same across the trials while the trajectory to
get from the start point to the stop point varies.

For extracting the essential data that characterizes the per-
formance of the therapist in terms of the required position
and time, the projection of the demonstrated mesh (Fig. 5)
in the position-time coordinates is traced in Fig. 6(left(a)). In
order to evaluate the generality of the method, two different
patients have been simulated. As it can be seen in Fig. 6
(left(b)), the patient’s performance deviate from the therapist’s
demonstrated performance, which means the patients cannot
complete the task on their own. By using the previously
presented assistance model, the robot provides assistance to
the patients in the form of robot-generated forces so that
the task can be done successfully; see Fig. 6 (left(c)). The
magnitude of the assistance is also shown in the same figure.
As it can be seen, the assistance is provided more strictly
when the patient starts to deviate from the range of per-
formances demonstrated by the therapist. When the patient
moves inside the performance range allowed by the variability
in the therapist’s demonstrated performance, the assistance is
provided in smaller extent. No assistance is provided when the
patient’s performance is equal to the average demonstrated
performance of the therapist. Together, these show that the
patient is only assisted as needed while promoting free and
active participation of the patient.

B. Impedance-based task

The human sensorimotor system includes position and ve-
locity sensory fibers and exhibits variant muscle impedance
in accordance with the task at hand [23]. Impedance-based
tasks can help the impaired limb to recover from neurological
dysfunction and can improve both the motor control and the
performance of a paretic arm in chronic stroke patients [24].
Also, impedance-based tasks have the ability of simulating
daily living activities such as opening a door, holding and
pushing a vacuum cleaner, controlling a dog on a leash, etc.

The impedance-based task we consider is one in which a
human opens a self-closing door that displays an impedance
due to its self-closing nature (please see the accompanying
video file). Since this door has to be moved to a final position,
it can be assumed as a position-based task rather than an
impedance-based task. Also if a certain speed of movement
has to be realized, this task only needs a matching impedance.
For defining the door opening task as an impedance-based
task, we implement a virtual damper-spring based on model
presented in [25] and extend impedance behaviors of the robot
requiring to pass through the position trajectory while the
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Figure 6: The proposed method as applied to a trajectory following task (left) and an impedance-based task (right). (a) The projection of
the demonstrated mesh of the therapist’s behaviour in the position-time coordinates (left) and force-position coordinates (right). As it can
be seen, the essential characteristics and constraints of the therapist’s performance can be extracted based on the mean and the variance in
this figure. (b) The task performance of two different patients. As it can be seen, both patients deviate from the therapist’s demonstrated
performance. In this case, the patients cannot complete the task on their own. (c) Robot provides external assistance as needed to the patients
using the presented model so that the task can be completed successfully. The magnitude of the assistance for both of the patients has also
been traced in this figure.

position parameters are constraint. To illustrate the above,
assume the entire position trajectory is divided to subtasks
in which, required impedance has to be shown to move from
subtask i to subtask i + 1. In this case, moving through the
position trajectory is not of importance any more and exerting
required force in each step of position is necessary. In such
a model, we assume every single step of the trajectory as a
final position in which a specific force has to be present to
keep a constant position. So, In an impedance-based task, the
input and output vectors of the assistance model are position
and force, respectively.

We will have the HD2 device controlled to behave as
the self-closing door. For pulling this simulated door open,
the human user’s hand should display a minimum required
impedance. A total of 5 demonstrations are carried out, each
lasting around 6 seconds and therefore resulting in around 600
sample points (100 Hz is the data logging rate).Two humans
played the role of the therapist and the patient by grabbing
the robot end-effector in the demonstration and reproduction
phases, respectively. In the first phase, the person playing the
therapist’s role demonstrated the task performance to the robot,
which consisted of moving the end-effector on an arc in the
x-y plane (simulating the door opening task). In the second
phase, the person playing the patient’s role began to move the
robot in order to perform the task but did not exert the required
forces for opening the door.

Since the door has a specific impedance, the patient arm

should show a minimum required impedance to open the
door. In Fig. 6(right(a)), the red line represents the the ther-
apist’s demonstrated performance. In contrast to this, in Fig.
6(right(b)), the blue and green line show a large deviation
when a patient performs the task without receiving assistance
from the robot. By using the previously presented assistance
model, the robot provides assistance to the patient in the
form of robot-generated forces so that the task can be done
successfully; see Fig. 6(right(c)). In order to show that the
proposed method provides the assistance adaptively, we show
the evolution of the PID gain K(i) for the first patient and
D(i) for the second patient in Fig. 6(right(c)). As it can be
seen, the gains are changed more rigorously when the patient
starts to deviate from the range of performances demonstrated
by the therapist while the changes are minimal otherwise. This
shows that the patient is only assisted as needed to promote
free and active participation of the patient.

V. CONCLUSION

In this paper, a new framework has been proposed for assist-
as-needed rehabilitation therapy in both position-based and
impedance-based tasks (as well as force-based tasks). Assist-
as-needed therapy is desirable as it encourages active partici-
pation of the patient. The main contribution of the work is to
develop a Learning from Demonstration based technique for
the provision of assistance to the patient. In the learning from
demonstration framework, first the robot learns how a healthy
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person (a therapist) perform the given task and then adaptively
interacts with the patient to provide enough assistance so that
the patient can perform the task successfully. We describe a
bicycle cranking model to mimic the supportive role of the
therapist in such a way that the provision of assistance to the
patient is coupled to the variability observed in the therapist’s
behavior. The validity of the proposed approach has been
shown using experiments involving symmetric (representing
a therapist) and non-symmetric (representing a patient) spring
arrays. In future, we will expand our LfD approach to tele-
rehabilitation robotics. Finally, we will attempt to bring the
proposed paradigm to a clinical setting for patient studies.
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