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A Therapist-taught Robotic System for Assistance
During Gait Therapy Targeting Foot Drop

Jason Fong1, Hossein Rouhani2, and Mahdi Tavakoli1

Abstract—The adoption of robots in rehabilitation medicine
settings has become increasingly attractive in recent years. Robots
are capable of providing repetitive, high-intensity physiotherapy.
In this paper, we apply kinesthetic teaching principles to a robotic
system in order to allow it to first learn and then imitate a
therapist’s behavior when assisting a patient in a lower limb
therapy task. A therapist’s assistance in lifting a patient during
treadmill-based gait therapy is statistically encoded by the system
using Learning from Demonstration (LfD) techniques. Later, the
therapist’s assistance is imitated by the robot, allowing the patient
to continue practicing in the absence of the therapist. Preliminary
experiments are performed with inexperienced users playing the
role of the assisting therapist, and with healthy participants
(wearing an elastic cord to simulate foot drop) playing the role
of the patient. Toe clearance values are recorded and show that
the system is able to provide the full clearance needed by the
patient to practice in the absence of the therapist.

Index Terms—Rehabilitation Robotics; Physical Human-Robot
Interaction; Learning from Demonstration

I. INTRODUCTION

AS the world’s population increases in age, the integration
of robotic assistance in rehabilitation medicine settings

continues to become more attractive, as well as feasible
with innovations in technology. Robots enable the provision
of repetitive, high-intensity physiotherapy [1] which is an
essential component to post-stroke rehabilitation as an ex-
ample. Stroke is the fifth leading cause of death globally,
causing approximately 6.5 million deaths each year [2], and
typically leaving survivors with neuromuscular disability and
without the ability to live independently. Post-stroke therapy
emphasizes repeated activation and use of a patient’s affected
muscles in order to reassociate damaged neural structures and
regain muscle tone [3]. Doing so can allow a patient to relearn
how to perform activities that are categorized as essential to
living, commonly referred to as Activities of Daily Living
(ADLs), and thereby regain some degree of independence.
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ADLs are often difficult to perform for stroke survivors
because of their lack of muscular coordination and muscle
weakness. Hemiparesis, in particular, is common to stroke
survivors, in which the decrease in muscular coordination and
tone present themselves on one side of the survivor’s body.
ADLs can typically be divided into those that demand the use
of a patient’s upper limbs, such as cooking or grooming, and
those that involve their lower limbs, such as walking, sitting,
or standing. In performing lower limb ADLs, the difficulty ex-
perienced by hemiparetic patients can lead to the development
of compensatory strategies, which may result in undesirable
and unsafe walking patterns, sitting, and standing transfers, or
in extreme cases the neglect of their affected side [4], [5]. As a
result, specific physiotherapy routines are designed in order to
assist patients in relearning and reinforcing correct gait habits.

Body weight supported treadmill training (commonly re-
ferred to as BWSTT) is one such routine. BWSTT involves
the suspension of a patient using a harnessing device above
a treadmill, such that a portion of their body weight is
relieved. If the patient is ambulatory, this allows them to
practice walking without needing the full muscle coordination
and tone normally involved. If the patient is non-ambulatory,
typically 2-3 therapists will be present during therapy and will
physically hold and move the patient’s lower limbs through
a proper walking pattern, allowing the patient to experience
walking. In non-ambulatory patients, in particular, BWSTT has
been shown to provide greater improvements to participants’
gait than traditional lower limb physiotherapy, which consists
of simple muscle strengthening exercises [6]–[8].

However, the physical exertion required by therapists in
the case of non-ambulatory patients is very intensive; therapy
sessions are often limited to 15-20 minutes and with only
one session per day [9]. Numerous robotic solutions have
been proposed in the past decade in an effort to alleviate this
physical burden [7], [10]–[12]. These technologies typically
take the form of exoskeletons, treadmill or footplate-integrated
robots, powered orthoses, or functional electric stimulators
(FES).

Robotic lower-limb assistive devices have traditionally been
programmed to assist the user in following predefined trajecto-
ries (i.e., gait patterns) with minimal allowed deviation [13].
This is less than ideal, as patients often feel like they are
fighting the robotic assistance, should their desired movements
not match with the assistance provided [14]. More recently,
adaptive control schemes have received a large amount of
attention. Lower-limb exoskeletons and ankle-foot orthoses,
in particular, have had a significant number of such strategies
developed for them. [15] utilizes adaptive oscillators as Central
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Pattern Generators (CPG) in order to provide natural gait
patterns through learned motor primitives, while [16] applies
a similar concept based on using EEG measurements as input
to a CPG. [17], [18] incorporate force-feedback reflex-based
neuromuscular models. [19] uses complementary limb motion
estimation to provide assistance to the affected lower-limb
that mimics the motion of a user’s healthy limb. [20], [21]
implement variable-impedance controlled systems, based on
different measurements of the user’s performance. However,
one common issue with these systems is that the role of a
supervising therapist is limited. At most, their role is to provide
the exoskeleton with trajectories of ideal gait (in the case
of motor primitives), after which variation of the assistance
level is fully up to the adaptive algorithm. This is typically
undesirable for therapists, as the idea of robotic automation
with minimal input from clinicians is poorly received [22].
Another possible form of adaptation we propose would be
to allow the therapist to provide and modify behaviors (for
the robot to imitate) as they see fit, where the behaviors do
not have to be ideal but could be the most appropriate for
a patient’s capabilities. In this manner, the therapist stays
involved in therapy as much as possible while the robot
alleviates only the burdensome physical aspects.

The application of machine learning techniques to enable
this adaptation across robotic rehabilitation has gained in-
creasing interest in recent years. In upper limb rehabilitation,
several uses of this same paradigm have been explored [23]–
[26]. The inclusion of machine learning in lower limb robotic
assistance has received attention mainly on recognizing gait
cycle movement patterns [27], [28], but less on learning the
correct corresponding assistance dependent on these patterns.
A method of providing therapists with finer control for tuning
the amount of assistance provided to patients during gait
therapy instead of using predefined fixed assistance regimes
observed in traditional assistive robotics is thus examined.

The contribution of this paper is to propose a proof-
of-concept treadmill-based gait therapy system that utilizes
machine learning techniques to allow a therapist to intuitively
define the amount of assistance provided to a patient and to
allow a robot to learn and later reproduce the same assistance
in the absence of the therapist. This is done through the use of
Learning from Demonstration (LfD) techniques, where a user
typically physically holds and moves a robot along a trajectory
which the robot learns and is later able to imitate. The system
learns by observing and generalizing between multiple demon-
strations from a therapist, as opposed to following a single
desired trajectory. Additionally, this method is advantageous
for use in clinical settings, as the therapists can train the system
without having to possess computer programming know-how.
To our knowledge, this is the first application of this paradigm
to the study of lower limb rehabilitation.

We draw inspiration from the design of the KineAssist, a
robotic treadmill-based assistive device that operates only in
one degree of freedom (DOF) [29]. The KineAssist consists of
a harness that holds the patient, attached to a vertical linear rail
at the back of a treadmill. Force sensors on the device allow a
therapist to provide lifting assistance to the patient during parts
of ADLs or the gait cycle that require compensation for the

patient’s disability. This design maximizes patient participation
while maintaining patient stability in order to prevent falls,
but lacks machine learning capabilities. Our system is based
on a robot manipulator (i.e., industrial robot) available to us,
instead of a mechanized rail, as in the case of the KineAssist,
or a wearable robot, as in the case of most gait therapy
solutions. The robot will provide lifting assistance to the user
representing the patient through a rope and pulley system that
will hoist the harnessed participant in one DOF (in the vertical
axis); the exact setup will be discussed later. Foot drop is a
commonly observed pathology in stroke survivors which we
focus on in this work. Toe clearance during the swing phase of
the affected limb is a major difficulty experienced by patients
with foot drop [30]. Our objective is to learn and train the
system to provide an adequate amount of lifting assistance so
as to provide the minimal toe clearance for the patient to be
able to practice walking by themselves and more specifically
the dorsiflexion of their affected foot. We will examine if the
trained system can assist the affected limb in such a way that
its toe clearance matches that of the unaffected foot during
assistance as well as the toe clearance values of both feet of
a healthy individual.

The paper is structured as follows: Section II outlines
the approaches to LfD and human-robot interaction (HRI)
incorporated into this work, Section III describes the experi-
mental setup and presents results, IV provides discussion of
the system and its performance, and V provides concluding
remarks and future directions for the work.

II. PROPOSED APPROACH

We aim to produce a robotic system that provides assistance
during gait therapy by partially lifting a patient’s affected leg
during the swing phase of their stride. The robot should learn
the amount and timing of assistance to give by first observing
a therapist providing assistance to a patient as in during
typical BWSTT, i.e., adjusting the trajectories of the patient’s
foot, knee, or hip. The therapist should provide assistance by
physically holding and moving the robot, which is attached
to the patient. Due to the nature of this task, we consider
the patient’s affected foot (and more specifically their toe)
position to be the measurable outcome. This means that during
the therapist’s demonstration, the motion of the patient’s foot
and the positions the therapist moves the robot to should be
recorded and a model generated to relate the two. Then, during
the phase where the therapist is no longer present, which we
call the imitation phase, the robot should be able to provide
similar assistance by partially lifting the patient in a safe and
non-disruptive way. We then need two main components to
control the robot. First, since the therapist should be able to
move the robot by applying force to its end-effector when
demonstrating assistance, a robot control scheme designed
for safe physical human-robot interaction (PHRI) should be
incorporated. The Time Delay Estimation (TDE) impedance
control method is selected for this (explained in Section II-A).
Second, an LfD algorithm that can be easily used to encode
the demonstrated trajectory data is preferable. We elect to
utilize Gaussian Mixture Model (GMM) and Gaussian Mixture
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Fig. 1. High-level block diagrams of data flow and interaction between
different agents (i.e., the therapist, patient, robot, and motion tracker camera).
(a) shows the process flow when the therapist and patient interact to provide
training demonstrations and (b) shows the process flow when the patient is
practicing alone with assistance from the robot.

Regression (GMR) based techniques (explained in Section
II-B). An overview of the system is provided in Fig. 1.

A. Impedance Control for PHRI

An impedance control scheme is selected to allow the ther-
apist and patient to safely interact with the robot. Impedance
controllers produce a desired force based on a predefined
relationship with the robot’s motion, often described in terms
of mechanical inertia, damping, and stiffness. Since our task
involves lifting a potentially substantial portion of the patient’s
body weight, a more heavy-duty robot than those typically
seen in rehabilitation robotics is required. However, internal
gearing in the joints of such robots produces an apparent
inertia of n2I , n representing the gear ratio, meaning the
robot is typically impossible to move passively. The use of
impedance control addresses this issue for larger geared robots,
making it easy for a user to move the controlled robot.
Note that an admittance controller, an alternative force control
method that produces a desired motion depending on force
input, could have been employed [26]. However, admittance
controllers typically present instability when in contact with
environments with high impedances, such as a human gripping
and holding a robot in place. On the other hand, impedance
control is ideal for maintaining safety in robotic control under
environmental contact (e.g., during PHRI), but requires the
dynamics of the robot to be well modelled [31]. In our
scenario, the robot dynamics can be written as

Mr (θs) θ̈r + Cr

(
θr, θ̇r

)
θ̇r

+ gr (θ) + fr

(
θr, θ̇r

)
− Jrfp = τr (1)

where θr represents the robot joint angles, Mr the moment
of inertia matrix, Cr the Coriolis and centrifugal matrix, gr
the gravity vector, Jr the robot’s Jacobian, fr the robot’s joint
friction vector, fp the force exerted by the patient on the robot
end-effector, and τr the controller motor torque. Please note
that the dependence on θr will be dropped for brevity. The
non-linear terms Mr, Cr, gr and fr can be roughly modelled,
but will likely be inaccurate leading to potentially undesired
dynamics.

The Time Delay Estimation (TDE) method, as presented
in [32], [33], is used here to reduce the inaccuracy when
estimating these non-linear terms. Our approximate model
gives us the nominal values

{
M̄r, C̄r, ḡr, f̄r

}
. We can then

rewrite (1) as

M̄r θ̈r+
(
Mr − M̄r

)
θ̈r+. . .+f̄r+

(
fr − f̄r

)
−Jrfp = τr (2)

which separates the nominal dynamics values from the un-
known model errors for each non-linear term. The uncertain
non-linear terms can then be grouped together:

N =
(
Mr − M̄r

)
θ̈r + . . .+

(
fr − f̄r

)
(3)

The TDE method approximates the non-linear terms N at
a time t, e.g., N (t), by equating them to the previously
measured torque values at a time t− T , provided T is small:

N (t) ≈ N (t− T ) = Ñ = τ̃r + J̃rf̃p− ˜̄Mr
˜̈
θr − . . .− ˜̄fr (4)

where the tilde symbol indicates time delay measured values.
The desired impedance dynamics are given as

Md (ẍr − ẍr,d) +Bd (ẋr − ẋr,d) +Kd (xr − xr,d) = fd (5)

where Md, Bd, and Kd represent the desired mass, damping,
and stiffness impedance parameters, xr represents the robot’s
Cartesian end-effector position, and fd represents the desired
output force. By equating fd to fp and using the relationship
between Cartesian and joint space acceleration

ẍr = Jr θ̈r + J̇r θ̇r (6)

we can combine (2), (4), and (5) in order to express the desired
robot joint torque controller as

τr = M̄rJ
−1
r

{
ẍr,d −M−1

d [Bd (ẋr − ẋr,d)

+Kd (xr − xr,d)− fp]− J̇r θ̇r
}

+ C̄r θ̇r + ḡr + f̄r + Ñ − Jrfp (7)

which effectively provides interactions in Cartesian space. For
more details on this process, readers are encouraged to see
[32].

B. Gaussian Mixture Model and Regression

As stated, the basis of the LfD paradigm lies in the
incorporation of two phases: the demonstration phase, where
the robot observes and statistically encodes trajectories that
are physically demonstrated to it, and the imitation phase,
where the robot performs regression on the model gener-
ated in the demonstration phase. The choice of algorithm
for the trajectory encoding is a widely researched topic.
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We choose to incorporate a GMM based approach for our
learning algorithm. GMMs are probability density functions
used to cluster data, constructed as weighted sums of Gaussian
component densities [34]. GMMs are well suited to learning
human and robot movements in the context of rehabilitation
medicine. Their generative modeling properties allow them to
smoothly interpolate between the captured underlying aspects
of a demonstrated movement as opposed to assigning strict
decision boundaries between different phases of a movement.
This is especially important for the gait therapy application we
present, where gait patterns can vary from trial to trial even
for a single user. GMMs also require relatively small training
datasets as compared to other machine learning methods such
as neural networks and deep learning methods.

The formulaic expression for a GMM is given as

p (ξ) =

Nk∑
k=1

p (k) p (ξ|k) (8)

with a total of Nk Gaussian components in the model, p (k)
being the priors, p (ξ|k) being the conditional density func-
tions, and ξ being a D-dimensional data vector containing
both the input and output variables needed during regression.
p (k) and p (ξ|k) are computed as functions of the model
variables {πk, µk,Σk}, which represent the prior probabili-
ties, mean vectors, and covariance matrices that define each
Gaussian component. Further details can be found in [34].
In our experiments, we opt for a simpler characterization of
the patient’s gait cycle than what is typically seen in other
gait therapy works; we record only the difference in the toe
positions of each foot and the velocity of the unimpaired
foot, as opposed to the joint rotations of the full leg. The
data vector is then given by ξ = [∆xp, ẋp,u, xr]

T , with
∆xp representing the difference in patient foot position (e.g.,
∆xp = xp,right − xp,left), ẋp,u representing the patient’s
unaffected foot’s velocity, and xr representing the robot’s end-
effector position.

We then incorporate GMR during the imitation phase in
order to extract the desired therapeutic behavior of the robot
from our learned model. GMR leverages the Gaussian condi-
tioning theorem and linear combination properties of Gaussian
distributions to retrieve the mean output values (ξ̂s), referred
to as the conditional expectation, from a GMM, as well as
the variances in those values, referred to as the conditional
covariance (Σ̂s). Again, further details can be found in [34].

Fig. 2 depicts the LfD procedure as described.

III. EVALUATION

A. Experimental Setup

We evaluated the system with a standard locomotion task,
where 2 able-bodied study participants (male, 23 years old, and
male, 24 years old) walked on a manually powered treadmill.
They wore an elastic cord attached between their heel and
calf that emulated foot drop during locomotion. The elastic
cord is stiff enough to ensure the toe fully drops during a
step. A ClaroNav MicronTracker (ClaroNav, Inc., Toronto,
Ontario, Canada) motion tracking camera was used to record
the positions of both of the patient’s feet. The participant
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Fig. 2. A generalized diagram of the LfD procedure employed in this work.
In (a), the therapist and participant cooperatively interact while completing
the walking task, with the therapist providing assistance by moving the robot
as shown in (b). The learning system then learns the therapist’s behavior from
the provided demonstrations in phases (a) and (b), characterized as desired
positions for the robot. Then, in diagrams (c) and (d), the robot replicates the
learned behavior, allowing the participant to practice the gait therapy task in
the therapist’s absence while experiencing the therapist’s assistance.

wore a waist-level harness attached to a rehab robot by a rope
and pulley system. The hip is chosen as the attachment site
for simplicity, as it moves the least in the horizontal plane
during gait. A Motoman SIA-5F (Yaskawa America, Inc.,
Miamisburg, Ohio, USA) seven Degrees-of-Freedom (DoF)
serial manipulator was used as the rehab robot, with a 6-
DoF ATI Gamma Net force and torque sensor (ATI Industrial
Automation, Inc., Apex, North Carolina, USA) attached at
the robot’s wrist joint before the end-effector. The robot was
simplified to a 2-DoF RR planar robot, which moved in 1-
DoF such that the waist harness was hoisted linearly upwards
by the pulley. The therapist was represented by a third able-
bodied individual (Fig. 3). 2 additional participants were also
tested, but due to the poor quality of their motion tracker data,
these results were not included.

The impedance parameters in (5) were chosen experimen-
tally. For demonstrations, Md and Kd were given values
permissive to free movement, while the damping parameter Bd

was given a higher value and decreased until instability was
observed. For imitations, Kd was adjusted to instead provide
accurate trajectory tracking. Final values for the parameters
were given as Md = 4.94 N·s2/m, Bd = 80.52 N·s/m, and
Kd = 0 for demonstrations. For imitations, Md and Bd were
unchanged and Kd = 311.29 N/m, around a third of a value
based on a previous study on measuring the impedance of
a stiff upper arm (911.29 N/m) performed by our group.
Desired accelerations and velocities were zero at all times, and
desired positions were provided by regression during imitation.
Estimates of the robot dynamics model nominal parameters
M̄r and C̄r in (2) were performed as in [35] for a 2-DoF robot,
while ḡr and f̄r are estimated to be negligible (ḡr = 0 as the
robot is positioned in a gravity neutral orientation, i.e., where
the joints of the robot that are controlled by the impedance
controller are oriented to rotate in the horizontal plane only and
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Fig. 3. Experiment setup. In (a) the robot is moved by the therapist by holding
and pressing on its end-effector force sensor. This provides a lifting assistance
to the patient who walks at their selected pace on the treadmill while harnessed
to the robot through the rope and clip. During both the demonstration and
imitation phases, the patient, played by a healthy participant, wears the elastic
cord in order to simulate foot drop. In (b) the motion tracker camera is shown
placed in front of the patient so as to capture the positions of their toes, which
are registered to markers placed on the tops of their shoes. The simplified 2-
DoF kinematics of the robot are also shown.

are thereby not under the effects of gravity). The remaining
joints of the robot were held static with a PID controller.

B. Results

Five demonstrations were first performed to train the sys-
tem. While wearing the elastic cord on the left foot (represent-
ing the limb with foot drop), the participant was assisted by
the therapist and completed 10 gait cycles per demonstration.
A GMM of 9 components (Nk = 12) was generated from
these demonstrations. This selection was partially motivated
by considering the common interpretation of the gait cycle as
having 8 phases; model generation was therefore tested for 8 or
more components. Using the generated model, five imitations
were recorded in which the participant completed the same
gait task wearing the elastic cord but with the assistance of

(a) (b)

Fig. 4. Comparison of toe clearance between the assisted left foot during
imitation and each of the left and right feet in the other scenarios. Results
for Participant 1 are shown in (a) and Participant 2 in (b). Mean values are
represented by the solid colored lines, while one standard deviation is shown
by the filled area around each trajectory. All trajectories are normalized to
5000 data points using spline interpolation, allowing for later comparison
with the Kolmogorov-Smirnov test.

the robot instead of the therapist. An additional five baseline
datasets were recorded without therapist or robot intervention
and without the elastic cord as a handicap, providing baseline
data of an able-bodied individual for comparison later. These
three sets of data are referred to as the “demonstration”,
“imitation”, and “baseline” datasets or scenarios from hereon.

Motion tracker data of each foot and the treadmill surface
were used to generate the toe clearance values for the assisted
and normal datasets during the gait cycle for each foot. The
trajectories were normalized to 5000 samples each to provide
consistency in comparison, where the swing phase is found in
the first portion of the data and the stance phase in the second
(Fig. 4). The averages of the maximum toe clearances for each
foot in each of the scenarios were also found (Table I).

As we also aimed to examine the similarity between the
toe clearance trajectories, the Kolmogorov-Smirnov hypothesis
test was performed between the imitation (assisted) left foot
dataset (representing the foot with foot drop) and each of the
other datasets. The toe clearances of each scenarios’ gait cycles
at each normalized index of the trajectory were treated as
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TABLE I
MEAN AND STANDARD DEVIATION VALUES OF MAXIMUM TOE

CLEARANCES.

Participant 1
Imitation Demonstration Baseline

Right Left Right Left Right Left
Mean (mm) 92.65 33.26 78.44 39.12 113.71 106.90
SD (mm) 24.68 9.58 21.19 11.69 23.28 21.25

Participant 2
Imitation Demonstration Baseline

Right Left Right Left Right Left
Mean (mm) 127.97 32.44 140.19 82.36 131.72 118.74
SD (mm) 25.38 13.11 31.09 32.40 22.51 32.38
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Fig. 5. Kolmogorov-Smirnov test performed for each normalized index. The
diagrams depict the statistical similarities between the imitation (assisted) left
foot’s trajectories and each of the other scenarios. Results for Participant 1 are
shown in (a) and Participant 2 in (b). The hypothesis measure (h) represents
whether the two are statistically similar: h = 0 represents the null hypothesis
(i.e., the signals are statistically similar at the point of comparison) and h = 1
represents statistical dissimilarity. The imitation (assisted) left foot achieves
similar clearance values only much earlier in its swing phase to the other
datasets, with the exception of Participant 1’s demonstration scenario left foot
measurements with which it matches throughout the entire cycle.

individual distributions, across which the test was performed
(Fig. 5).

IV. DISCUSSION

From Fig. 4 we see that the system would indeed be able
to assist a patient with foot drop to achieve toe clearance
(specifically the imitation (assisted) left foot), and in turn
practice gait therapy on his/her own. No sudden, unsafe or un-
stable movements were experienced, showing that the proper
interaction was learned and that the impedance controller

functions adequately for the task. However, we see that even
at each foot’s maximum clearance (Table I), the assisted left
foot during imitation (33.26 ± 9.58 mm for Participant 1,
32.44 ± 13.11 mm for Participant 2) does not rise within
a standard deviation of any of the other trajectories except
for the demonstration (assisted) left foot for Participant 1
(39.12 ± 11.69 mm), motivating further examination of the
similarity of the robot-assisted left foot trajectory to the oth-
ers. The Kolmogorov-Smirnov results confirm this observed
dissimilarity; the null hypothesis (h = 0, p > 0.05), stating
that the trajectories are statistically similar, is only confirmed
for sparse segments of the gait cycle, nearer to the beginning
of the other trajectories.

A qualitative examination of the toe clearance trajectories
provides some insight into possible reasons behind these
observations. The trajectories other than for the imitation
and demonstration (assisted) left foot datasets distinctly peak
around halfway through the swing phase (50% − 60% of
the swing phase). Both assisted left foot datasets, on the
other hand, peak very late in the phase (80% of the swing
phase). This phase shift could be attributed to a number of
factors. First, it is highly plausible that the demonstration data
provided by the therapist’s assistance was timed incorrectly,
and their intervention was phase shifted with respect to the
participant’s walking pattern; this is evident in the visual
similarities between the demonstration and imitation data for
the (assisted) left foot. A second cause could likely have
been the stiffness of the robot during the imitation phase
was too low (Kd = 311.29N/m). Another possible reason
could be that the intermittently applied change in the partici-
pant’s center of gravity negatively affected his/her gait pattern,
leading to a period in the cycle (20% − 50% of the swing
phase) where the participant resisted the robotic assistance
until comfortable. Lastly, the generative properties of GMMs
tend to pull the model’s components away from curves in
trajectories, leading to an observable “corner cutting” effect.
When using GMR with the produced model, the desired output
could then effectively have a damped behavior as compared
to what was demonstrated. These same factors could also
produce the reduced maximum toe clearances observed as
well. One important caveat is that only toe clearance values
were recorded. With the simulated foot drop, the toe is the
lowest point of the foot during the swing phase; however, in
normal gait, the heel is lowest when preparing for heel strike.
It could be beneficial to record the positions of the heel as
well, but this would require a more advanced motion capture
system to capture the motion from behind the patient.

We suggest a number of possible improvements that could
address these shortcomings. First and foremost would be to
have experienced, actual rehabilitation practitioners perform
the role of the therapist, as their expertise would likely produce
improved results in the tracking of an appropriate gait pattern.
In addition to this, results could also be improved if the
compliance of the robot during the demonstration phase was
increased. The impedance controller is fundamentally limited
by the design of the robot; compliance was increased as much
as possible through lowering the terms Md, Bd, and Kd, but
Md is lower bounded by the physical mass of the robot and



FONG et al.: A THERAPIST-TAUGHT ROBOTIC SYSTEM FOR ASSISTANCE DURING GAIT THERAPY TARGETING FOOT DROP 7

Bd was required to be non-zero for stability. As a result,
moving the robot required the therapist to exert as much force
as the body weight percentage they were supporting, on top
of the mass and damping the robot presented which could
result in less accurate movements. An adaptive impedance
control system could be a possible solution, where depending
on some measure of sensed therapist intention the robot relaxes
or increases its impedance parameters. With regards to the
stiffness of the robot during the imitation phase, it may help to
increase the value or to also implement an adaptive controller.
The value was chosen by using one-third of a value for a stiff
arm found in an earlier work by our group, in order to allow
for safe and gentle guidance. However, it is likely that the
system was too forgiving and thus had difficulty actually lifting
the participant properly as is most clearly seen in Participant
2’s left foot imitation results not resembling their left foot
demonstration results. It would be beneficial to perform a
future study focused on how to properly tune the impedance
parameters or to implement an adaptive parameter tuning
system. With regards to the learning algorithm, modifying
Gaussian-based modeling methods to place more emphasis on
curves in trajectories, as in [36], could help to address the
hypothesized issues arising from the generative nature of the
models. Lastly, increasing the participant population would
benefit the study tremendously. Having more participants with
a wider variation in gait patterns, as well as actual symptomatic
patients would provide results more likely to be applicable to
the intended population.

V. CONCLUSION

In this paper, impedance control based teaching of a robot
was used to teach a therapist’s assistance to a robot during
a treadmill-based therapy routine for a participant with foot
drop. GMM and GMR were used as the learning and regres-
sion algorithms needed to train the robot and have it imitate
the therapist later. We show the system is able to successfully
provide toe clearance during gait, although the imitation is
not quite able to produce clearance values comparable to
normal gait. Future work will focus on improving the learning
algorithm to account for these inaccuracies, better tuning the
impedance controller, and eventually testing the system with
more participants and in clinical settings.
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