
Improving User Performance in

Rehabilitation Exercises

by

Renz Jethro Roque Ocampo

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

BIOMEDICAL ENGINEERING

Department of Electrical and Computer Engineering

University of Alberta

c⃝ Renz Jethro Roque Ocampo, 2019

Abstract

Disabling events such as stroke affect millions of people worldwide, causing a need for

efficient and functional rehabilitation therapies in order for patients to regain motor

function for reintegration back into their normal lives. Rehabilitation regimes often

involve performing exercises that mimic the movements done in activities of daily

living. These are sometimes complemented with serious games controlled through a

robotic user interface to increase the motivation of the patients, further increasing

the likelihood of success of the therapy. However, alongside physical disability, some

patients (e.g., stroke patients) develop cognitive deficiencies that affect their ability to

think, plan, and carry out tasks. In such cases, serious games, which are commonly

displayed on a 2D monitor to the patient, may be too hard for patients due to the spatial

disconnect between the visual coordinate frame (screen frame) and the hand coordinate

frame (robotic user interface frame). Patients will have to do mental transformations to

align their hand movements with their movements on-screen. The colocation of visual

and motor frames for rehabilitation in commercial devices is still in its infancy, and

while there are research regarding the use of visual-motor colocation in rehabilitation,

its effectiveness has not yet been explored.

This thesis presents a study of the effectiveness of visual-motor colocation in re-

habilitation exercises by integrating augmented reality in serious games to achieve

the above-mentioned colocation. A technique called projection mapping is utilized to

ii

project digitally constructed objects onto the real-world environment. Physical inter-

action with these objects is handled through a haptic user interface. The system is

comprised of a projector, a game engine to create the virtual environment, a haptic

user interface to interact and receive force feedback on the virtual objects, and a depth

sensor to implement head tracking in 3D scenarios.

The system design and the investigations in this study consist of two stages: first

implementing visual-haptic colocation in a 2D spatial augmented-reality display in

Chapter 3, and then further extending the work into a 3D environment in Chapter 4.

The 2D case involves a task where reaching motions are performed using a 2D planar

haptic robot. For the 3D case, three tasks are presented, each requiring a combination

of spatial accuracy, awareness, and manipulation. Disability-induced cognitive defi-

ciency is simulated on able-bodied participants by putting them under a cognitive load

while performing the tasks. Each of the tasks in the 2D and 3D cases are compared

to their non-colocated counterpart (tasks displayed on a 2D screen placed in front of

the user) in terms of several user performance indicators. Results show a significant

increase in user performance when visual and motor frames are colocated for both 2D

and 3D cases. Furthermore, one of the tasks in 3D showed that visual-motor colocation

can alleviate the negative effects of cognitive loading.

Finally, after the validation of the effectiveness of AR in robot-assisted therapy, we

combine AR with a heavy-duty robot in Chapter 5 and explore the use of this robot-

AR system in occupational rehabilitation and functional capacity evaluations. The

biomechanics of the user’s arm while performing the task with the robot-AR system is

compared with their arm biomechanics for an equivalent real-world task. An analysis

for similarity of the arm biomechanics is carried out to determine if using the robot-AR

system can produce the same upper-limb movements as in conventional rehabilitation

practices.

iii

By increasing the user performance, which consequently increases the likelihood of

success in performing the exercise, this work of bridging the spatial disparity between

two frames can potentially improve the efficiency of current rehabilitation practices that

use serious games for therapy. It has been shown that users who are set up to succeed

more are more likely engaged in rehabilitation. It becomes a positive feedback loop

where as the patient’s performance improves with practice, this improvement allows

the patient to do even more. While not all patients achieve this positive feedback

structure, we hope to make it easier for patients to reach this “threshold.”

iv

Preface

This thesis is an original work by Renz Ocampo. The research project, of which

this thesis is a part, received research ethics approval from the University of Alberta

Research Ethics Board, Project Name ”Measuring the mechanical impedance of the

upper limb using a rehabilitation robot”, No. MS7 Pro00033955. April 27, 2017.

Initially used as the ethics approval by Matthew Dyck in 2013, this ethics approval

was revised to encompass the work done in this thesis.

Chapters 3 and 4 of this thesis are my original work. Chapter 3 has been pub-

lished as Renz Ocampo and Mahdi Tavakoli, “Visual-Haptic Colocation in Robotic

Rehabilitation Exercises Using a 2D Augmented-Reality Display,” The International

Symposium on Medical Robotics (ISMR), Atlanta, GA, 2019. Chapter 4 has been

published as Renz Ocampo and Mahdi Tavakoli, “ Improving User Performance in

Haptics-Based Rehabilitation Exercises by Colocation of User’s Visual and Motor Axes

via a 3D Augmented-Reality Display,” IEEE Robotics and Automation Letters, 2019.

In press. For both works, I was responsible for the development of the system, data

collection, analysis, and manuscript composition. Mahdi Tavakoli was the supervisory

author and was involved with concept formation and manuscript composition.

Chapter 5 of this thesis is currently in preparation for submission and is a collabora-

tive work with Jason Fong. I was responsible for implementing augmented-reality and

programming the virtual environment. Jason Fong handled the admittance control for

the serial manipulator and the majority of the analysis. The manuscript composition,

data collection, and experimentation were done by both of us in equal parts.

v

Dedication

To my parents, Roland and Jasmin:

Thank you for the love, care, and support you have given me throughout this journey

and for always showing concern to keep myself from getting off track. Thank you also

for ensuring I never go hungry.

To my brother, Riel:

Thank you for helping me stay relaxed and stress-free. The distractions are always

welcome.

To God:

Thank you for giving me the perseverance to move forward, for helping me stay

composed when experiments are not working, and for granting me this new

accomplishment in life.

vi

Acknowledgements

I would like to express my most sincere gratitude and appreciation for my supervisor,

Dr. Mahdi Tavakoli, who has guided and encouraged me throughout the entirety of

my degree. He has always put in the effort to make himself available to help out and

give advice to his students. Thank you for being patient with me and mentoring me

every step of the way.

Thank you, Dr. Mahdi Tavakoli, Dr. Edmond Lou, and Dr. Hossein Rouhani for

serving on the examination committee and Dr. Kambiz Moez as the chair.

Thank you to my family for their love and support.

Thank you also to my friends and fellow lab members in the Biorobotic and Teler-

obotic Systems Group. The insight and experiences you have shared with me have

truly been of great help and inspiration. Especially, I would like to thank Jason Fong

for the collaborative work we have done for the final chapter which would not have

been possible without his expertise.

Funding for this research has been provided in part by the Natural Sciences and

Engineering Research Council (NSERC), the Canada Foundation for Innovation (CFI),

the Alberta Innovation and Advanced Education Ministry, and Quanser Inc.

vii

Contents

Abstract ii

Preface v

Dedication vi

Acknowledgements vii

Contents viii

List of Tables xii

List of Figures xiv

List of Acronyms xvii

1 Introduction 1

1.1 Motivation . 1

1.1.1 Objective . 3

1.1.2 Organization of the Thesis . 3

1.1.3 Patient Simulation . 4

1.1.4 Contribution of the Thesis . 5

2 Literature Review 6

2.1 Robot-Assisted Rehabilitation . 6

viii

2.2 Serious Games . 8

2.2.1 Serious Games in Rehabilitation 9

2.3 Virtual Reality and Augmented Reality 12

2.3.1 Virtual Reality Displays . 14

2.3.2 Augmented Reality Displays . 14

3 Investigation of User Performance Improvement in a 2D Visual-Haptic

Colocated Rehabilitation Task 16

3.1 Introduction . 16

3.1.1 Virtual Reality & Augmented Reality in Rehabilitation 17

3.1.2 Haptic Feedback in Rehabilitation 18

3.1.3 Motivation for Visual-Haptic Colocation in Rehabilitation . . . 18

3.2 Related Work . 20

3.2.1 Virtual Reality Rehabilitation Systems 20

3.2.2 Augmented Reality Rehabilitation Systems 21

3.3 Rehabilitation Game Design . 23

3.4 Experiment . 24

3.4.1 Experimental Setup & Challenges 25

3.4.2 Procedure . 29

3.4.3 Results and Discussion . 31

3.5 Conclusion . 35

4 A 3D Augmented Reality Display to Improve User Performance in

Rehabilitation Exercises 37

4.1 Introduction . 37

4.1.1 Virtual Reality & Augmented Reality Game Displays 38

4.1.2 Visual and Motor Axes Colocation 38

4.1.3 Related Work . 39

4.2 Proposed 3D Spatial AR System . 42

ix

4.2.1 Representative Tasks . 42

4.2.2 Experimental Setup . 44

4.3 Experiment . 46

4.3.1 Procedure . 47

4.3.2 Results and Discussion . 48

4.4 Conclusion . 54

5 A Robotic System with an Augmented-Reality Display for Functional

Capacity Evaluation and Rehabilitation of Injured Workers 55

5.1 Introduction . 55

5.2 Related Work . 57

5.2.1 FCE . 57

5.2.2 Robot-assisted Assessment Rehabilitation 57

5.2.3 Virtual Reality & Augmented Reality in Rehabilitation 58

5.3 Materials and Methods . 59

5.3.1 Rehabilitation Task Design . 59

5.3.2 Robotic Manipulator Choice and Control Strategy 60

5.3.3 Experimental Setup . 62

5.3.4 Experimental Procedure . 63

5.4 Results and Discussion . 65

5.5 Conclusion . 70

6 Conclusion 71

6.1 Summary . 71

6.2 Future Work . 73

6.2.1 Assist-as-needed Functionality 73

6.2.2 Larger Scale Setup . 74

6.2.3 Improved Occlusion Mitigation 74

6.2.4 Therapist-Patient Telerehabilitation 74

x

6.2.5 Clinical Trials and Validation 75

Bibliography 76

Appendix 92

A 2D AR System Development in Unity 93

A.1 Overview of the System . 93

A.2 Layout of the Game User Interface . 95

A.3 C# code for the 2D AR System . 96

A.3.1 C# code for the Calibration Scene 96

A.3.2 C# code for the Game Scene 99

B 3D AR System Development in Unity 110

B.1 Layout Overview of Game . 110

B.2 C# Code for the Three Tasks . 111

B.2.1 Code for Snapping . 112

C Motoman AR System Development in Unity 117

C.1 Layout Overview of Game . 117

C.2 C# Code for the Painting Task . 118

xi

List of Tables

3.1 The table categorizes the different physical rehabilitation systems found in

literature by the type of visual technique and incorporation of haptics. The

black bullet represents this work’s position in the literature. 20

3.2 The table shows the conditions set for each task. Each set of conditions

are labeled numerically. AR means the task is projected on the table and

colocation is present. In VR, the task is done on a screen in front of the user

where they use the rehabilitation robot as a joystick to control a circle to

push the car. Note that these conditions are presented to the participants

randomly to reduce the effect of learning. 30

3.3 Table of Mean and SD of the time duration (seconds) results of all 10 subjects

for each of the 8 conditions. 31

4.1 The table shows how each task is split into 4 conditions. While there are 4

conditions, each condition is presented twice to the participant to increase the

validity of the results. To summarize, there are 3 tasks, 4 conditions/task, 2

trials/condition to give a total of 24 trials. Note that the numbering on the

table is only for reference for the other figures in this chapter and does not

reflect the order the conditions are presented to the participants. 47

4.2 Table of mean and standard deviations for the outcome measures for each of

the three tasks. Results show the average per person. 48

xii

4.3 The table shows the RMANOVA results of each task category for each main

fixed effects (VR vs. AR and No CL vs. CL). The F-ratio and p-values are

reported. Bolded values represent p < 0.05 significance. Bolded italicized

values represent p < 0.01 significance. 51

4.4 Table of Paired T-test results between two conditions using the False Discov-

ery Rate correction. Bolded values represent p < 0.05 significance. Bolded

italicized values represent p < 0.01 significance. 52

xiii

List of Figures

2.1 The Virtuality Continuum introduced by Milgram et al. to categorize differ-

ent mixed reality environments. 12

3.1 Side view of the experimental setup. The projector (not seen in the image)

projects the task onto the table. 25

3.2 Top-down view of the experimental setup. The rehabilitation robot arm ex-

tends into the projection space to be used by the user to push the car around

the track. 26

3.3 Collective user performance of 10 participants on the 8 different experimental

conditions. The line within the boxes represent the median time. 32

3.4 Time it took for each participant to complete Conditions 5 and 6. The number

within the graphs represent cognitive loading misses. 32

3.5 Allowable distance between end-effector and center of the car. 33

3.6 Snapshot of end-effector movement of two participants for both Conditions

5 and 6. Units are in cm. Both participants moved in a counter-clockwise

fashion. 34

3.7 Survey given to the participants after the experiments. A higher number is a

better rating . 35

4.1 The three tasks, Snapping (left), Catching (centre), Ball Dropping (right). . 42

4.2 Left: Actual setup. Task is projected onto the screen (projector is not in

view). Right: Model of the setup created in Unity. 45

xiv

4.3 Box plot results for Snapping (Top), Catching (Middle), and Ball Dropping

(Bottom). The line within the boxes represent the median score. The hor-

izontal line above the conditions show the statistical significance of the two

conditions. One star (*): p < 0.05. Two stars (**): p < 0.01. No horizontal

line represents no statistical significance. 50

5.1 Flowchart of the communication between each system. 62

5.2 Painting task experimental setup. (Top) represents the robot-AR condition

and the (Bottom) represents the real-life equivalent condition. The projector

is not shown. Through AR, the paint roller will pop out in 3D from the

perspective of the user in a geometrically correct position and orientation

relative to the robot end-effector. 64

5.3 Joint position data for an example cluster. (a) shows the point cloud

data for H2E displacements, and (b) shows E2S displacements. 67

5.4 Three-dimensional KS results for the painting task with the data split

into voxels for comparison. The grid points show points in space around

the surface of the wall where H2E and E2S results were clustered and

compared at. (a) and (b) represent H2E and E2S results for Participant

1, respectively, and (c) and (d) represent the same for Participant 2.

Clusters with a sufficient number of datapoints for comparison with

the KS test are shown with solid black points and those of statistical

similarity are encircled in red. 68

A.1 The overall process of how each individual system interacts with each other

for the 2D AR system. 94

A.2 The flowchart of how to navigate the graphical user interface for the 2D AR

game. Top Left: Main menu. Top Right: Game. Bottom Left: Settings.

Bottom Right: Calibration . 94

xv

B.1 The overall process of how each individual system interacts with each other

for the 3D AR system. 111

C.1 The overall process of how each individual system interacts with each other

for the Motoman AR system. 118

xvi

List of Acronyms

2D 2 Dimensions

3D 3 Dimensions

ADLs Activities of Daily Living

ANOV A Analysis of Variance

AR Augmented Reality

CL Cognitive Loading

DOF Degree of Freedom

E2S Elbow-to-Shoulder

FCE Functional Capacity Evaluation

FDR False Discovery Rate

H2E Hand-to-Elbow

HD2 High Definition Haptic Device

HMD Head Mounted Display

KS Kolmogorov–Smirnov

NN Nearest Neighbor

OST Optical See-Through

PHRI Physical Human-Robot Interaction

PILE Progressive Isoinertial Lifting Evaluation

RM Repeated Measures

SD Standard Deviation

V ST Video See-Through

V R Virtual Reality

xvii

Chapter 1

Introduction

1.1 Motivation

The demand for motor rehabilitation has soared to new heights in the last few decades

due to the increase in disabling events such as stroke, injury, and accidents. Using

stroke as an example, approximately 62,000 cases are reported in Canada each year,

making it the 3rd leading cause of death in Canada. With 405,000 Canadians living

with the effects of stroke, the cost to the Canadian economy totals more than $20.9

billion per year [1]. As such, the need for efficient forms of therapy is on the rise in

order to reduce the human and capital resources required and to better assist patients

in regaining their lost functions.

The ability to do activities of daily living (ADL) such as eating, dressing, and self-

care is typically negatively affected by a disabling event. Therefore, the fundamental

movements that make up ADLs such as point-to-point reaching are commonly used

as exercises for rehabilitation. Traditionally, these are done using hand-over-hand

therapy in which the therapist directs the patient’s movement. To be effective in

regaining motor function, however, multiple repetitions of the task is needed, requiring

the therapist to commit long hours per patient and therefore only allows a few patients

to receive therapy. With lengthy therapy sessions required by patients, each with

1

labour-intensive activities, a heavy burden is placed on the health care system. Thus,

the inclusion of robots in the rehabilitation environment is desirable. Robots can

reproduce tasks with unfailing accuracy for multiple repetitions without feeling the

effects of fatigue. This assistance to the therapist allows more patients to be handled

in the clinic, thereby permitting for more efficient rehabilitation.

Low patient motivation, however, remains to be an issue in therapy even with the

addition of robotics. As robots allow for a reduced therapist intervention, the patients

themselves lose motivation due to the lack of encouragement, entertainment, and hu-

man interaction [2][3][4]. Motivation is seen as an important predictor in successful

rehabilitation outcomes. Serious games, which are video games designed for purposes

other than pure entertainment, have been shown to increase patient motivation [5][6].

By combining serious games and robot-assisted rehabilitation, the patient becomes en-

gaged in the exercise and may even “forget” that they are in a rehabilitation training

session due to the immersion [7]. It has been shown that the combination of the two

technologies in rehabilitation training leads to better outcomes than robotics assistance

alone [8][9].

The robotic interfaces can also provide accurate measurements of movement and

forces that can be used to give a quantitative analysis of performance, a factor that

is lacking in a therapist’s subjective observation. Giving quantitative feedback to

inform the patients about small improvements in their success scores or limb movements

further encourages them to continue on with their therapy.

While serious games aid in motivating patients during rehabilitation exercises, they

lack the sense of realism found in traditional rehabilitation practices. Real-world tasks

involve interaction with real objects such as peg-in-the-hole insertion, block stacking,

and pick-and-place operations. Patients touch and see the objects they are interacting

with at the exact same location since both the visual and haptic frames are aligned.

However, the games used for rehabilitation are typically shown on a 2D screen in front

of the user. The disconnect between the patient’s arm movement axis and how they see

their cursor or avatar move on the screen may unnecessarily impose a mental burden

2

on the patients to match their limb movements with what they visually see on the

display. Furthermore, the scaling of movements might need to be accounted for if the

workspace and screen are of different sizes. For patients whose cognitive functions

are negatively affected by events such a stroke or injury and who require upper-limb

neurorehabilitation, the spatial disparity might make it more difficult to perform the

task compared to those with no cognitive deficiency.

1.1.1 Objective

The principal idea of this thesis is that by colocating the visual and motor frames

of the workspace for the user, the user’s performance in rehabilitation exercises will

be increased due to the reduced mental load. Our aim is to have enhanced patient

engagement and thus better rehabilitation outcomes. However, performing an actual

investigation requires a longitudinal patient study which is beyond the scope of this

thesis.

1.1.2 Organization of the Thesis

Chapter 2 presents the work done in the literature that provides information to help

understand the context of this thesis. A brief overview of robotic rehabilitation is

discussed along with serious games used in rehabilitation. This is followed by a more

comprehensive description of the different types of visual display techniques used in

rehabilitation.

Chapter 3 investigates the effectiveness of visual-haptic colocation in a 2D reha-

bilitative task. Spatial AR (projection mapping) is utilized as the display method to

align the visual and motor frames. The task is a serious game that involves doing

reaching motions around the workspace using a 2 Degree-Of-Freedom (DOF) planar

rehabilitation robot. The “patients” are simulated by able-bodied participants that

simultaneously perform a counting down arithmetic operation while doing the task.

Three independent parameters are switched on or off in the experiments: visual-motor

3

colocation, haptic feedback, and cognitive loading. User task performance is measured

based on time to completion for the different parameter combinations.

Chapter 4 builds upon the findings of Chapter 3 and extends the work to a 3D

spatial AR system. This chapter uses a 6-DOF haptic user interface to interact with

the projected digital objects. Active 3D shutter glasses are worn by the participants to

provide depth information to the user. Three tasks are presented to each participant:

Snapping, Catching, and Ball Dropping. Since the tasks differ in both objectives

and their interaction with the virtual environment, haptic feedback is not equally

represented in the tasks and is therefore always turned on when applicable. Only

two parameters are manipulated for each task: visual-motor colocation and cognitive

loading. User task performance is measured based on the success scores earned per

task.

Chapter 5 applies the AR concept to another area of rehabilitation, occupational (or

vocational) rehabilitation of injured workers. A heavy-duty 7-DOF serial manipulator

is combined with AR to recreate the physical dynamics of functional tasks to help regain

an injured worker’s functional capabilities and allow for a return to employment. In this

chapter, we simulate a painting task that focuses on training up-down hand movements

by having the user paint a virtual wall. The system’s performance and efficacy are

validated by comparing the user’s arm biomechanics when using the robot-AR setup

versus their arm biomechanics during the performance of the physical version of the

same task.

Chapter 6 provides a summary of the research findings and possible areas of future

work.

1.1.3 Patient Simulation

It is important to note that the patients in this thesis are simulated. Effects of cog-

nitive deficiency, such as the inability to give full attention to the task, is simulated

by cognitively loading able-bodied participants using an arithmetic task. While this

4

does not fully mimic the effects of mental disability, the main consideration is the

extent participants are burdened by the arithmetic operation such that they produce

performance results that an actual patient with a disability might have.

1.1.4 Contribution of the Thesis

This thesis makes contributions in the investigation of the effectiveness of visual-motor

colocation in rehabilitation exercises for both 2D and 3D visual displays in Chapters 3

and 4. Furthermore, the combination of a robotic user interface coupled with haptics,

AR, and cognitive loading applied to serious games for rehabilitation has not yet been

examined. The focus is on the comparison of user performance between when visual-

motor colocation is toggled on and off. This performance is also examined against tasks

without cognitive loading to analyze how much visual-motor colocation can mitigate

the negative cognitive effects of a disability.

In Chapter 5, current practices for occupational rehabilitation involve real physical

objects across multiple setups that together occupy a large area of an occupational

rehabilitation facility. Other systems that combine these exercises into one adjustable

machine lack the visual representation of the tasks patients are performing. Our robot-

AR system aims to solve these issues in one unified system.

5

Chapter 2

Literature Review

This chapter presents the background information required to understand the fun-

damental concepts found in the thesis. An overview of the surrounding literature is

discussed in the following sections. Section 2.1 provides a brief history of robotics

being used for motor rehabilitation. Section 2.2 introduces the role of serious games

in the field of rehabilitation. The visual display methods, namely virtual reality (VR)

and augmented reality (AR), used for serious games in robot-assisted rehabilitation are

discussed in Section 2.3.

2.1 Robot-Assisted Rehabilitation

Dedicated to assisting and augmenting motor function rehabilitation using robotic

devices, research in rehabilitation robotics began as a way to find a solution that al-

leviates therapists’ stress and produces more efficient rehabilitation techniques. Since

traditional upper-limb rehabilitation therapy is administered through a hand-over-hand

manner by the therapists, physical fatigue and pressure is built up through the long

hours of commitment required per patient. Spurred by a robot’s ability to produce

high-intensity, repetitive, and precise motions, researchers have taken interest in reha-

bilitation applications for robotics.

6

Initially, most robots used in rehabilitation were for assistive purposes. These robots

did not aim to help to regain the lost motor function of the patient, but rather they

aimed to assist the patient in performing activities of daily living. These are commonly

seen as robots attached to wheelchairs to assist in eating and drinking, grabbing objects,

and mobility [10]. It was not until the late 1980s when researchers started to pursue

rehabilitation robotics for actual therapy use. In 1988, two double-link planar robots

were coupled with a patient’s lower limb to provide continuous passive motion for

rehabilitation [11]. This was soon followed by an upper-limb rehabilitation device in

1992, the MIT-MANUS, which was used for planar shoulder-and-elbow therapy [12].

Upper-limb rehabilitative devices were further developed after the advent of the MIT-

MANUS. These include devices such as the Mirror-Image Movement Enabler (MIME)

robotic device, which improved muscle movements through mirror-image training [13],

and the Assisted Rehabilitation and Measurement (ARM) Guide, which functions both

as an assessment and rehabilitative tool [14]. Robotic rehabilitation that targeted other

areas of the body surfaced in the 2000s. These robotic devices allowed rehabilitation

for areas such as the wrist [15], hand, and finger [16] for the upper-limb, and gait and

ankle training [17][18] for the lower limb.

While the idea of robotic therapy is alluring, researchers sought to investigate its

effects in regaining motor function in rehabilitation. Improvement of motor function

have been shown in studies performed with the MIT-MANUS. Post-stroke patients

were recruited for the MIT-MANUS study and results have shown a statistically sig-

nificant reduction in shoulder and elbow impairment compared to the group that under-

went conventional therapy [19]. Likewise, with the MIME system, post-stroke patients

trained with the MIME over an eight-week period showed an improvement in reach

and strength of the affected limb [20]. Based on the Fugl-Meyer score, the MIME

group produced better results than the conventional therapy group in the two months

of therapy. These studies show the potential of robotic therapy in the rehabilitation

practice.

The introduction of robotic devices for rehabilitation have opened up new possi-

7

bilities in improving the efficacy of traditional rehabilitation techniques. The results

of robotic therapy show promise; however, the repetitive nature of these exercises can

make it a uninteresting task for the patient, thereby decreasing their motivation. Stud-

ies have shown that incorporating games alongside rehabilitation practices increases the

patient’s motivation during therapy [3][21][5].

2.2 Serious Games

First coined by Abt in his 1970 book [22] and popularized by Sawyer in 2002 [23],

serious games have become a widely researched field of study garnering a worldwide

market worth of e1.5 billion in 2010 [24]. The exact origin of using games for a

purpose other than entertainment is unknown; however, historical data shows evidence

of its concept tracing as far back as ancient Greece. Plato acknowledged that for

children, play can have an effect on their development into adulthood [25]. The early

1900s showed interest in games as a supplement in the field of education. In 1902,

The Landlord’s Game was designed to be a “practical demonstration of the present

system of land-grabbing with all its usual outcomes and consequences” [26]. It was

then used by Scott Nearing, a professor at the University of Pennsylvania, who used

it for teaching [27]. In the next few decades, it became the game of Monopoly that we

have all come to know and enjoy. Since the video game industry had not yet taken

form at the time, paper-based educational games in the 1960s briefly gained attention

but never rose in popularity [28][22]. By the 1970s, computer games such as The

Oregon Trail [29], which taught children about 19th-century pioneer life, started to

appear although these were mainly games for educational use. It was not until the

early 2000s when fueled by the advancements in hardware, game development, and its

success in the commercial market, that researchers worldwide took an interest in novel

areas of research that video games can be applied to. Defined as games that serve a

main purpose other than pure entertainment, serious games have been expanding in

areas such as politics [30], military [31], sports training [32], and health [33]. Serious

8

games can be presented through any form of technology and can be in any genre. For

instance, even commercial platforms intended for entertainment, the Nintendo Wii,

the PlayStation 2, and the Microsoft Kinect, have been repurposed for research in

the rehabilitation field [34][35][36]. Various conferences and seminars have emerged in

response to the growing interest. In 2010, the Serious Play Conference [37] began a

leadership conference for developers of serious games/simulations coming from different

fields of expertise from both industry and academia. To promote interdisciplinary

research within the field, IEEE launched the first serious games conference in 2009,

dubbed as VS-GAMES: Games and Virtual Worlds for Serious Applications. Limitless

in potential, games allow for adding entertainment in approaches to education, training,

or rehabilitation. In essence, the purpose is to create an enjoyable environment for

otherwise tedious activities.

2.2.1 Serious Games in Rehabilitation

Patient Motivation

Patient motivation is regarded as an important factor in predicting success rates for re-

habilitation [38]. The physical and emotional impacts induced by events such as stroke

affect the willingness of the patient to participate. While this motivation to rehabilitate

can be influenced by multiple factors in the rehabilitation environment such as family

members, staff, and other stroke patients, a significant element lies in rehabilitation

exercises itself. Some patients have a lack of information and understanding of the na-

ture of their rehabilitation exercises [39]. Coupled with the long sessions and repetitive

motions that are involved [40], patients become uncertain about their rehabilitation

outcomes. As a consequence, poor patient participation causes patients to have longer

inpatient rehabilitation stay and poorer motor improvement results [41].

9

Motivation through games

The addition of serious games in the rehabilitation environment to augment physi-

cal therapeutic exercises has been shown to produce positive outcomes. Since the

games can promote the use of both physical motions and mental processes, the patient

becomes actively focused while doing exercises. One of the earlier documented applica-

tions of computer games in rehabilitation research was done in 1993 for promoting arm

reach using a Simon game in which patients are instructed to repeat the sequence of

flashing lights by pressing coloured buttons [42]. By adding the game, it structures the

exercise such that “performance components are not acquired through random activity

or mindless exercise; rather they are acquired through active, goal-directed interaction

with the environment” [43].

The availability of various interfaces for serious gaming allows for adaptability and

variety for the patient. From keyboards and mice, to body tracking and head-mounted

displays, a multitude of devices can be integrated in games. Robots and haptic in-

terfaces can provide haptic feedback to the patients to enable interaction with digital

objects. For example, technologies like The Java Therapy System [44] allow for dif-

ferent interfaces (traditional mice, force feedback mice, force feedback joystick) to be

used with games.

Serious gaming for rehabilitation does not end outside the doors of the therapy

clinics; it plays a key role in home-based rehabilitation. Patients who are discharged

from the hospitals and are sent home, but are required to do exercises by themselves,

lack the motivational support from staff and peers in the clinics. This also applies

to patients without access to the clinics due to distance or other circumstances. Self-

exercise often leads to low motivation and less adherence to the required daily workout

dose when lacking motivational support. Engaging patients at home with serious games

for rehabilitation promotes adherence to the therapy.

Sources of motivation also come from the environment surrounding the patient.

The therapist, the patient’s family, and peers in the rehabilitation clinics are all factors

10

that can affect the patient’s motivation. Including these elements in a serious game

further motivates patients by making the exercise seem more comparable to a social

activity. Jadhav et al. [45] developed a system that allowed the therapist to perform

an active role in adjusting the complexity of the training regimen while the patient

does the exercise from the remote environment. Multiplayer games with peers offer

the patients a shared experience and a sense of social acceptance [46]. Being able to

cooperate or compete with one another heightens the enjoyment and can potentially

produce a more intensive exercise than playing alone [47]. Furthermore, differences

in performance levels for an able-bodied person and a post-stroke patient could be

equalized such that they can both take part in a rehabilitative game [48].

There is significance in the type of information the patient receives during their

exercise. In traditional rehabilitation practices, this may be in the form of distinct

changes in the difficulty of an exercise, location of the user’s hand with respect to the

target position, or general commentary feedback from the therapist. Robotic therapy

takes advantage of the ability to record quantitative information to accurately measure

even minor improvements in the patient’s actions [49]. Coupled with the games, the

recorded data could be transformed into an exciting challenge to beat such as using

the patient’s progress as high scores or achievements to work towards to further engage

the patients [33][50].

Moreover, since the confidence of patients may decrease when recognizing an in-

creased intensity or difficulty in the task, the task difficulty could also be discreetly

changed unbeknown to the patient. The game serves to aid in taking away attention

from the change, thereby producing a masking effect.

Using the games as a distractor can also be used to alleviate pain. Patients can

feel discouraged to continue their rehabilitation exercises when knowing that doing so

inflicts pain. The same case is often seen in pediatrics when children become difficult

to manage due to the fear of needles. A study on burn patients undergoing burn

rehabilitation therapy reported that less pain was experienced when the patients were

distracted by VR. The patients spent less time thinking about the pain while distracted

11

Mixed Reality (MR)

Real

Environment

Virtual

Environment

Augmented

Virtuality (AV)

Augmented

Reality (AR)

Virtuality Continuum (VC)

Figure 2.1: The Virtuality Continuum introduced by Milgram et al. to categorize different
mixed reality environments.

[51]. The pain can also be reattributed as a different sensation (e.g., a needle’s sting

can be represented as a warm object on the arm) in the VR environment to further

draw attention away from it [52][53].

In summary, serious games provide entertainment to users while having a primary

objective of developing skills. In the rehabilitation case, the games encourage patients

to keep up with their training regimen in several possible ways. Having a variety

of interfaces available for use can make the therapy adaptable to different kinds of

patients and open up avenues to various styles of gaming. The games can be a source of

motivation for people doing home-based rehabilitation or a way to socially connect with

others through a multiplayer exercise. They can be used to present patient performance

feedback in engaging ways such as challenges to beat, milestones, and high scores.

Alternatively, they can also aid in masking information such as changes in difficulty

levels or by distracting the patients to keep their attention away from the physical pain

during exercises.

2.3 Virtual Reality and Augmented Reality

Game environments can be shown to users through different display techniques. This

can range from a typical 2D computer screen to more state-of-the-art technologies such

as the Microsoft Hololens. The environment presented to the user can be described

through the Virtuality Continuum (VC) [54].

The concept of the VC illustrates how the presentation of objects is not limited to

12

a purely virtual or purely real environment. Looking through a cellphone camera and

seeing the real world is considered as part of the left end of the continuum, the real

environment. On the other hand, games like Super Mario Brothers belong purely to

the virtual environment (or virtual reality) on the right end of the continuum. The

term “Mixed Reality” arises when these two environments are combined within a single

display. Depending on the proportion of real and virtual environments represented, the

result can be categorized as either Augmented Reality (AR) or Augmented Virtuality

(AV). In AR, virtual objects are integrated into the real environment. It involves the

augmentation of the real world with virtual (computer generated) objects. At one’s

viewpoint, these objects are seamlessly integrated as if they physically exist alongside

the real-world objects. This potentially allows users to digitally interact with their

surrounding environment. Games such as Pokemon Go, where virtual objects are

overlaid on the camera feed, are considered as AR. Conversely, AV adds real objects

into the virtual environment. This can be imagined as displaying the user’s actual hand

in a virtual environment to interact with virtual objects. This is not to be confused

with the representation of AR where the entire real environment is overlaid with a

virtual one in which only certain real objects are unmasked such that they appear in

the virtualized world [55]. It is important to note that these environments are not

restricted by a specific type of display method such as a head-mounted display. Even

a simple 2D screen would be capable of displaying these environments.

Although the majority of AR and VR development is geared for visual use, there is

some research that applies to other senses also [56]. For example, applications for AR

in surgery also involve active sensorimotor augmentation techniques to either provide

supplementary perceptual information or to augment motor control capabilities of the

surgeon during robotic-assisted surgeries [57].

In this thesis, AR is added to the robotic system through the use of visual displays

to enhance the user’s perception of the tasks. These can come in many forms when

it comes to presenting VR or AR. These displays include, but are not limited to com-

puter screens, projection surfaces, HMDs, or semi-transparent mirrors. The following

13

subsection presents a brief overview of the display techniques commonly used for VR

and AR as well as the recently developed systems that can be found in rehabilitation

research literature. These examples will be further expanded upon in Chapters 3 and

4.

2.3.1 Virtual Reality Displays

There are two main ways that VR is presented: non-immersive VR through a 2D com-

puter screen, or immersive 3D VR using an HMD. The ReJoyce by Rehabtronics [58]

is an example of a non-immersive VR system controlled by a passive robotic interface.

A multitude of games can be selected and played with using the various components

that are incorporated the robotic interface. As for immersive VR, the user is brought

into a completely virtual 3D environment. The virtual surroundings can be configured

in any manner regardless of genre or theme, allowing for creative ways of incorporating

it into different applications in the healthcare field. Immersive VR has been used in

studies such as treating phobia [59], assessing mild traumatic brain injury [60], gait

therapy [61], hand rehabilitation [62], and so on.

2.3.2 Augmented Reality Displays

Video see-through (VST), optical see-through (OST), and spatial AR (i.e. projection-

based AR) are the three most common ways of displaying AR [56]. VST takes a video

feed of the real world and then virtual objects are directly overlaid on the display on

the live video [63]. Registering the virtual objects can be done using fiducial markers

attached to real-world surfaces [55]. By digitizing the reality through a camera, it is

much easier to manipulate the environment using image processing tools as both virtual

objects and the real world are now in the same digital space. This means aspects such

as contrast, orientation, and size of the virtual object can be calibrated more easily

with the real world. With OST, the virtual and real aspects interact through a semi-

transparent mirror [64]. Essentially, the user can see through the display, and the

14

virtual objects are reflected on the display for the user to see. OSTs let the user

experience their environment directly without relying on the screen of a VST and

therefore the resolution quality is as good as the user’s eyesight. However, it may

be bulkier as cameras, monitors, and a mirror are needed to assess the environment

and display virtual objects. Finally, projection is another method to implement AR

[65]. Projection solves the problem of requiring HMDs or looking at a separate screen

to see the computer-generated images. It can be used on both flat and 3D surfaces

with cameras or motion trackers for direct interaction. Techniques such as projection

mapping are available for the virtual objects to “pop-out” and seem one with the

environment. However, projection is limited to low light working environments since

it can be easily overpowered by other light sources.

15

Chapter 3

Investigation of User Performance

Improvement in a 2D Visual-Haptic

Colocated Rehabilitation Task

3.1 Introduction

The demand for rehabilitation services has grown significantly with the aging of popu-

lation. Patients who have suffered disabling events such as stroke develop deficiencies

that prevent them from making reaching motions or doing activities of daily living

(ADLs) such as eating, washing, and self-care. Therefore, a number of goal-oriented

tasks and point-to-point reaching exercises are provided in rehabilitation to help the

patients regain motor function and consequently their independence.

Typically, these therapies are administered by a therapist in a hand-over-hand

manner in the clinic. As these tasks require a significant number of repetitions to be

effective, it often uses up a major amount of the therapist’s time and consequently only

lets the therapist work with a few patients in a day. For this reason, rehabilitation

robotics is an attractive replacement or complement to conventional physiotherapy. By

programming a robot to assist patients with these tasks, more patients can be handled

16

in the clinic as the robot would fill the position of a therapist.

While robots allow rehabilitation with minimal therapist intervention, low patient

motivation is an issue. Added with the emotional impact of the disability, it is not

uncommon to think the patients would lose their motivation through the rehabilita-

tion process. A study shows that only 31% of users maintained their weekly exercise

programs [66]. Due to this, video games have become a medium for robot-assisted

rehabilitation therapy. Games provide an increase in motivation by making the task

less of an exercise to endure but rather a more leisurely experience [67]. This means

that there is an increase in motivation in patients using these technologies.

These games typically belong in one of two categories: Virtual Reality (VR) or

Augmented Reality (AR). AR, in particular, has garnered attention in the past few

years alongside immersive VR with the release of the Oculus Rift [68] and Microsoft’s

HoloLens [69]. With regards to rehabilitation, such technologies have proved to be

effective in both physical and mental therapies [70][71][72].

3.1.1 Virtual Reality & Augmented Reality in Rehabilitation

Virtual Reality comes in many forms. They range from the non-immersive VR games

that are displayed on a screen to immersive head-mounted displays (HMDs) such as the

Oculus Rift. These games (mostly non-immersive) are now a common way to provide

visual feedback about the therapy task during rehabilitation and are used by multiple

rehabilitation robotics systems [58][73].

Augmented Reality, similar to VR, has different implementations. A Video See-

Through (VST) AR setup lets the patient see overlays of digital images onto the video

feed [55]. An Optical See-Through (OST) setup has the digital images calibrated to

match what the user directly sees through a semi-transparent mirror [74]. Finally,

spatial AR or projection removes the need for the user to wear any HMDs and allows

direct interaction with the projected digital image [71]. The superimposition of digital

images onto the real-world geometry is the common ground between the above-noted

17

various AR implementations, allowing the users to feel that the digitally created ob-

jects are part of the real world rather than at a separate screen or in a virtual space.

Therefore, unlike immersive VR, there is no need to render a virtual avatar of the

user when using AR. Due to the direct interaction of AR, with proper calibration,

colocation between the vision and the person’s actions (can include haptic interaction

with the digitally created object) can be achieved.

3.1.2 Haptic Feedback in Rehabilitation

Current rehabilitation devices in the commercial market come with VR games that

focus on improving motor function. While effective, these games only provide the user

with a visual (and possible auditory) feedback through a screen display. Therefore, the

only way the users can know if they are doing the task properly is by seeing what their

actions do on the game screen.

To add another level of interaction with the game, haptic feedback can be imple-

mented. Haptic feedback stimulates the user’s touch senses by reflecting forces to the

user’s hand. While commercial rehabilitation devices often do not have haptics im-

plemented, this is a common method of improving patient experience in rehabilitation

research. When combined with visual feedback, it can increase the realism of interac-

tion and possibly the realism of rehabilitation outcomes. It can also open up various

ways of assisting the users in terms of performing the task by tuning the feedback

according to difficulty of the tasks.

3.1.3 Motivation for Visual-Haptic Colocation in Rehabilita-

tion

Visual-haptic colocation is defined as the direct mapping of vision to physical interac-

tion (including haptic interaction) between the user’s hand controller and the object in

the virtual scene. A majority of computer-integrated rehabilitation technologies that

use robots to guide and assist users have them view computer games on a screen in

18

order to be able to perform desired exercises. As there is a mismatch in axes of motion

between the on-screen movements and the user arm’s movement, the users must men-

tally “calibrate” themselves to map their arm movements to the coordinate frame of

their avatar in the game (i.e., the users must imagine themselves positioned within the

screen and move appropriately in the environment to complete the task). This causes

the user to take a moment to do a mental transformation between the visual coordinate

frame and their hand coordinate frame. However, the cognitive abilities of those suf-

fering from disabilities may have also been affected negatively [75], which means they

may have difficulty bridging the spatial disparity between the two coordinate frames.

With a spatial AR setup, the visual and hand frames can be colocated, which could

potentially lighten the mental load on the patient.

In this work, we will be incorporating haptic feedback in an AR setting in a reha-

bilitation environment in order to study the effectiveness of visual-haptic colocation.

We will simulate a patient with cognitive deficiency by cognitively loading healthy par-

ticipants in a user study. User task performance will be compared mainly between AR

and VR for the different combinations of presence or absence of haptics and CL. The

effect of cognitive loading will be briefly touched upon only to confirm if it does indeed

significantly affect user performance in properly simulating patients. Each AR and VR

pair will be analyzed to find which one benefited the most from visual-haptic coloca-

tion. The goal will be to help therapists and physicians find more efficient methods for

rehabilitation. This investigation of bridging the spatial disparity could open up new

possibilities for future rehabilitation games.

The chapter is organized as follows: Section 3.2 provides brief examples of work done

in research literature. Section 3.3 describes the approach and game design. Section

3.4 outlines experimental setup, challenges, experimental procedure and a discussion

of the results. Finally, Section 3.5 finishes with a conclusion and future work.

19

Literature Comparison

VR AR
Non-Imm Imm VST OST Spatial

Non-Haptic [76] [77] [78][79] [80] [71]
Haptic [81] [82] [83] [84] [85][86] •

Table 3.1: The table categorizes the different physical rehabilitation systems found in litera-
ture by the type of visual technique and incorporation of haptics. The black bullet represents
this work’s position in the literature.

3.2 Related Work

Multiple rehabilitation tasks have been published in the literature that fall within AR

and VR as categorized in the above table. VR systems present a completely virtual

environment to the user, allowing for creative scenarios unbounded by physical limi-

tations found in real environments. AR systems let the user stay within their familiar

environment while enabling interaction with the virtual objects that are displayed in

the real world. A brief investigation of related work is presented to give insight on cur-

rent technologies available for rehabilitation in research. These are categorized based

on visual technique and the presence or absence of haptics to give a clear view of where

this work stands.

3.2.1 Virtual Reality Rehabilitation Systems

VR systems often come in either non-immersive, or immersive displays. Non-immersive

displays include 2D computer screens, TVs, or projection on a screen. The ReJoyce Re-

habilitation Workstation is a non-immersive VR system with a multitude of interactive

games to simulate a variety of ADL exercises [76]. However, it does not provide haptic

feedback during the tasks, only visual and auditory. In another work, Adamovich et

al. [81] presented a non-immersive haptic glove VR system to improve the hand func-

tion of post-stroke patients. Immersive VR systems typically use HMDs such as the

Oculus Rift or HTC Vive. However, other systems may involve either the CAVE [87]

20

or CAREN [88] systems that puts the user in a room with a large projected screen all

around (CAVE) or in front (CAREN) of the user. In the work of Kaminer et al. [77],

they used an Oculus Rift for an immersive VR pick-and-place task and used a non-

haptic glove to record the hand’s grabbing gesture. Likewise, Andaluz et al. [82] used

the Oculus Rift and a Novint Falcon haptic device for their upper limb rehabilitation

games.

3.2.2 Augmented Reality Rehabilitation Systems

AR systems are usually displayed using either VST, OST, or projection. While often

portrayed as requiring HMDs, VST and OST can also be done using a monitor screen,

however it lessens the immersion. For VST setups, Burke et al. [78] used a marker-

based, non-haptic setup and developed a game similar to Atari’s Breakout and another

game where the participant stacks virtual objects onto a virtual shelf. Correa et al.

[79] developed GenVirtual, a musical AR game where virtual cubes light up according

to a musical sequence played and the user replicates the tune by occluding, with their

hand, the colored cubes in the same sequence. Vidrios-Serrano et al. [83] used an HMD

and a phantom Omni haptic device to touch virtual objects in the AR environment.

For OST setups, Trojan et al. [80] took an non-haptic approach in developing a mirror

training rehabilitation system suitable for home use. Luo et al. [84] used an HMD

and a haptic glove for their AR hand opening rehabilitation setup. The glove was

used to simulate holding a real object for their grasp-and-release task. For projection

setups, Hondori et al. [71] created a non-haptic tabletop system for post-stroke hand

rehabilitation which incorporated different games such as reaching a projected box to

play sounds, holding a mug to pour virtual water, and grasping various sized circles.

Finally, Khademi et al. [85] implemented a spatial AR setup and used a haptic device

for monitoring the impedance of a human arm. They also did a comparison of AR vs

VR for a pick-and-place task [86].

21

Technology Considerations

Other works such as the SITAR [89] also incorporated a tabletop workspace that uses an

LCD television to visually colocate the patient’s interactions with the tasks. Alongside

with intelligent objects, the system can sense and provide haptic feedback. Despite

having the option to choose a similar setup, we opted for a projection-based setup for

a few reasons. While an LCD screen would be completely blocked off by an object above

it, projection can still be seen above the placed object. There are also multiple ways

to compensate for occlusion as will be discussed later. Furthermore, projection can

adapt to different projection surfaces as with the case with projection mapping. This

provides more potential for future studies in 3D AR viewing and dynamic interaction.

Other technologies such as the Microsoft Hololens, Oculus Rift, or HTC Vive were

not considered since these devices are HMDs. For some patients, wearing an HMD may

induce a sense of entrapment or anxiety from being disconnected from the real world

[90]. Some works used haptic gloves for their systems. While gloves are effective in

controlling finger flexion, extension and providing haptic signals around the hand, our

work revolves around upper limb arm movements, therefore a haptic device or robot is

more appropriate.

In our system, spatial AR, and haptics are combined in a rehabilitation task. While

the work of Khademi et al. [85][86] provide similar investigations of performance be-

tween AR and VR, our focus lies in the use of cognitive loading to simulate similar

cognitive behaviours (E.g. being distracted, inability to focus on one task) found in

patients with reduced mental ability due to events such as stroke. It is understandable

that this simulation may not fully capture the extent of damage a patient may experi-

ence from stroke, however, our aim is to determine if visual-haptic colocation is able to

alleviate the negative effects of cognitive loading which can then be applied to actual

patients in future discussions. By making the task easier for the patient to accomplish,

the task success rate increases, thereby engaging the patient which results in a more

22

effective rehabilitation.

3.3 Rehabilitation Game Design

Our aim is to set up a robot-assisted rehabilitation environment incorporating colo-

cation of haptics and vision that would be both engaging and intuitive to use. With

a 2D spatial AR system, we create an environment to perform reaching motions in

which the end-effector of the rehabilitation robot needs to be manipulated by the user

to push a digitally created car around a track. In order to create spatial AR, the image

of the car and the track is updated in real-time and projected on the table supporting

the robot. In this way, the haptic interaction between the user’s arm and the robot

end-effector happens in the same space where visual feedback about this interaction in

the virtual environment is provided.

The goal of the game is to traverse a certain length of the track as soon as possible.

The car can only be pushed from the back and cannot be moved in reverse. It is

also constrained from moving sideways relative to the track. Upon collision of the

end-effector with the car, force feedback is sent to the user along the contact normal.

The track loops around the workspace and is composed of a Bezier spline. Every lap

around the track, its curves changes slightly to keep the user stimulated and engaged.

Only a limited portion – around 10% – of the track past the front of the car is seen and

this is updated in real-time. The track could allow for clockwise or counterclockwise

movement depending on the user’s preference. The task is built in the Unity Game

Engine Environment [91] and therefore uses the default Unity physics. This allows the

car to have a momentum when pushed, giving the user the impression of pushing a toy

car.

A blinking red dot on the corner of the projection is used as a visual aid when

cognitively loading the users. An arithmetic cognitive task is simultaneously performed

with the haptic task. Commonly used in gait and postural research [92], an articulated

backward counting (multiples of 3) is chosen as it has been shown to be effective in

23

decreasing performance when combined with another task. The constant subtraction is

mentally taxing in that it requires continued attention in keeping track of the counted

numbers to count down properly [93]. The dot turns on and off at a frequency of 1 Hz.

The user then audibly counts down (starting from a randomized number between 100

- 200) every time the red dot appears.

Multiple conditions could be modified in the task. The absence or presence of force

feedback, future track shape and the partial visibility of the track. Also, the cognitive

loading could be altered by changing the frequency of counting down. From these, only

force feedback is switched on and off between different runs of user trials and the rest

are fixed at preset values.

We provide a training period to allow the participants to familiarize themselves

with manipulating the end-effector and interacting with the car. When force feedback

is turned off, the task becomes easier due to the removed resistance while pushing

the car. Therefore, to allow for a fair comparison between haptics and no-haptics

cases while keeping the difficulty of both scenarios on the same level, we resist the

robot’s movement with a damping-based controller when there is no force feedback.

The amount of damping force applied is the same as the force felt when pushing the

car when haptics is present. Haptic feedback is provided along the contact normal by

a force that increases at a rate of 1.5N/s to a maximum value of 3 N. This is done to

reduce contact instability from a sudden jump in force feedback at the time of contact.

The evaluation of user’s performance is based on the time to traverse a fixed length

of the track. For our user studies, we will be considering scenarios where force feedback,

colocation of haptics and vision, and cognitive loading will be varied.

3.4 Experiment

The task was tried on 10 healthy participants with age range between 23 - 31 (9 out

of 10 participants were males). The participants performed the experiments with their

24

Figure 3.1: Side view of the experimental setup. The projector (not seen in the image)
projects the task onto the table.

dominant hand (all right-handed) and were all from the University of Alberta commu-

nity. 6 participants had prior experience with haptic interfaces. Each participant was

provided with verbal instructions and was given a maximum of 5 minutes to familiarize

themselves with the task.

3.4.1 Experimental Setup & Challenges

Our setup consists of an off-the-shelf InFocus IN116A projector and a 2-DOF planar

rehabilitation robot (Quanser, Inc., Markham, Ontario, Canada). The projector is set

directly above the projection space and the rehabilitation robot is positioned such that

the end-effector can reach the majority of the projected area on a table. The task

environment is created using the Unity Game Engine and the rehabilitation robot is

controlled using MATLAB and Simulink. The experimental setup for the AR config-

uration can be seen in Fig. 3.1 and 3.2. For the VR setup, instead of displaying the

game on the table using a projector, a computer monitor positioned in-front of the user

on top of the rehabilitation robot is used.

25

Figure 3.2: Top-down view of the experimental setup. The rehabilitation robot arm extends
into the projection space to be used by the user to push the car around the track.

26

The development of the setup involves two main challenges that needed to be mit-

igated.

Occlusion

Due to the nature of projection, occlusion can be a big issue. The user’s shadow,

as they move around the track, could block the user from viewing the car properly.

Typically, occlusion can be handled by having a depth camera and calculating the

projector and camera intrinsics to project the virtual images such that the scene looks

integrated in the user’s environment from their viewpoint [94]. However, for this work,

we do not intend to use the projection above the user’s hand as a part of the game so

a depth camera is not needed. Instead, there are a few modifications added to the task

to minimize the effect of occlusion. The size of the car is increased so as to make it

harder to lose the car and the workspace is elevated to minimize the distance between

the robot’s links and the table. The robot’s links are also wrapped in white paper for

better projection results. The visible portion of the track protruding from the car also

allows the user to navigate easier.

Calibration

The task environment comprises a circular avatar that interacts with the car in order

to move it around the track. To properly implement colocation, this circle must be

projected exactly on the end-effector’s position as the end-effector spans the workspace.

To calibrate, four points are projected in a rectangular formation to the workspace and

the end-effector position is recorded for each of the projected points. The point-to-point

correspondence is done with a 2D projective transformation (homography) between

the robot frame (hand frame) and the virtual frame [95]. Another method considered

was affine transformations. However affine transformations, a subset of projective

transforms, preserve parallelism. This would consequently amplify the errors if the

end-effector placement on the projected points are inaccurate. On the other hand,

27

projective transformations preserve only collinearity and incidence making it more

general and can therefore compensate for any inaccuracies during calibration. Using

the homography transformation H, each point-to-point correspondence i is mapped by

the equation below:

λp′i = Hpi (3.1)

where λ is a scaling factor, p and p′ consist of the x and y coordinates of a point in

the robot frame and screen frame respectively. An expanded version is shown below:

λ

⎡⎢⎢⎢⎣
x′
i

y′i

1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
h11 h12 h13

h21 h22 h23

h31 h32 h33

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
xi

yi

1

⎤⎥⎥⎥⎦ (3.2)

When further expanded out as shown in the equations below, we can solve for x’

and y’ by dividing equations 3.3 and 3.4 by equation 3.5.

λx′ = h11x+ h12y + h13 (3.3)

λy′ = h21x+ h22y + h23 (3.4)

λ = h31x+ h32y + h33 (3.5)

x′ =
h11x+ h12y + h13

h31x+ h32y + h33

(3.6)

y′ =
h21x+ h22y + h23

h31x+ h32y + h33

(3.7)

Equations 3.6 and 3.7 can be rearranged such that it is linear in terms of H.

−h11x− h12y − h13 + h31xx
′ + h32yx

′ + h33x
′ = 0 (3.8)

−h21x− h22y − h23 + h31xy
′ + h32yy

′ + h33y
′ = 0 (3.9)

28

The above equations can then be written in matrix form:⎡⎣ax
ay

⎤⎦H = 0 (3.10)

ax =
[︂
−x −y −1 0 0 0 xx′ yx′ x′

]︂
(3.11)

ay =
[︂
0 0 0 −x −y −1 xy′ yy′ y′

]︂
(3.12)

H =
[︂
h11 h12 h13 h21 h22 h23 h31 h32 h33

]︂T
(3.13)

Since H is computed up to scale, we can impose a constraint h33 = 1. This makes

the H matrix 8DOF. Each point provides 2 sets of equations, therefore a minimum of

4 points are required to get the homography transformation. Finally, we get an 8x9

matrix for A for which we use Singular Value Decomposition (SVD).

A = USV T (3.14)

U and V are 8x8 and 9x9 unitary matrices, respectively, and S is an 8x9 diagonal matrix

whose elements are the singular values of A. The solution for H is then the last column

of V , reconstructed into a 3x3 matrix. This transformation allows the circular avatar to

be accurately aligned with the movements of the robot’s end-effector. Once calibrated,

this transformation is also used for the VR setup to ensure that the workspace for both

AR and VR configurations are the same.

3.4.2 Procedure

A series of 8 different experimental conditions were presented to each participant. For

each condition, the participant attempts to complete three laps around the track in

the shortest time possible. The conditions defining each experimental trial involves

29

Task Performance Conditions

AR VR

No CL
Haptic 1 2

No Haptic 3 4

CL
Haptic 5 6

No Haptic 7 8

Table 3.2: The table shows the conditions set for each task. Each set of conditions are
labeled numerically. AR means the task is projected on the table and colocation is present.
In VR, the task is done on a screen in front of the user where they use the rehabilitation robot
as a joystick to control a circle to push the car. Note that these conditions are presented to
the participants randomly to reduce the effect of learning.

a combination of the absence or presence of force feedback, colocation, and cognitive

loading. The combinations of the task conditions are seen in Table 3.2. The order of

presenting different conditions to a participant are randomized to minimize learning.

The experiment starts with the participant sitting at arm’s length from the reha-

bilitation robot with the projection area in between them on the table. The system is

then calibrated for colocation. The participant is also given a trial run with VR and

AR (without CL but with haptics) to get an initial experience of the task. The series

of 8 conditions are then presented as discussed before. Condition 1 is hypothesized

to be the easiest as it provides to the participant both haptics and AR but no CL.

Condition 8 is predicted to be the hardest task as it removes haptics, provides only VR

and imposes CL to the participant. Therefore, it is expected that the results between

Conditions 1 and 8 would have the biggest gap in user performance. After the experi-

ments are done, the participants are given a questionnaire regarding their experience.

This is to provide a subjective measurement of how engaged the participants were in

either AR or VR. Ethics approval was approved by the University of Alberta Research

Ethics & Management Online under the study ID MS9 Pro00033955.

30

Mean and SD in seconds of each set of conditions

Cond. # 1 2 3 4 5 6 7 8
Mean 35.6 42.8 34.8 45.3 38.7 48.4 50.5 52.9
SD 6.0 7.3 9.0 12.6 5.0 6.2 12.8 13.7

Table 3.3: Table of Mean and SD of the time duration (seconds) results of all 10 subjects
for each of the 8 conditions.

3.4.3 Results and Discussion

Duration Results

The participants were tested based on how fast they completed the trials. There is no

penalty for missed counts during tasks with CL. The results are shown in Fig. 3.3. The

mean and standard deviation (SD) of the results are reported in Table 3.3. To find the

effects of each category on user performance, a 3-way RM ANOVA is utilized using

SPSS 25 [96]. The 3 main fixed effects factors, colocation, haptics, and cognitive

loading each present two levels. A correction method is required due to multiple

comparisons. Therefore, for our post hoc analysis, the Bonferroni correction is chosen to

reduce Type I errors. The ANOVA results report a significance in colocation F (1, 9) =

8.773, p = 0.016, marginally significant regarding haptics F (1, 9) = 4.648, p = 0.059,

and significant in cognitive loading F (1, 9) = 30.491, p = 0.000

By conducting paired t-tests analysis with the Bonferroni correction only one no-

table pair is found statistically significant. In the simulated rehabilitation scenario

when CL and haptics are present (Conditions 5 and 6), there is a significant difference

in performance between AR and VR (p = 0.0012).

Haptics play a minor part in user performance without CL. When haptics is on, the

participants overshoot as they miss the car while pushing. Turning off haptics lets the

participants have better control when they miss the car, resulting in less overshoot.

Since there is no CL, the participants notice the overshoot quicker and can correct

their mistake faster.

As expected, trials that had CL resulted in longer times overall compared to those

31

Figure 3.3: Collective user performance of 10 participants on the 8 different experimental
conditions. The line within the boxes represent the median time.

1 2 3 4 5 6 7 8 9 10

Participant #

0

10

20

30

40

50

60

T
im

e
(s

)

Time data of all participants for Conditions 5 and 6

AR/Haptic/CL

VR/Haptic/CL

1 2 3 0 0743033 3 1 2 4 0 4 1 1 1

Figure 3.4: Time it took for each participant to complete Conditions 5 and 6. The number
within the graphs represent cognitive loading misses.

32

4.09 cm 4.42 cm

Figure 3.5: Allowable distance between end-effector and center of the car.

without it. AR and haptics with CL gave the best user performance out of the other

CL trials. The participants mentioned that during CL and AR, they relied on haptics

to keep the end effector behind the car since they were distracted by the CL. In the

same scenario but without haptics, the participants would often take a while before

realizing they lost the car and therefore taking a longer time to readjust. Focusing

on the results of Conditions 5 and 6, Fig.3.4 shows that the participants had similar

counts of CL misses even though Condition 6 resulted in longer times. It can then be

assumed that the CL experienced by the participants are within similar levels. This

leaves colocation to be the only differing factor between the two tasks. Therefore

while presence of haptics is mostly irrelevant in other scenarios, for those undergoing

CL, and hence those with their mental capabilities affected by disability, visual-haptic

colocation is a favourable option.

Spatial Results

At each time instance, the robot’s end-effector should be within a certain range to

ensure it is in contact with the car. This means that the distance between the car

center (its axis of rotation) and the end-effector should be between 4.09 cm and 4.42

cm as seen in Fig. 3.5. In Fig. 3.6 a sample of the car path and the user path for

Conditions 5 and 6 is plotted for two participants. There is minimal direct overlap

between the car path and user movement near the curved areas due to the distance

33

Lap 1

-10 -5 0 5 10

-5

0

5
Lap 2

-10 -5 0 5 10
-5

0

5
Lap 3

0

0

-28 -14 14 28
-14

14

0

0

-28 -14 14 28
-14

14

0

0

-28 -14 14 28
-14

14

-10 -5 0 5 10
-5

0

5
Lap 1

-10 -5 0 5 10
-5

0

5
Lap 2

-10 -5 0 5 10
-5

0

5
Lap 3

-10 -5 0 5 10
-5

0

5
Lap 1

-10 -5 0 5 10
-5

0

5
Lap 2

-10 -5 0 5 10
-5

0

5
Lap 3

-10 -5 0 5 10
-5

0

5
Lap 1

-10 -5 0 5 10
-5

0

5
Lap 2

-10 -5 0 5 10
-5

0

5
Lap 3

Participant 9 Participant 10
Condition 5 Condition 5Condition 6 Condition 6

User Movement
Car Path

0

0

-28 -14 14 28
-14

14

0

0

-28 -14 14 28
-14

14

0

0

-28 -14 14 28
-14

14

0

0

-28 -14 14 28
-14

14

0

0

-28 -14 14 28
-14

14

0

0

-28 -14 14 28
-14

14

0

0

-28 -14 14 28
-14

14

0

0

-28 -14 14 28
-14

14

0

0

-28 -14 14 28
-14

14

Figure 3.6: Snapshot of end-effector movement of two participants for both Conditions 5
and 6. Units are in cm. Both participants moved in a counter-clockwise fashion.

as previously mentioned. This distance is taken into account for the error calculation.

Taking a look at a snapshot of their performance between the two task conditions, we

can observe the participants missing the car and overshooting in Condition 6 for lap

2 and lap 3 respectively. The euclidean distance between the car and end-effector is

calculated at each time sample and is subtracted from or by the minimum or maximum

threshold respectively, depending on if the distance is below the minimum, or above

the maximum. For participant 9, the average error for Conditions 5 and 6 is 0.52 cm

and 0.97 cm, respectively. For participant 10 it is 0.09 cm and 0.61 cm, respectively.

These further support the results found in Fig. 3.3 for the increased user performance

when there is visual-haptic colocation during CL.

Survey Results

In the survey given after the experiments the participants were asked to rate their

experiences in a 1-10 scale. The type of questions asked are shown in the survey results

in Fig. 3.7. Likely due to the overshoot found in haptics, the easiness of the task in AR

and without haptic feedback is rated slightly higher. Most of the participants however,

rated haptic feedback to be more useful than without. This is reflected on the time

results of Fig. 3.3 between task Conditions 5 and 7. The survey also shows that in all

34

Figure 3.7: Survey given to the participants after the experiments. A higher number is a
better rating

cases, AR was rated higher than VR, leading to AR being the preferred technology. A

5-point Likert scale is also included regarding the participants’ experience when CL is

present. This is used to match the task results with the perceived difficulty of the CL

tasks. Specifically, in the range {-2, -1, 0, 1, 2} the participants are asked if CL made

the task much easier (-2) or much harder (2). The resulting average is 1, indicating

that participants thought CL made the task somewhat harder as can be seen with the

increasing trend in time duration in the Fig. 3.3 results.

3.5 Conclusion

We present a comparison of the effects between colocated and non-colocated visual

feedback when used in a rehabilitation environment. Visual feedback comes either in

the form of spatial AR for visual-haptic colocation or non-immersive VR for visual-

haptic non-colocation. The two are compared by measuring the performance of 10

healthy participants in a trajectory following task. To better simulate those with cog-

35

nitive deficiencies, the participants are subjected to cognitive loading while performing

the task. It is observed from the results that the effect of visual-haptic colocation im-

proves the task performance, especially for those undergoing cognitive loading. For our

future work, we plan to let patients with disability use the system and we will analyze

the corresponding data. Other considerations would be to include an assist-as-needed

functionality to help patients struggling with the task.

36

Chapter 4

A 3D Augmented Reality Display

to Improve User Performance in

Rehabilitation Exercises

4.1 Introduction

In recent years, rehabilitation has incorporated serious games using non-immersive

virtual reality to motivate patients during therapy. Serious games are defined as video

games designed for a purpose other than pure entertainment. Traditional rehabilitation

training may involve training with real-world objects to do activities of daily living

(ADLs) in order to help regain motor function. However, the repetitive nature of these

exercises can make therapy a tedious process for the patients. Motivation is a key factor

in predicting the success rate of rehabilitation [2][97]. In a study that involved post-

stroke patients, only 31% of the patients maintained their weekly exercise programs

[66]. For rehabilitation therapy involving serious games, it has been shown that there

is an increase in motivation, providing patients with a more leisurely experience as

they go through their therapy [67].

37

4.1.1 Virtual Reality & Augmented Reality Game Displays

The games are typically presented to the user in one of two forms: Virtual Reality (VR)

or Augmented Reality (AR). Virtual Reality consists of a fabricated environment where

the user controls an avatar or cursor to interact with the virtual world. This is often

done through non-immersive VR that is displayed only on a typically flat 2D screen.

However, with technologies such as the Oculus Rift and HTC Vive, immersive VR is

becoming a more popular medium for serious games [82].

Augmented Reality is about the superimposition of digitally fabricated objects onto

the real world environment. Applications for this can range from purely providing

information or to allow interaction with the digital objects as if they existed alongside

real world objects. AR consists of three main categories: Video See-Through (VST),

Optical See-Through (OST), and Spatial AR (projection) [56]. VST utilizes a video

feed where digital objects are overlaid onto the screen to interact with the real world

objects [55]. OST overlays the digital images on a semi-transparent screen which allows

the user to directly see the real world unlike VST [74]. Finally, Spatial AR projects

the digital images directly onto the physical environment [71].

4.1.2 Visual and Motor Axes Colocation

While serious games are advantageous in enticing the patients to stick with their ther-

apy program, they lack realism. The games need an interface which allows it to be

controlled, such as a joystick or a haptic user interface. However, while using these

interfaces, the game is typically displayed on a screen at a distance in front of the

patient. However, in real-world tasks such as peg-in-the-hole insertion, the patients

directly interact with objects, feeling and seeing them at the same location. In the

games used for rehabilitation, however, there is a disconnect between the visual space

and the movement space of the patient’s arm. The mismatch between the axes of mo-

tion between on-screen movements and the patient arm movement require the patients

to mentally “calibrate” themselves to map their arm movements to the coordinate

38

frame of their avatar in the game. As such, due to the workspace mismatch between

virtual and real worlds, the scaling of movements may also have to be accounted for.

For those affected by events such as stroke that could have affected their cognitive

processes negatively [98], doing a mental transformation between the visual coordinate

frame and the hand coordinate frame could be a difficult task. The principal idea of

this work is that to lighten the mental load on the patient and improve task success

rates, the spatial disparity between the coordinate frames can be bridged using AR.

Two hypotheses are investigated:

1. Regardless of the presence or absence of cognitive loading, AR improves user

performance over VR.

2. The results of AR during cognitive loading is not significantly different from AR

without cognitive loading.

The focus of this work is only to show that AR can make it easier for the patient to

perform the task, thereby increasing the likelihood of success in performing that task.

Actual motor scores comparing improvements of AR against VR will not be shown.

That would require a longitudinal study on a treatment group and a control group of

patients who would come into the clinic for at least 3 months every week, 3 times a

week. In such a study, treatment group would be receiving AR, while the control group

receives AR. Standardized assessments such as Fugl-Meyer would be used to compare

the scores. This will not be included in this chapter but is instead future work.

4.1.3 Related Work

Most rehabilitation literature that incorporate serious games involve 2D non-immersive

VR implementation, or AR in 2D or 3D but without colocation of visual and motor

axes. Devices such as the ReJoyce Rehabilitation Workstation have multiple interactive

2D games to motivate patients and improve upper limb function after stroke [58][76].

Correa et al. [79] created a musical AR game called GenVirtual which is a spatial 2D

AR game where the user replicates the tune produced by virtual cubes that light up

39

in a sequence by touching the cubes in the same order. Gama et al. [99] developed

MirrARbilitation, a VST 2D non-colocated AR system to encourage and guide users

in a shoulder abduction therapy exercise.

For the case of 3D, Vidrios-Serrano et al. [83] used a VST 3D non-colocated AR

system integrated with a phantom Omni device to interact with the virtual environ-

ment in a rehabilitation exercise. Broeren et al. [100] and Murphy et al. [101] used

a haptic immersive workbench to test both able-bodied and stroke-impaired persons

for rehabilitation and assessment with their OST 3D colocated AR system. Swapp et

al. [102] studied the effectiveness of a 3D stereoscopic display AR system for colocated

haptic feedback. Swapp examined if there is a benefit in having visual-haptic colo-

cation as opposed to not having it. However, the study did not look at its effects in

rehabilitation exercises and did not adjust the display as the user moved his/her head.

Unlike Swapp’s work, we hope to show that by using a 3D AR system, even users who

are unable to perform with their full mental capacity are able to show improvement

over the 2D system.

The difference between visual-haptic colocation and visual-motor coloca-

tion

In Chapter 3, we looked into the advantage of visual-haptic colocation (visual and

motor axes colocated with the addition of haptic feedback) in a 2D environment. The

term visual-haptic colocation was used as opposed to visual-motor colocation since

we directly altered the presence and absence of haptics to study its effects alongside

colocation. Different conditions were tested, which included haptics being present even

when the visual and the motor axes were not colocated. Visual-haptic colocation simply

indicated that all three (visual, motor, and haptic) axes were aligned. In this chapter,

since haptic feedback will always be present in each task regardless of visual and motor

axes alignment, visual-motor colocation is used instead.

40

Why 3D?

The findings in the previous chapter showed that in 2D, AR generally produced bet-

ter user performance than VR. To further expand on this study, we chose to continue

and investigate this in a 3D environment as well. 3D visualization of tasks and their

comparison with their 2D counterpart has been performed in other areas of research

such as surgery and has been found to increase surgical efficiency [103][104]. Applying

the same concept to rehabilitation exercises allows us to examine ways to make ther-

apy exercises easier and more effective for patients. Furthermore, 3D visualization of

rehabilitation tasks brings the experience closer to a traditional rehabilitation exercise

in which patients manipulate real-world objects. Since the state of the art in rehabili-

tation robotics mainly consists of 2D VR systems, it would be the ideal reference point

for comparing the differences of a 3D AR system.

This chapter investigates, using a 3D Spatial AR setup, the effectiveness of 3D AR

Visual and Motor Axes Colocation compared to 2D non-immersive VR in a rehabil-

itation context. User task performance is compared between AR and VR cases. A

patient with cognitive deficiency will be simulated by cognitively loading able-bodied

participants. We expect that if AR is able to make differences in performance for able-

bodied participants who are distracted by cognitive loading, then it is possible to see

such differences in actual cognitively-challenged patients as well.

The chapter is organized as follows: Section 4.2 describes the tasks for the proposed

system and the experimental setup. Section 4.3 explains how the experiments are

carried out and provides a discussion of the results. Section 4.4 concludes the chapter

by summarizing the work and findings.

41

Figure 4.1: The three tasks, Snapping (left), Catching (centre), Ball Dropping (right).

4.2 Proposed 3D Spatial AR System

A 3D AR rehabilitation environment should have the same elements of a traditional

rehabilitation environment but with the flexibility and creativity that a virtual envi-

ronment can bring. The proposed system involves visual and motor axes colocation

and depth perception to immerse the user in the task. Three tasks are created to test

the user performance between 3D AR Visual-Motor Colocation and 2D non-immersive,

non-colocated VR: Snapping, Catching, and Ball Dropping. The tasks can be seen in

Fig. 4.1.

4.2.1 Representative Tasks

The Snapping task requires spatial awareness and accuracy. The user controls a small

ball and manipulates it around 40 other small spheres. At any given moment, only one

of the spheres will be highlighted to indicate the target position for the ball. The user

has to move the ball to the location of the highlighted sphere. When the ball and the

target sphere overlap, the end-effector holding the ball will snap onto the overlapped

sphere letting the user know via haptics that they succeeded. This prompts a new

sphere to be highlighted, which the user has to get to next. Each highlighted sphere

that is reached scores a point. Along the way, collision with the unhighlighted spheres

must be avoided since it will reduce the score by one for each point hit. Overshooting

42

a highlighted sphere that was just hit (thus becoming unhighlighted) and coming back

to also subtracts one score. This encourages the users to maintain a balance between

speed and accuracy throughout the 60s the task is run. If the user is able reach all 40

spheres, the first sphere becomes highlighted again and the exercise continues.

The Catching task tests the user’s performance with manipulating the end-effector

in a fast-paced scenario. The task is to catch balls that fall from a ledge using a hoop

attached to a stick which is controlled by the end-effector. This requires the user to

reach around the workspace, have good reaction time, and have spatial positioning

accuracy to catch the balls. The balls spawn above the ledge at random locations

every 2 seconds and come towards the user at different speeds; therefore, they fall to

different areas of the workspace depending on their speed. Each time a ball enters the

hoop successfully, the user scores a point. The task runs for 60s, allowing for 30 balls

in total to be spawned. Whenever the balls hit the edge of the hoop, the user feels

confirmatory haptic feedback on the end-effector.

The Ball Dropping task requires precision and accuracy. A hole is spawned at

a random position on the desk surface. The user controls a ball that is positioned

approximately shoulder height of the person and aims it above the hole. The ball is

released by pressing the spacebar on the keyboard. The location of the hole changes

as soon as the ball goes through the hole and the ball returns to the user. Otherwise,

the user will have to try dropping the ball into the same hole until it successfully goes

in. The task runs for 60s, giving the user a point for every time the ball falls through

the target hole. There is no score limit for the number of balls successfully dropped in

the hole.

For each of the tasks, a red dot blinking at 1 Hz is placed on a virtual wall across

from the user. This is the visual aid that is used to keep the users in tempo during

cognitive loading. To simulate cognitive deficiency in able-bodied participants, an

arithmetic operation is done by the participants alongside each of the three previously

mentioned tasks. Counting backwards in multiples of 3 has been shown to be effective in

decreasing user performance during dual task performance [92][93]. A random number

43

between 100 - 200 is given to the participants before the start of each task. Every

instance the red dot appears, the participant is to audibly count down, constantly

subtracting by 3 each time.

4.2.2 Experimental Setup

The system uses a High Definition Haptic Device (HD2) from Quanser, Inc., Markham,

Ontario, Canada. The HD2 device is used as the interface to interact with the digital

objects. An off-the-shelf InFocus IN116A projector is mounted above on the wall

behind the user. It projects the task on the curved screen similar to [105] that is

65 cm tall, 85 cm deep, 56 cm wide. Similar to the work of Swapp et al. [102],

a television or monitor could have been chosen as the display medium. However, a

projector was chosen due to its versatility. A projection setup will be able to keep our

options open for future work for larger scale exercises that may involve walking, or

even users moving around in a wheelchair. With the depth information provided by

the Kinect, a model of the scene can be constructed and projected on to such that from

the user’s viewpoint, the virtual object is displayed properly. This is achieved using the

RoomAliveToolkit [106] even though the projection surface is not flat. Being able to

use two perpendicular surfaces as the display allows for more creative tasks and better

immersion for the user. Our setup uses a curved screen to have a seamless projection

surface. Having no corners or creases in the projection improves the experience of the

user [105][107].

A Kinect V2 sensor is located above the screen facing the user for head tracking

purposes. Head tracking is crucial to the setup of the system to allow patients to

have the freedom of movement while still having proper perspective on the virtual

environment. Otherwise, they would need to keep their head positioned on the same

spot during the entire exercise in order to keep the correct perspective. The HD2 is

located on the right side of the screen such that the end-effector can be moved around

the centroid of the curved screen. The HD2 was used to interact with the virtual

44

Kinect

HD End-E ector
2

Figure 4.2: Left: Actual setup. Task is projected onto the screen (projector is not in view).
Right: Model of the setup created in Unity.

environment rather than utilizing the Kinect depth sensor to interact using freehand

motions. Freehand lacked the haptic functionality that robotic devices have. The

haptics add another layer of feedback with the virtual environment, adding realism to

the interaction for better immersion.

The task workspace where interaction with digital objects occur is in the space

between the screen and the user. The task is created using the Unity Game Engine [91]

and utilizes the open-sourced RoomAliveToolkit [106] to handle the kinect-projector

calibration. The HD2 is controlled using MATLAB and Simulink. The experimental

setup can be seen in Fig 4.2. The virtual camera within Unity, which provides the

view of the virtual environment, is positioned such that the virtual environment is

integrated in the real environment when seen from the user’s viewpoint. This camera

acts as the user’s eyes and is displaced left and right at 60Hz to enable stereo-viewing

for 3D depth perception. The user then wears active DLP-link 3D shutter glasses to

properly see the environment in 3D.

45

Calibration

To match the HD2’s end-effector movement with the virtual environment, the position

of the HD2 only needed to be aligned to match the position of the user-controlled

virtual object. The HD2 encoders provided accurate readings for the end-effector and

Microsoft’s RoomAliveToolkit scaled the Unity environment to match the real-world.

In the same vein, head-tracking with the Kinect is also aligned such that both virtual

and real world environments are matched in scale. This is to ensure that regardless of

the position and angle it is viewed from, the virtual world would seem part of the real

world.

Occlusion

As with any projection systems, occlusion is an issue when objects create a shadow

that blocks the projection onto the screen and instead the images gets projected on

the object (e.g. on a user’s hand). Likewise, improper rendering of the virtual objects

when the projection surface changes reduces the immersion of the user with the virtual

environment. Positioning the virtual objects that the user controls directly onto the

user’s hand breaks this immersion. In light of this, the virtual objects are positioned

at a small offset (1 cm) to the left and back of the end-effector to prevent improper

rendering and shadow occlusion. This is also done to prevent the end-effector of the

HD2 from occluding the controlled object. The virtual environment is also displayed

such that the majority of the workspace the user interacts with is projected on the

upper area of the screen to reduce shadow occlusions. The head tracking carried out

by the kinect also helps the user look around objects in the case occlusion occurs.

4.3 Experiment

A total of 10 able-bodied participants (ages 22-32) from the University of Alberta

community took part in the experiments. All participants were right-handed and had

46

Task Performance Conditions

VR AR
No Cognitive Loading 1 2
Cognitive Loading 3 4

Table 4.1: The table shows how each task is split into 4 conditions. While there are 4
conditions, each condition is presented twice to the participant to increase the validity of the
results. To summarize, there are 3 tasks, 4 conditions/task, 2 trials/condition to give a total
of 24 trials. Note that the numbering on the table is only for reference for the other figures in
this chapter and does not reflect the order the conditions are presented to the participants.

prior experience with haptic devices. 5 out of 10 had experience with using shutter

glasses or VR headsets. Verbal instructions were provided alongside a trial run for each

task for familiarization.

4.3.1 Procedure

Each participant is presented with three tasks: Snapping, Catching, and Ball Drop-

ping. The order of presentation is randomized to prevent any bias in learning effects

happening between tasks. Within each task, two independent parameters are manip-

ulated. Each task is done in either 3D AR or 2D non-immersive VR. The presence of

cognitive loading is also switched on and off. Haptic feedback is turned on for all trials.

Thus, there are 4 conditions to be tried for each task. Each condition is presented twice

to the user and is given in random order. Since the random generation of locations

for each task may bias the results (e.g., the balls in the catching task might spawn

in similar locations/speed for one participant, but far apart for another), two sets of

spawn points are generated for each task. Therefore, each participant attempts each

of the three tasks 8 times, giving a total of 24 trials per participant.

Each participant is seated at arms length from the projector screen with the HD2

to their right side, giving the end-effector access to the area between the projector

and the participant. While they are wearing the shutter glasses, the eye separation

is then measured by having the participant compare a virtual end-effector with the

47

Mean and Standard Deviation of Outcome Measures of Each Task
Cond. # 1 2 3 4

Snapping Task
Total Score 23.0± 7.7 27.0± 10.6 17.9± 5.3 23.2± 9.0
Wrong Hits 6.5± 4.3 5.3± 4.5 3.8± 2.3 2.5± 1.7
Net Score 16.6± 4.9 21.7± 10.7 14.1± 3.8 20.7± 8.2
Time/point 1.8± 1.2 1.5± 1.2 2.2± 1.5 1.7± 1.4

Catching Task
Score 6.9± 2.1 14.2± 2.9 3.7± 1.6 9.5± 3.4

Ball Dropping Task
Score 7.9± 2.2 11.0± 3.6 4.9± 2.3 8.9± 2.9

Tries/Hole 3.2± 1.0 2.2± 0.7 6.0± 3.7 2.5± 0.9
Time/Hole 8.5± 1.9 5.7± 1.6 16.3± 11.2 6.6± 2.7

Table 4.2: Table of mean and standard deviations for the outcome measures for each of the
three tasks. Results show the average per person.

HD2’s end-effector. The separation is adjusted until the virtual end-effector is parallel

to the HD2’s. Then in random order, the sets of tasks are presented, each with 8

trials that are also randomized. Before the start of each new task set, a trial run

is given in 3D AR for the participants to get a feel of the 3D environment and the

task. Overall, the experiment lasted for approximately an hour and fifteen minutes per

participant, including the resting time between each task. This study was done with

approval from the University of Alberta Research Ethics & Management Online, ID

MS9 Pro00033955.

4.3.2 Results and Discussion

No penalty is applied to cognitive loading miscounts. Since each of the 4 conditions

are presented to each participant twice, the results present the average of the two

trials. A Kolmogorov-Smirnov test [108] for normality was done for the net score of

the snapping task, and both score results of the catching and ball dropping task. All

three passed the normality test (p > 0.05) thus accepting the null hypothesis that

the data comes from a normally distributed population. A 2-way Repeated Measures

48

Analysis of Variance (RMANOVA) [109] is applied to the results to determine if there

is a significant difference between the results for the different conditions. The main

fixed effects are the visual techniques used (AR or VR) and cognitive loading (on or

off). The False Discovery Rate (FDR) correction is chosen to reduce Type I errors for

our post-hoc analysis [110]. A Type I error is also known as a “false positive” result,

which is the rejection of a true null hypothesis (i.e., mistakenly accepting that the data

is statistically significant when it is not). In the box plots in Fig. 4.3, the significance

is represented by the stars (*) on the horizontal line above two sets of conditions;

One star (*) represents a significance value of p < 0.05 and two stars (**) represent a

significance value of p < 0.01. If there is no horizontal line above two the results for

conditions, there is no statistical significance between them.

Score Results

The mean and standard deviation (SD) results of each task and its conditions are shown

in Table 4.2. For the Snapping task, four areas of scoring were collected: Total Score

- the number of highlighted points reached, Wrong Hits - the number of unhighlighted

points hit, Net Score - the final result after subtracting wrong hits from the total score,

and Time/point - the amount of time it took to travel between points. The Catching

task only includes the amount of times a ball is successfully caught in the hoop, denoted

as the score. The Ball Dropping task has three outcome measures: Score - the number

of balls successfully dropped into the hole, Tries/Hole - the number of attempts the

participants had to try before successfully getting the ball in, Time/Hole - the time it

took, in seconds, before the ball went in.

Statistical Significance between Conditions

As seen in the box plots, the scores for AR are generally higher than VR for all tasks

and all cognitive loading conditions. RMANOVA results in Table 4.3 show significance

in all measures for both fixed effects except for two from the Snapping task.

49

Box plots of Score for Ball Dropping Task

Figure 4.3: Box plot results for Snapping (Top), Catching (Middle), and Ball Dropping
(Bottom). The line within the boxes represent the median score. The horizontal line above
the conditions show the statistical significance of the two conditions. One star (*): p < 0.05.
Two stars (**): p < 0.01. No horizontal line represents no statistical significance.

50

RMANOVA Results

Task Measure VR vs. AR No CL vs. CL

Snapping
Total Score F= 6.4, p= .0321 F= 22.0, p= .0011
Wrong Hits F = 3.4, p = .1004 F= 8.3, p= .0179
Net Score F= 6.7, p= .0291 F = 3.0, p = .1178

Catching Score F= 46.7, p= .0000 F= 103.3, p= .0000

Ball
Score F= 38.3, p= .0002 F= 14.1, p= .0045

Dropping
Tries/Hole F= 12.1, p= .0069 F= 8.1, p= .0194
Time/Hole F= 10.9, p= .0093 F= 8.0, p= .0196

Table 4.3: The table shows the RMANOVA results of each task category for each main fixed
effects (VR vs. AR and No CL vs. CL). The F-ratio and p-values are reported. Bolded values
represent p < 0.05 significance. Bolded italicized values represent p < 0.01 significance.

A paired t-test with the FDR correction, as seen in Table 4.4, is utilized to closely in-

spect if there are significant differences between the conditions. While the RMANOVA

results for the three measures in the Snapping task showed significance in some of the

main fixed effects, t-test results show a lack of significant difference between the con-

dition pairs. From observation in both the data in Table 4.2 and during experiments,

participants moved between points faster when there was no cognitive loading. Conse-

quently, the gross number of points reached (total score) was much higher than their

CL counterpart. However, this also caused a larger amount of unhighlighted points hit.

With CL, the participants took longer and acted more carefully, therefore colliding less.

This provided an unintended result with cognitive loading that does not reflect what

is perceived to be a patient with cognitive deficiency and therefore no conclusions can

be made with the analysis for this task.

For the Catching task, RMANOVA shows a statistically significant difference be-

tween the presence and absence of both visual-haptic axes colocation and cognitive

loading. Paired t-tests show that our first hypothesis is met; AR resulted in better

success scores compared to VR regardless of the presence or absence of CL. However,

the second hypothesis is not met. For this task, visual-motor colocation via AR en-

hanced user performance over VR, however it did not greatly improve it such that the

51

Paired T-test p-value results between Conditions
Condition Pairs 1 vs 2 3 vs 4 1 vs 3 2 vs 4

Snapping Task
Score 0.3929 0.2531 0.2531 0.3929

Wrong Hits 0.5644 0.2236 0.2047 0.2047
Net Score 0.2913 0.1325 0.2913 0.8081

Catching Task
Score 0.0000 0.0003 0.0016 0.0041

Ball Dropping Task
Score 0.0425 0.0129 0.0168 0.1808

Tries/Hole 0.0415 0.0415 0.0481 0.3779
Time/Hole 0.0072 0.0321 0.0600 0.3513

Table 4.4: Table of Paired T-test results between two conditions using the False Discovery
Rate correction. Bolded values represent p < 0.05 significance. Bolded italicized values
represent p < 0.01 significance.

CL case would produce similar results with the non-CL case.

For the Ball Dropping task, there is statistical significance between the average

scores, average tries per hole and the average time the participants took per hole as

seen in the RMANOVA results. This suggests that for AR, participants spend less

time and are more confident in how they position the end-effector. Mostly seen in the

VR case, the participants also utilized the ball’s shadow to gain depth information.

According to RMANOVA, cognitive loading produced a significant effect in decreasing

user performance. However, paired T-tests show that this significance is more promi-

nent between VR results. Therefore, both hypothesis 1 and 2 have been met. AR

in both non-CL and CL case had significant improvements over VR, but under AR,

there was no significant difference between CL cases. This shows that AR was able to

alleviate the negative effects of CL.

Observations

The three tasks tested spatial manipulation, accuracy, and awareness. Each task also

differed in regards to how dynamic the participants had to be with their movements,

52

speed, and reaction time.

The Catching task, for instance, consistently required fast movements to catch

the balls while the Ball Dropping task allowed the participants to take their time in

determining the positioning required to successfully drop the ball in the hole. Effects

of cognitive loading also varied between the three tasks. CL had the biggest influence

in decreasing user performance in the Catching task. This is mostly due to requiring

fast movements and reaction time while simultaneously undergoing CL. Participants

would often slow down their movements while thinking of the next number.

In the Ball Dropping task, participants counted down in sync with the moment

they press the spacebar to drop the ball while expecting the ball to fall in. When it

does not go in, they press the spacebar again to retrieve the ball as quickly as possible,

causing a break in concentration during CL and thus slowing them down. Its effect

in VR compared to AR is much greater due to the lack of depth perception, requiring

more tries before succeeding.

For the Snapping task, while the paired t-test fell short of providing a significant

difference, the box plots portray hints of improvement in the AR cases. Due to the task

not requiring reaction time like in the Catching task, nor anticipation of success as seen

in the Ball Dropping task, participants in the Snapping task moved more carefully and

steadily when CL was applied. They also moved in sync with their counting, snapping

onto the target points during each countdown. These factors may have contributed to

our varied score results.

Feedback from the participants came in the form of verbal comments and certain

habits noticed while the tasks were being done. All the participants made use of the

head tracking to view the environment from different angles for better depth informa-

tion. This was more evident in the snapping task which needed spatial awareness of

the surroundings to avoid the unhighlighted points. Halfway the 24-trial point of the

experiments, a few of the participants became accustomed to the backwards counting.

Two of them suggested different ways of providing cognitive loading such that it is

variable, making it harder to get used to. While the learning is evident in prolonged

53

trials, the randomization of the trials aided in reducing its effect. Participants with

experience in either immersive VR or AR technologies adapted faster to the tasks.

Those without experience often needed more time, in the earlier trials, to adjust their

eyes to the AR environment.

4.4 Conclusion

Comparisons are performed in user task performance between 2D non-immersive VR

and 3D spatial colocated AR. We showed that by bridging the gap between visual

coordinate frame and hand coordinate frame, able-bodied participants with a simu-

lated cognitive deficiency will experience improved success rates in the rehabilitation

exercises. Since disabling events such as stroke affects the central nervous system

and therefore possibly causing cognitive disability, we simulate this cognitive disability

through cognitive loading in the form of an arithmetic operation. Three tasks were

presented to the participants: Snapping, Catching, and Ball Dropping. In terms of

superiority of performance in AR over VR, the main hypothesis of this work was not

met in the Snapping task. The Catching task met the requirements of the main hy-

pothesis; AR proved to significantly enhance user performance in both non-CL and

CL cases. The Ball Dropping task also confirmed the first hypothesis, but further

improved the success rate of AR during CL, therefore meeting the requirements of the

second hypothesis in which the negative effects of CL are alleviated to allow the user

performance of AR during CL to not be significantly different from the non-CL AR

case. Future work include testing the system on actual patients as part of a longitu-

dinal study. Incorporating the system with assistive functionality to further improve

success rate is also considered. By introducing the benefits of visual-motor colocation

in a 3D augmented reality rehabilitation system, we hope to inspire new possibilities

of rehabilitation games that are not bound by the limits of 2D monitors.

54

Chapter 5

A Robotic System with an

Augmented-Reality Display for

Functional Capacity Evaluation and

Rehabilitation of Injured Workers

5.1 Introduction

The growing demand for rehabilitation services following a workplace injury has mo-

tivated the development of new technologies for robotics-assisted assessment and re-

habilitation of motor function following injury. The standard practice in occupational

(or vocational) rehabilitation is to first perform a functional assessment of the injured

worker. Typically, this is done using a Functional Capacity Evaluation (FCE) that

assesses a worker’s performance in a set of standard tasks [111], where each task re-

quires different sets of equipment. The tasks incorporated in the FCE may involve

material-handling activities such as lifting, pushing, and pulling, and positional toler-

ance activities such as walking, reaching, and grasping [112].

The first problem with the above is that it needs a large amount of equipment for

55

various functional tasks and the space to store them. While a small number of all-

in-one computer-based assessment tools exist [113][114], they are highly specialized in

design and can replicate only specific rehabilitation tasks. A second problem emerges

due to the current standardized assessments, where therapists qualitatively assess a

patient’s performance based on what they can observe. More complex, quantitative

and objective assessments are desired. A third problem occurs when therapists increase

the difficulty of a task or ask the injured workers to execute tasks that are considered

boring; the patients can become bored, unmotivated, or uncooperative.

To address the above issues, we propose a generalized robotics-based solution. Our

solution incorporates a serial-manipulator and a projection-based Augmented Reality

(AR) display in order to provide a unified tool for both FCE and rehabilitation that is

immersive and device-independent. To evaluate the efficacy of the proposed system, the

biomechanics of the user’s arm while using the system is retrieved and compared against

the biomechanics of their arm in an equivalent real-life performance of the same task.

In this regard, we present the following hypothesis: The proposed system can be used as

an alternative to traditional occupational rehabilitation exercise environments because

it does not significantly modify the biomechanics of the user’s arm while performing

functional tasks compared to the conventional task performance.

The chapter is structured as follows: Section 5.2 is a brief overview of the work

found in the literature that relates to our proposed approach. Section 5.3 describes the

design of the rehabilitation exercise and experimental procedure. Section 5.4 presents

the results and provides a discussion based on the performed data analysis. Finally,

Section 5.5 concludes the findings and examines possible directions for future work.

56

5.2 Related Work

5.2.1 FCE

FCE is widely used to assess injured workers before, during and after rehabilitation. A

number of studies have demonstrated the reliability and validity of FCE and correlation

with future recovery and return to work. Peppers et al. showed that augmenting

clinical evaluation with FCE improves physicians’ assessments of the patient’s skills

and work capacities [115]. Gross et al. studied the impact and benefits of integrating

FCE into rehabilitation for better outcomes for injured workers [116]. FCE has been

found to significantly predict return to work [117] and is an integral component of

graded activity and functional rehabilitation programs [118]. However, James et al.

concluded that further research is needed in FCE, especially on the use of computer

technology (including robotics and digital sensors) [119].

5.2.2 Robot-assisted Assessment Rehabilitation

The inclusion of robots in therapy is becoming more common thanks to robots’ power,

repetitive motion ability, reprogramming capacity and potential adaptability to new

tasks. These features allow robots to be used in therapy fields such as emotional ther-

apy and physical therapy. Yakub et al. provide a list of robots developed in the context

of rehabilitation medicine [120]. The use of robots in occupational rehabilitation began

in the early 1990s [121][122], although they were employed mainly as assistive devices

for workers with injury or disability. Recent developments in the area have culminated

in devices such as BTE’s EvalTech [113] and Simwork’s ErgosII [114] systems, which

simulate FCE assessment setups and can also be used for strength and movement coor-

dination training. However, these devices are specifically designed with the emulation

of a certain set of FCE tasks in mind. Also, the performance of tasks with these sys-

tems are spatially constrained to their placement on the devices and the performance

of tasks involving free-space motions is not an option. For instance, while a device may

57

include a lock for practicing turning a key to open it, the more challenging task for

painting a wall is not supported because it cannot be done at one point on the device.

The tasks also remain limited by the need to have physical objects that the user holds

during assessments (e.g., rotating handles and knobs).

5.2.3 Virtual Reality & Augmented Reality in Rehabilitation

The virtual reality (VR) and augmented reality technology has been making its way

into the rehabilitation field in recent years. It has been shown to increase the motiva-

tion of patients and keep them engaged since it uses games to disguise the repetitive

movements of the rehabilitation exercises [67]. However, most of the VR and AR reha-

bilitation systems in the literature and on the market are targeted for those who have

been affected by neurological injuries due to events such as stroke and spinal cord in-

jury [123]. These systems cannot be used by injured workers as-is due to the difference

in challenge level and sophistication of the rehabilitation tasks between the two groups

(i.e., stroke patients and injured workers).

For non-immersive VR, in which the game is displayed in a 2D screen in front

of the patient, there exist systems like the BTE Eccentron [124] to improve lower-

limb strength while providing an interactive game-like experience to guide the patient

toward their objectives. To the best of the authors’ knowledge, there are currently

no immersive VR or AR systems that train injured workers to regain muscle strength

to enable them to return to work. There is also no robotic system that is specifically

developed for simulating the physical dynamics of functional tasks for the rehabilitation

of injured workers. Our proposed system employs the use of a 3D spatial AR display

to immerse the patient in a projected 3D virtual environment that is integrated with

the physical environment including the robotic manipulator. In the previous chapter,

we showed that the resultant colocation of visual and motor axes help improve user

performance in rehabilitation exercises [125].

We propose an approach based on using a 7 Degree-of-Freedom (DOF) serial manip-

58

ulator for simulating the physical dynamics (i.e., haptic interaction) corresponding to

functional tasks, eliminating the need for physical hardware of such tasks. Compared

to rehabilitation facilities that allocate a large area for multiple tasks, this unified sys-

tem can reduce the costs for equipment. Our approach also integrates an AR display

to provide reconstructed visual feedback of the simulated task in an immersive envi-

ronment. All types of motions can be performed on the robot due to its 7-DOF design.

This allows flexibility in movement that is not found in other systems. Furthermore,

having a robotic system allows for masking the task parameters from the patient which

can help prevent the loss of motivation from knowing about an increase in the difficulty

level of the task.

The overall robot-AR system is useful for both FCE and rehabilitation of injured

workers. Serial manipulators have been previously incorporated into rehabilitation

medicine for both assessment and rehabilitation purposes [49]. Our group, in partic-

ular, has extensively applied serial rehabilitation robots to target the neuromuscular

rehabilitation of patients with stroke and cerebral palsy [126][127]. Likewise, we have

also developed a robot-assisted AR system [125] for simulated stroke patients, in which

the effects of stroke (e.g., being distracted) is simulated by cognitively loading the user

with a count down task. However, to the best of our knowledge, the use of robots and

AR in the context of facilitating FCE and rehabilitation of injured workers remains

unexplored.

5.3 Materials and Methods

5.3.1 Rehabilitation Task Design

The simplified movements found in rehabilitation tasks often involve reaching, grasping,

and weight lifting. The task used in our robot-AR system implements these movements

in their basic forms but can be further adapted to higher difficulty and complexity

levels.

59

We chose a painting task that focuses on training up-down hand movements by

having the user paint a virtual wall. There is a fill indicator present to provide the

user with information on the percentage of the wall they have already painted. Force

feedback is also provided by the robotic manipulator when the virtual paint roller is

in contact with the wall so that the haptic experience of painting on the wall in the

real world is recreated. In the real-world condition, the user is given a physical paint

roller to use on a portable physical wall positioned at the same spot the virtual wall

was in the robot-AR condition. There is no paint used in the real case; rather, the user

is asked to “paint over” an area of the wall as much as they can. The user continues

“painting” until the area they have covered encompasses the wall in the virtual task.

Other measurements such as time of completion and amount of force exerted by the

user can potentially be retrieved and analyzed for tasks in the robot-AR setup. How-

ever, since the metrics being evaluated in this work are the user’s arm biomechanics,

these measurements are not analyzed.

5.3.2 Robotic Manipulator Choice and Control Strategy

Many standardized FCEs such as the WorkWell FCE and the Progressive Isoinertial

Lifting Evaluation (PILE) place emphasis on an injured worker’s ability to lift weighted

objects (e.g., crates) as an important assessment, among other physically strenuous

tasks [111]. Therefore, it is desirable to use a robot capable of exerting enough force

to realistically simulate heavy objects and interactions with environments typical of an

injured worker’s workplace. For this reason, the robot used in this work is a heavy-

duty industrial robot; details are provided in Section 5.3.3. Internal gearing makes the

structure of the robot non-back-drivable; however, the requirement of physical human-

robot interaction (PHRI) in our experiments means a suitable robotic controller is

needed to make the robot back-drivable.

Impedance controllers, which output a force for a robot to exert based on its mo-

tion, are ideal for providing stable PHRI when simulating environmental interactions.

60

However, implementing such controllers typically requires full knowledge of the robot’s

dynamics parameters such as each joint’s mass and center of mass [128], which are

unavailable for the robot used in this work and difficult to accurately measure. Admit-

tance controllers, which output a motion for the robot to execute based on a measured

force input, are a common alternative for non-back-drivable, heavy-duty robots like

the one used in this system. The general form of an admittance controller’s transfer

function is

G =
V⃗ d (s)

W⃗ (s)
=

1

Ms+B
(5.1)

Note that in this system, an internal velocity controller is used by the robot to perform

movements in real-time, so the admittance controller is designed here to output a

desired velocity rather than a desired position. The input to the controller, W⃗ (s) =[︂
F⃗ (s) , τ⃗ (s)

]︂ᵀ
, represents the wrench composed of input forces and torques, and the

output, V⃗ d (s), is the resulting desired velocity, composed of Cartesian and angular

terms. M represents the desired mass and inertia matrix and B represents the desired

Cartesian and angular damping matrix. These matrices affect the transparency of

free motion experienced by the user and also the stability of the robot. A stiffness

parameter is not used, similar to [129], because restoring forces are not desirable during

co-manipulation in free-space. It follows that G is given as

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gx 0 0 0 0 0

0 gy 0 0 0 0

0 0 gz 0 0 0

0 0 0 gα 0 0

0 0 0 0 gβ 0

0 0 0 0 0 gγ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where {gx, gy, . . . , gγ} represent the admittance terms for each Cartesian direction and

orientation angle. Large values for admittance terms result in greater allowed motions

while small values result in more constrained movements. By changing the admittance

61

Force Feedback

Forces

Visual Feedback

Kinect
Head PositionUnity Camera

Movement

Video Output
Projector

Forces

Velocity

End-E�ector

Position

Force

Feedback

Motion Tracker

Force

Sensor

User

Motoman Robot

Arm

Biomechanics

Figure 5.1: Flowchart of the communication between each system.

parameters, allowed movements initiated by the user can be restricted to certain axes.

This is used, for example, in our tasks where it is beneficial to restrict rotations in axes

that are not of interest (e.g., small values for gβ and gγ) while allowing free motion in

the other axes (e.g., large values for gx, gy, gz, and gα).

5.3.3 Experimental Setup

As seen in Fig.5.1, the robot-AR system uses a Motoman SIA-5F (Yaskawa America,

Inc., Miamisburg, Ohio, USA) 7-DOF serial manipulator as the user interface to control

the paint roller in the virtual environment. It is controlled using MATLAB, Simulink,

and C++ in which the flow of communication between them is described in [130].

Attached to the robot’s wrist joint before the end-effector is a 6-DOF ATI Gamma Net

force/torque sensor (ATI Industrial Automation, Inc., Apex, North Carolina, USA).

The AR subsystem consists of an off-the-shelf InFocus IN116A projector mounted 3

m above the ground that projects to a screen on the table. A Microsoft Kinect V2

Sensor is positioned 1.2 m horizontally distant and 0.34 m vertically above the user’s

head to enable head tracking for displaying the correct perspective to the user. To

properly view the 3D scene, active DLP-Link 3D shutter glasses are worn by the user.

The development of the 3D environment is done using the Unity Game Engine [91]

where a virtual model of the workspace is created. This virtual model is created and

62

calibrated to the world scale using Microsoft’s RoomAlive Toolkit [106]. A ClaroNav

MicronTracker (ClaroNav, Inc., Toronto, Ontario, Canada) motion tracking camera

(MTC) is used to record the positions of the user’s hand, elbow, and shoulder.

As mentioned earlier, the requirements of the more strenuous FCE and rehabilita-

tion tasks imply a need for high force and torque haptic interactions. The admittance-

type Motoman robot is used as the manipulator due to its heavy load capabilities

compared to other impedance-type haptic interfaces [131]. It has a payload limit of

5 kg for accurate movement and can generate joint torques up to a rated 300 Nm.

These are the maximum values achievable by the robot and we do not use all of it.

For safety, constraints are placed in the software to limit high velocities and position

singularities. The attached force sensor records user force and torque inputs, which are

used to facilitate the admittance control of the robot.

The painting task requires a specific setup of the projector around the robot due to

the limited projection space and required robot configuration. The configuration uses

a curved screen with dimensions 85 cm tall, 75 cm deep, and 56 cm wide situated on

top of the table. The end-effector of the robot is positioned to the right of the screen.

This configuration allows the user to have an intuitive feel of the simulated task and

reduces the occlusions on the projection display caused by the arm and joints of the

user and the robot, respectively.

5.3.4 Experimental Procedure

5 trials for each condition (i.e., robot-AR or real-world) are carried out to have a total

of 10 trials per person, lasting approximately 60 s per trial. The trials are performed

by 2 able-bodied participants (both are male, 24 years old, and right-handed). Each

participant is asked to stand in a comfortable position in front of the screen and to

hold the Motoman robot’s end-effector with his arm half extended. The participant

is instructed to refrain from changing his standing location, which is marked on the

floor, between the two experimental conditions. A chair is provided for the participant

63

Kinect

Motion Tracker
Motoman

Screen

Shutter
Glasses

Virtual
Paint Roller

Robotic AR Setup

X

Z

Y

Wall Physical
Paint Roller

Real Physical Setup

Figure 5.2: Painting task experimental setup. (Top) represents the robot-AR condition
and the (Bottom) represents the real-life equivalent condition. The projector is not shown.
Through AR, the paint roller will pop out in 3D from the perspective of the user in a
geometrically correct position and orientation relative to the robot end-effector.

64

to take rests when needed. All 5 trials are recorded for a specific condition before

moving onto the other one. The robot-AR condition for the painting task is presented

to Participant 1 as the first set of trials before doing the trials under the real-world

condition. The opposite order is presented to Participant 2.

5.4 Results and Discussion

The hand, elbow, and shoulder positions recorded by the MTC form the data for

the biomechanics analysis performed. These are recorded by putting fiducial markers

behind the user’s hand, on the elbow, and on the shoulder. In order to evaluate the

similarity of the biomechanics between using the proposed system and the equivalent

real-world tasks, we consider the hand position as the independent variable and the

elbow and shoulder positions as the dependent variables. In other words, while the

user’s hand position changes, the elbow and shoulder joint positions will change in order

to best accommodate the desired hand pose. For a fixed hand position (independent

variable), we will compare the distribution of the dependent variables between the two

conditions.

The two-sample Kolmogorov-Smirnov (KS) test is a well tested and commonly

used method of evaluating whether two one-dimensional distributions are statistically

different (the null hypothesis is that they are similar). Since pH−E and pE−S are in three

dimensions, we use the modified version of the KS test in three dimensions as described

in [132] by Fasano and Franceschini. We make use of the implementation of Fasano and

Franceschini’s work in [133] in conjunction with the Monte-Carlo simulations provided

in the original work.

A preliminary comparison between the datasets for the two conditions is performed

first to see if the distribution of elbow and shoulder joint positions for the same hand

position as it traverses the entire surface of the wall being painted is statistically similar

between the two conditions. Here, the joint position data from the real-world condi-

tion is taken as the baseline data; for a specific hand position, the elbow and shoulder

65

positions for the robot-AR condition should resemble those measured in the real-world

condition. If this happens, it can be concluded that the robot-AR system does not

significantly modify how users perform the task compared to the real-world condition.

The process of comparison is given as follows: for each recorded hand position in the

robot-AR dataset, a similar hand position in the real-world data is found by using a

nearest-neighbor (NN) search. For these similar hand positions, the associated hand-

to-elbow (H2E) and elbow-to-shoulder (E2S) displacements can be calculated in each

dataset. The result is a distribution of H2E and E2S displacements recorded in the

robot-AR condition, and a distribution of H2E and E2S displacements that are associ-

ated with the real-world condition for the same hand positions. The modified KS test

is then used to compare the H2E displacement distributions, and the E2S displacement

distributions between the two conditions. Note that [132] only provides Monte Carlo

simulations up to a maximum n = 500, where in a two sample KS test n = n1n2

n1+n2

where n1 and n2 are the number of points in the real-world condition and robot-AR

condition, respectively. Knowing that the number of points in the distributions is the

same, i.e., n1 = n2, we then restrict the number of points in the distributions to 1000

points or less. To do this, the collection of datapoints are downsampled to 1000 points

for each condition, resulting in 200 points per trial. A significance value is returned by

the test and is compared against an alpha value of α = 0.05.

The results for both the H2E and E2S comparisons produced a value of p < 0.05,

indicating that the distributions are statistically different (i.e., rejecting the null hy-

pothesis that two conditions have the same distribution) and therefore suggests that

the biomechanics of the two conditions differ in our painting task. This motivates a

closer inspection of the data.

Examining whether there are spatial trends in the similarity between the distribu-

tions may help explain the dissimilarity reported in the KS test for the full dataset.

To do this, we propose to divide the data down into spatial sections or voxels and

perform the KS test for each individual voxel, looking for any that may be dissimilar.

A grid of measurement points is first constructed by choosing points at evenly-spaced

66

(a) (b)

Figure 5.3: Joint position data for an example cluster. (a) shows the point cloud data
for H2E displacements, and (b) shows E2S displacements.

intervals to encompass the range of hand positions across all datasets in the three

Cartesian dimensions. All recorded hand positions are then clustered to the nearest

grid point using the NN search. We use an interval of 25 mm as the distance between

grid points, as it provides a high resolution of voxels in our task space and allows most

clusters to meet the requirements for n1 and n2. Fig. 5.3 shows the distributions of

H2E displacements and E2S displacements for an example cluster.

For each cluster, the statistical similarity of the distributions for the associated

data from the two conditions (robot-AR and real-world setups) is then evaluated with

the modified KS test. Similar to before, the Monte Carlo simulations in [132] are only

provided for a minimum of n = 10 between two samples (and a maximum of n = 500).

To ensure 10 ≤ n ≤ 500, we impose limits where n1 ≥ 20, n2 ≥ 20 and n1 +n2 ≤ 2000.

Graphical results of the modified KS tests are shown in Fig. 5.4.

The percentage of clusters that are statistically similar between the two conditions

show that 43.85% of the measurable clusters were similar for H2E displacements and

28.46% were similar for E2S displacements during Participant 1’s trials. Participant 2

67

(a)

0

100

200

300

400

500

700

Task

y-axis (mm)
T

a
s
k
 z

-a
x
is

 (
m

m
)

Task x-axis (mm)

8009001000

Grid points

Valid cluster for comparison (130 valid)

Statistically similar clusters (37 similar)

(b)

(c) (d)

Figure 5.4: Three-dimensional KS results for the painting task with the data split into
voxels for comparison. The grid points show points in space around the surface of the
wall where H2E and E2S results were clustered and compared at. (a) and (b) represent
H2E and E2S results for Participant 1, respectively, and (c) and (d) represent the same
for Participant 2. Clusters with a sufficient number of datapoints for comparison with
the KS test are shown with solid black points and those of statistical similarity are
encircled in red.

68

achieved similarity with 46.67% similar for H2E displacements and 29.33% similarity

for E2S displacements.

At first glance, the fraction of clusters that produced similar results seems to be

quite low, especially for the E2S displacements. However, a qualitative observation

of the results in Fig. 5.4 shows that the statistically similar clusters are well spread

across the entire workspace. There are a few possible reasons as to why some clusters

may not show similar results. As the real-world condition experiments did not involve

actual paint being laid on the physical wall, keeping track of the “painted” portion

proved to be challenging. This could affect the fairness of the KS test performed. For

example, if, for a specific cluster, n1 ≫ n2, where n1, n2 > 20 and n1+n2 ≤ 2000, then

a comparison of the distributions would be valid according to the restrictions we placed

on the comparison in a cluster, but it could suffer from the disparity in the quality of

the distributions. The simplest way to address this issue would be to simply have more

trials, which in turn would provide more data and a higher chance to better define the

distributions for more clusters. It would also be highly beneficial in this situation to

be able to remove the upper limit on datapoints to compare over, meaning running

Monte Carlo simulations as in [132] for higher values of n.

Nevertheless, the results indicate that there is a perceivable difference between using

the robot-AR setup and performing the real-world equivalent task. The most likely

cause would be that the damping and inertia of the robot were not low enough to

properly convey full transparency during free motion. This could be the case, given

the nature of the geared transmission system used in the robot and the admittance

controller used to make it compliant. The implied difference in perceived weight during

free motion would then be a likely cause in any changes in the observed biomechanics, as

the user would compensate for the heavier load, experienced in the robot-AR condition,

by adjusting their joint positions accordingly. In the results shown in Fig. 5.4, this

may be the reason why the E2S distributions have a much lower overall similarity than

the H2E distributions, as the upper arm may have moved more in order to compensate

for the larger resistance to motion in the robot-AR condition while the lower arm

69

remained the same in order to hold the brush handle comfortably. There is then a

motivation for reexamining the results when performed using robot with similar load-

bearing capabilities that is designed for the purpose of patient-safe interaction as well

as built-in back-drivability, such as the Franka Emika Panda 7-DOF robot (Franka

Emika GmbH, Munich, Germany).

5.5 Conclusion

In this chapter, a robot-AR system that aims to be a suitable alternative to exist-

ing FCE and rehabilitation environments for injured or disabled workers is developed

and evaluated. A task that involves painting a wall is presented to the participants.

To evaluate our approach, the task has a real-life equivalent condition in which the

biomechanics of the participant’s arm for both robotic AR and real-life conditions are

recorded and compared to determine if the arm movements are similar. Our results

show that the arm biomechanics for a painting task are statistically similar in ≈ 50%

of the collected clusters for the hand-to-elbow (H2E) displacements, and ≈ 30% for

the elbow-to-shoulder (E2S) displacements for both participants. These initial findings

show the potential of our robot-AR system to replicate upper-limb movements found in

traditional FCE and rehabilitation exercises and it motivates us to further investigate

better methods to simulate functional tasks. Future work includes implementing the

system with a different robot and/or robot controller that is better suited for physical

human-robot interaction (PHRI), expanding the projected area, developing more tasks,

and testing the system with actual FCE tasks, or even in a clinical setting. By creating

an all-in-one robotic AR occupational rehabilitation system, we hope to motivate and

provide an efficient method for workers to recover from their injuries.

70

Chapter 6

Conclusion

6.1 Summary

This thesis presented an investigation of the improvement of user performance in reha-

bilitation exercise environments in which the user’s motor and visual frames are colo-

cated. Through an implementation of an augmented-reality (AR) display, it is possible

to align the movements of the patient’s arm with the movement of their avatar or cur-

sor on the screen in terms of location, direction, and scale. The aim of this work was to

make rehabilitation easier for patients who have had their mental capabilities affected

negatively due to disabling events such as stroke. Since AR is currently an emerging

field of technology, the current literature that applies it to a rehabilitation context is

not extensive. This work introduced the first steps toward this direction and showed

the potential for this new technology to be integrated in the rehabilitation field.

In Chapter 3, we began to examine the effects on user performance of AR integra-

tion in experiments involving a 2-DOF planar rehabilitation robot. AR was strictly

implemented in a 2D environment and the participants were instructed to perform a

rehabilitation reaching exercise in the form a game projected onto the same table that

the robot is placed on. In this experiment, the participants pushed a virtual projec-

tion of a 2D car using the end-effector of the robot along a circular track around the

71

workspace. The experiment compared the user performance, with respect to time, of

the participants in eight different conditions involving the presence or absence of three

independent factors: visual colocation, haptic feedback, and cognitive loading. A brief

analysis of the participants’ spatial error between the desired trajectory and actual tra-

jectory was showcased in a snapshot of the data of two participants. A survey was also

given after the experiments to get feedback on what the participants thought about

the system.

In Chapter 4, instead of a 2D environment, we further investigated the matter

in a 3D AR system. A projection setup with a curved screen was employed, and

head tracking with a Kinect was utilized. A 6-DOF haptic device was used by the

participants for each of the three games that were created to mimic rehabilitation

exercises: snapping, catching, and ball dropping. The snapping task required careful

and precise maneuvers to traverse past the floating obstacles and reach the highlighted

point. The catching task tested the participants’ reaction time and speed in hand

movement to catch the falling spheres. Finally, the ball dropping task needed accurate

positioning of the ball in order for it to fall into the hole. Each task was analyzed

separately; however, four conditions were tested for each one. The presence and absence

of colocation and cognitive loading were the independent factors of each condition.

Haptic feedback was always present for consistency due to having different levels of

involvement in each task. User performance was based on the success scores achieved

by participants depending on the task. The snapping task results showed an unintended

effect of cognitive loading; the participants moved more carefully and therefore made

fewer mistakes than when cognitive loading was not present. For both catching and

ball dropping, an improvement in user performance was seen as hypothesized.

Chapter 5 brought together the results and observations taken from the previous

chapters to create a robotic system with an AR display for functional capacity evalu-

ation (FCE) and rehabilitation of injured workers. We presented a system comprised

of a robotic arm for recreating the physical dynamics of functional tasks and a 3D

AR display for immersive visualization of the tasks. We chose a painting task that

72

focused on training up-down hand movements by having the user paint a virtual wall.

Participants performed a virtual version of the task using the robot-AR system, and a

physical version of the same task without the system. This study showed the results for

two able-bodied users, each analyzed separately, to determine if the robot-AR system

produces upper-limb movements similar to the real-life equivalent task. The similarity

between relative joint positions, i.e., hand-to-elbow (H2E) and elbow-to-shoulder (E2S)

displacements, was evaluated within clusters based on the spatial position of the user’s

hand. The H2E displacements for approximately 50% of hand position clusters were

consistent between the robot-AR and real-world conditions and approximately 30%

for E2S displacements. The similar clusters were distributed across the entire task

space however, indicating the robot-AR system has the potential to properly simulate

a real-world equivalent task.

6.2 Future Work

6.2.1 Assist-as-needed Functionality

For patients who are unable to fully complete the tasks due to limb tremors or compli-

cations such as the inability to fully extend their arm, incorporating an assist-as-needed

functionality with the haptic device would be ideal. The tasks can be programmed to

help the patient by gravitating the end-effector towards the desired position. How-

ever, the robot moving the patient’s arm will have no positive effect unless the patient

attempts to do the task. Thus, the robot should only help a patient who is putting

his/her maximum effort in. This may be achieved by detecting the effort produced by

the patient’s arm through surface electromyography (sEMG), or an electroencephalo-

gram (EEG) to measure their mental activity and then providing assistance depending

on a certain threshold or control scheme. Simpler methods may be implementing a

position controller with a variable gain towards the direction of the desired position

to ensure the patient is constantly moving towards the target. Implementation of this

73

functionality may help increase success rates and further motivate patients through

their rehabilitation process.

6.2.2 Larger Scale Setup

The work can be extended to a larger AR environment similar to the CAVE systems.

This would involve the addition of multiple projectors and depth sensors, and ensuring

seamless colour compensation for overlapping projections. A larger system would open

up the potential for more versatile rehabilitation tasks and accommodate different

types of patients (i.e., allowing movement on a wheelchair). For example, a person on

a wheelchair can move to an area of the room with a projected sink. The tap handle

can be represented by a robot end-effector, allowing the patient to open the tap and

see water flow in the AR display.

6.2.3 Improved Occlusion Mitigation

Since occlusion is present in the system, the task had to be designed in a way that

it minimizes its effects. Occlusion happens when an object (i.e., the user’s hand or

the robot) gets in the way of the projection space where the virtual object is meant

to be projected on. The object occludes the projection and casts a shadow on the

screen instead which can cause a break in immersion in an AR setup. However, proper

configuration of the depth sensors and the addition of more projectors should allow for

the detection of real objects onto the scene and reduce the effect of shadows such that

the virtual environment can respond dynamically to the added object and project the

correct perspective for the user.

6.2.4 Therapist-Patient Telerehabilitation

If an implementation similar to Benko’s work with the mirage table and its 3D tele-

conferencing interface [105] is achieved, then patients might be more motivated to do

74

home-based rehabilitation. Both the patient and the therapist can interact within the

shared interface as if they sat at a table across from each other.

6.2.5 Clinical Trials and Validation

The main goal of this research is to improve the user performance during rehabilitation

exercises to provide more effective rehabilitation outcomes. Therefore, it is crucial to

validate the system by conducting a longitudinal study on actual patients that have a

disability. The system can be compared with a similar traditional rehabilitation setup

by analyzing the outcomes to determine its effectiveness against current methods.

75

Bibliography

[1] “Stroke report 2016.” http://www.strokebestpractices.ca/news-feature/stroke-

report-2016-just-released/.

[2] N. Maclean, P. Pound, C. Wolfe, and A. Rudd, “A critical review of the concept

of patient motivation in the literature on physical rehabilitation,” Soc Sci Med,

vol. 50, no. 4, pp. 495–506, 2000.

[3] R. Colombo, F. Pisano, A. Mazzone, C. Delconte, S. Micera, M. C. Carrozza,

P. Dario, and G. Minuco, “Design strategies to improve patient motivation dur-

ing robot-aided rehabilitation,” Journal of neuroengineering and rehabilitation,

vol. 4, no. 1, p. 3, 2007.

[4] T. M. Damush, L. Plue, T. Bakas, A. Schmid, and L. S. Williams, “Barriers and

facilitators to exercise among stroke survivors,” Rehabilitation nursing, vol. 32,

no. 6, pp. 253–262, 2007.

[5] M. Ma, M. McNeill, D. Charles, S. McDonough, J. Crosbie, L. Oliver, and C. Mc-

Goldrick, “Adaptive virtual reality games for rehabilitation of motor disorders,”

in International Conference on Universal Access in Human-Computer Interac-

tion, pp. 681–690, Springer, 2007.

[6] A. L. Betker, A. Desai, C. Nett, N. Kapadia, and T. Szturm, “Game-based exer-

cises for dynamic short-sitting balance rehabilitation of people with chronic spinal

76

cord and traumatic brain injuries,” Physical therapy, vol. 87, no. 10, pp. 1389–

1398, 2007.

[7] J. R. Octavia and K. Coninx, “Adaptive personalized training games for individ-

ual and collaborative rehabilitation of people with multiple sclerosis,” BioMed

research international, vol. 2014, 2014.

[8] K. Brütsch, A. Koenig, L. Zimmerli, S. Mérillat-Koeneke, R. Riener, L. Jäncke,

H. J. van Hedel, and A. Meyer-Heim, “Virtual reality for enhancement of robot-

assisted gait training in children with neurological gait disorders,” Journal of

rehabilitation medicine, vol. 43, no. 6, pp. 493–499, 2011.

[9] A. Mirelman, P. Bonato, and J. E. Deutsch, “Effects of training with a robot-

virtual reality system compared with a robot alone on the gait of individuals

after stroke,” Stroke, vol. 40, no. 1, pp. 169–174, 2009.

[10] M. Hillman, “2 rehabilitation robotics from past to present–a historical perspec-

tive,” in Advances in Rehabilitation Robotics, pp. 25–44, Springer, 2004.

[11] D. Khalili and M. Zomlefer, “An intelligent robotic system for rehabilitation

of joints and estimation of body segment parameters,” IEEE transactions on

biomedical engineering, vol. 35, no. 2, pp. 138–146, 1988.

[12] N. Hogan, H. I. Krebs, J. Charnnarong, P. Srikrishna, and A. Sharon, “Mit-

manus: a workstation for manual therapy and training. i,” in Robot and Human

Communication, 1992. Proceedings., IEEE International Workshop on, pp. 161–

165, IEEE, 1992.

[13] P. S. Lum, C. G. Burgar, and P. C. Shor, “Evidence for improved muscle ac-

tivation patterns after retraining of reaching movements with the mime robotic

system in subjects with post-stroke hemiparesis,” IEEE Transactions on Neural

Systems and Rehabilitation Engineering, vol. 12, no. 2, pp. 186–194, 2004.

77

[14] D. J. Reinkensmeyer, L. E. Kahn, M. Averbuch, A. McKenna-Cole, B. D. Schmit,

and W. Z. Rymer, “Understanding and treating arm movement impairment after

chronic brain injury: progress with the arm guide.,” 2014.

[15] D. J. Williams, H. I. Krebs, and N. Hogan, “A robot for wrist rehabilitation,”

in Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd

Annual International Conference of the IEEE, vol. 2, pp. 1336–1339, IEEE, 2001.

[16] T. Worsnopp, M. Peshkin, J. Colgate, and D. Kamper, “An actuated finger

exoskeleton for hand rehabilitation following stroke,” in Rehabilitation Robotics,

2007. ICORR 2007. IEEE 10th International Conference on, pp. 896–901, IEEE,

2007.

[17] G. Colombo, M. Joerg, R. Schreier, V. Dietz, et al., “Treadmill training of para-

plegic patients using a robotic orthosis,” Journal of rehabilitation research and

development, vol. 37, no. 6, pp. 693–700, 2000.

[18] J. E. Deutsch, J. Latonio, G. C. Burdea, and R. Boian, “Post-stroke rehabilitation

with the rutgers ankle system: a case study,” Presence: Teleoperators & Virtual

Environments, vol. 10, no. 4, pp. 416–430, 2001.

[19] B. Volpe, H. Krebs, N. Hogan, L. Edelsteinn, C. Diels, and M. Aisen, “Robot

training enhanced motor outcome in patients with stroke maintained over 3

years,” Neurology, vol. 53, no. 8, pp. 1874–1874, 1999.

[20] P. S. Lum, C. G. Burgar, P. C. Shor, M. Majmundar, and M. Van der Loos,

“Robot-assisted movement training compared with conventional therapy tech-

niques for the rehabilitation of upper-limb motor function after stroke,” Archives

of physical medicine and rehabilitation, vol. 83, no. 7, pp. 952–959, 2002.

[21] G. Alankus, R. Proffitt, C. Kelleher, and J. Engsberg, “Stroke therapy through

motion-based games: a case study,” ACM Transactions on Accessible Computing

(TACCESS), vol. 4, no. 1, p. 3, 2011.

78

[22] C. C. Abt, Serious games. University press of America, 1987.

[23] B. Sawyer and D. Rejeski, “Serious games: Improving public policy through

game-based learning and simulation,” 2002.

[24] J. Alvarez, V. Alvarez, D. Djaouti, and L. Michaud, “Serious games: Training &

teaching-healthcare-defence & security-information & communication,” IDATE,

France, 2010.

[25] A. D’Angour, “Plato and play: Taking education seriously in ancient greece.,”

American Journal of Play, vol. 5, no. 3, pp. 293–307, 2013.

[26] “The Single Tax Review,” Autumn, 1902.

http://landlordsgame.info/articles/LLG SingleTaxReview-1902.pdf.

[27] “How Henry George’s Principles Were Corrupted Into the Game Called

Monopoly,” Dec 2011. http://www.henrygeorge.org/dodson on monopoly.htm.

[28] J. Rice, “Assessing higher order thinking in video games,” Journal of Technology

and Teacher Education, vol. 15, no. 1, pp. 87–100, 2007.

[29] “A Pioneering Game’s Journey: The History of Oregon Trail,” Apr 2017.

https://www.usgamer.net/articles/the-oral-history-of-oregon-trail.

[30] W. Wright and I. Bogost, Persuasive games: The expressive power of videogames.

Mit Press, 2007.

[31] R. Shilling, M. Zyda, and E. C. Wardynski, “Introducing emotion into military

simulation and videogame design: America’s army operations and virte,” 2002.

[32] S. Göbel, S. Hardy, V. Wendel, F. Mehm, and R. Steinmetz, “Serious games for

health: personalized exergames,” in Proceedings of the 18th ACM international

conference on Multimedia, pp. 1663–1666, ACM, 2010.

79

[33] D. Thompson, T. Baranowski, R. Buday, J. Baranowski, V. Thompson, R. Jago,

and M. J. Griffith, “Serious video games for health: How behavioral science

guided the development of a serious video game,” Simulation & gaming, vol. 41,

no. 4, pp. 587–606, 2010.

[34] J. E. Deutsch, M. Borbely, J. Filler, K. Huhn, and P. Guarrera-Bowlby, “Use of

a low-cost, commercially available gaming console (wii) for rehabilitation of an

adolescent with cerebral palsy,” Physical therapy, vol. 88, no. 10, pp. 1196–1207,

2008.

[35] S. Flynn, P. Palma, and A. Bender, “Feasibility of using the sony playstation 2

gaming platform for an individual poststroke: a case report,” Journal of neuro-

logic physical therapy, vol. 31, no. 4, pp. 180–189, 2007.

[36] A. Da Gama, T. Chaves, L. Figueiredo, and V. Teichrieb, “Poster: improving mo-

tor rehabilitation process through a natural interaction based system using kinect

sensor,” in 3D User Interfaces (3DUI), 2012 IEEE Symposium on, pp. 145–146,

IEEE, 2012.

[37] “Serious Play Conference.” https://seriousplayconf.com/.

[38] B. Grahn, C. Ekdahl, and L. Borgquist, “Motivation as a predictor of changes in

quality of life and working ability in multidisciplinary rehabilitation,” Disability

and Rehabilitation, vol. 22, no. 15, pp. 639–654, 2000.

[39] N. Maclean, P. Pound, C. Wolfe, and A. Rudd, “Qualitative analysis of stroke

patients’ motivation for rehabilitation,” Bmj, vol. 321, no. 7268, pp. 1051–1054,

2000.

[40] K. Ekberg, “Workplace changes in successful rehabilitation,” Journal of Occupa-

tional Rehabilitation, vol. 5, no. 4, pp. 253–269, 1995.

[41] E. J. Lenze, M. C. Munin, T. Quear, M. A. Dew, J. C. Rogers, A. E. Begley,

and C. F. Reynolds III, “Significance of poor patient participation in physical

80

and occupational therapy for functional outcome and length of stay,” Archives

of physical medicine and rehabilitation, vol. 85, no. 10, pp. 1599–1601, 2004.

[42] J. M. Sietsema, D. L. Nelson, R. M. Mulder, D. Mervau-Scheidel, and B. E.

White, “The use of a game to promote arm reach in persons with traumatic

brain injury,” American Journal of Occupational Therapy, vol. 47, no. 1, pp. 19–

24, 1993.

[43] A. C. Mosey, Psychosocial components of occupational therapy. Lippincott

Williams & Wilkins, 1986.

[44] D. J. Reinkensmeyer, C. T. Pang, J. A. Nessler, and C. C. Painter, “Web-based

telerehabilitation for the upper extremity after stroke,” IEEE transactions on

neural systems and rehabilitation engineering, vol. 10, no. 2, pp. 102–108, 2002.

[45] C. Jadhav and V. Krovi, “A low-cost framework for individualized interac-

tive telerehabilitation,” in Engineering in Medicine and Biology Society, 2004.

IEMBS’04. 26th Annual International Conference of the IEEE, vol. 2, pp. 3297–

3300, IEEE, 2004.

[46] M. Sandlund, S. McDonough, and C. Häger-Ross, “Interactive computer play

in rehabilitation of children with sensorimotor disorders: a systematic review,”

Developmental Medicine & Child Neurology, vol. 51, no. 3, pp. 173–179, 2009.

[47] D. Novak, A. Nagle, U. Keller, and R. Riener, “Increasing motivation in robot-

aided arm rehabilitation with competitive and cooperative gameplay,” Journal

of neuroengineering and rehabilitation, vol. 11, no. 1, p. 64, 2014.

[48] M. Maier, B. R. Ballester, E. Duarte, A. Duff, and P. F. Verschure, “Social inte-

gration of stroke patients through the multiplayer rehabilitation gaming system,”

in International Conference on Serious Games, pp. 100–114, Springer, 2014.

81

[49] H. I. Krebs, N. Hogan, M. L. Aisen, and B. T. Volpe, “Robot-aided neurorehabil-

itation,” IEEE transactions on rehabilitation engineering, vol. 6, no. 1, pp. 75–87,

1998.

[50] D. Djaouti, J. Alvarez, and J.-P. Jessel, “Classifying serious games: the g/p/s

model,” in Handbook of research on improving learning and motivation through

educational games: Multidisciplinary approaches, pp. 118–136, IGI Global, 2011.

[51] H. G. Hoffman, D. R. Patterson, and G. J. Carrougher, “Use of virtual reality

for adjunctive treatment of adult burn pain during physical therapy: a controlled

study,” The Clinical journal of pain, vol. 16, no. 3, pp. 244–250, 2000.

[52] H. Pardini, “VR Vaccine.” https://www.adforum.com/award-

organization/6650183/showcase/2017/ad/34544861.

[53] E. Steele, K. Grimmer, B. Thomas, B. Mulley, I. Fulton, and H. Hoffman, “Vir-

tual reality as a pediatric pain modulation technique: a case study,” Cyberpsy-

chology & Behavior, vol. 6, no. 6, pp. 633–638, 2003.

[54] P. Milgram and F. Kishino, “A taxonomy of mixed reality visual displays,” IEICE

TRANSACTIONS on Information and Systems, vol. 77, no. 12, pp. 1321–1329,

1994.

[55] A. Garcia, N. Andre, D. Bell Boucher, A. Roberts-South, M. Jog, and

M. Katchabaw, Immersive Augmented Reality for Parkinson Disease Rehabili-

tation, pp. 445–469. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014.

[56] D. Van Krevelen and R. Poelman, “A survey of augmented reality technologies,

applications and limitations,” International journal of virtual reality, vol. 9, no. 2,

p. 1, 2010.

[57] S. F. Atashzar, M. Naish, and R. V. Patel, “5 active sensorimotor augmentation in

robotics-assisted surgical systems,” in Mixed and Augmented Reality in Medicine,

pp. 61–81, CRC Press, 2018.

82

[58] “ReJoyce by rehabtronics.” https://www.blog.rehabtronics.com/rejoyce.

[59] S. Côté and S. Bouchard, “Virtual reality exposure for phobias: A critical re-

view,” Journal of CyberTherapy & Rehabilitation, vol. 1, no. 1, pp. 75–91, 2008.

[60] N. Robitaille, P. L. Jackson, L. J. Hébert, C. Mercier, L. J. Bouyer, S. Fecteau,

C. L. Richards, and B. J. McFadyen, “A virtual reality avatar interaction (vrai)

platform to assess residual executive dysfunction in active military personnel

with previous mild traumatic brain injury: proof of concept,” Disability and

Rehabilitation: Assistive Technology, vol. 12, no. 7, pp. 758–764, 2017.

[61] D. L. Jaffe, D. A. Brown, C. D. Pierson-Carey, E. L. Buckley, and H. L. Lew,

“Stepping over obstacles to improve walking in individuals with poststroke hemi-

plegia.,” Journal of Rehabilitation Research & Development, vol. 41, 2004.

[62] L. Connelly, Y. Jia, M. L. Toro, M. E. Stoykov, R. V. Kenyon, and D. G. Kam-

per, “A pneumatic glove and immersive virtual reality environment for hand

rehabilitative training after stroke,” IEEE Transactions on Neural Systems and

Rehabilitation Engineering, vol. 18, no. 5, pp. 551–559, 2010.

[63] X. Casas, G. Herrera, I. Coma, and M. Fernández, “A kinect-based augmented

reality system for individuals with autism spectrum disorders.,” in Grapp/ivapp,

pp. 440–446, 2012.

[64] M. C. Juan and J. Calatrava, “An augmented reality system for the treatment of

phobia to small animals viewed via an optical see-through hmd: comparison with

a similar system viewed via a video see-through hmd,” International Journal of

Human-Computer Interaction, vol. 27, no. 5, pp. 436–449, 2011.

[65] J. Vieira, M. Sousa, A. Arsénio, and J. Jorge, “Augmented reality for rehabil-

itation using multimodal feedback,” in Proceedings of the 3rd 2015 Workshop

on ICTs for improving Patients Rehabilitation Research Techniques, pp. 38–41,

ACM, 2015.

83

[66] M. Shaughnessy, B. M. Resnick, and R. F. Macko, “Testing a model of post-

stroke exercise behavior,” Rehabil Nurs, vol. 31, pp. 15–21, 2006.

[67] D. J. Reinkensmeyer and S. J. Housman, “”If I can’t do it once, why do it a hun-

dred times?”: Connecting volition to movement success in a virtual environment

motivates people to exercise the arm after stroke,” in 2007 Virtual Rehabilitation,

pp. 44–48, Sept 2007.

[68] “Oculus rift.” https://www.oculus.com/.

[69] “Microsoft hololens.” https://www.microsoft.com/en-ca/hololens.

[70] A. Alamri, J. Cha, and A. E. Saddik, “Ar-rehab: An augmented reality frame-

work for poststroke-patient rehabilitation,” IEEE Transactions on Instrumenta-

tion and Measurement, vol. 59, pp. 2554–2563, Oct 2010.

[71] H. Mousavi Hondori, M. Khademi, L. Dodakian, S. C. Cramer, and C. V. Lopes,

“A Spatial Augmented Reality rehab system for post-stroke hand rehabilitation,”

Stud Health Technol Inform, vol. 184, pp. 279–285, 2013.

[72] M. C. Juan and J. Calatrava, “An augmented reality system for the treatment

of phobia to small animals viewed via an optical see-through hmd: Comparison

with a similar system viewed via a video see-through hmd,” International Journal

of Human–Computer Interaction, vol. 27, no. 5, pp. 436–449, 2011.

[73] “Kinova robotics.” http://www.kinovarobotics.com/.

[74] Y. Ikeda, E. Suzuki, T. Kuramata, T. Kozaki, T. Koyama, Y. Kato, Y. Murakami,

H. Enaida, and T. Ishibashi, “Development and evaluation of a visual aid using

see-through display for patients with retinitis pigmentosa,” Japanese Journal of

Ophthalmology, vol. 59, pp. 43–47, Jan 2015.

[75] S. C. Yeh, W. Y. Hwang, T. C. Huang, W. K. Liu, Y. T. Chen, and Y. P. Hung,

“A study for the application of body sensing in assisted rehabilitation training,”

84

in 2012 International Symposium on Computer, Consumer and Control, pp. 922–

925, June 2012.

[76] FGTeam, “Rejoyce speeds up upper extremity recovery post stroke,”

2015. https://www.fitness-gaming.com/news/health-and-rehab/rejoyce-speeds-

up-upper-extremity-recovery-post-stroke.html.

[77] C. Kaminer, K. LeBras, J. McCall, T. Phan, P. Naud, M. Teodorescu, and

S. Kurniawan, “An immersive physical therapy game for stroke survivors,” in

Proceedings of the 16th International ACM SIGACCESS Conference on Com-

puters & Accessibility, ASSETS ’14, (New York, NY, USA), pp. 299–300, ACM,

2014.

[78] J. W. Burke, M. D. J. McNeill, D. K. Charles, P. J. Morrow, J. H. Crosbie, and

S. M. McDonough, “Augmented reality games for upper-limb stroke rehabilita-

tion,” in 2010 Second International Conference on Games and Virtual Worlds

for Serious Applications, pp. 75–78, March 2010.

[79] A. G. D. Correa, G. A. de Assis, M. d. Nascimento, I. Ficheman, and

R. d. D. Lopes, “Genvirtual: An augmented reality musical game for cognitive

and motor rehabilitation,” in 2007 Virtual Rehabilitation, pp. 1–6, Sept 2007.

[80] J. Trojan, M. Diers, X. Fuchs, F. Bach, R. Bekrater-Bodmann, J. Foell, S. Kamp-

ing, M. Rance, H. Maass, and H. Flor, “An augmented reality home-training sys-

tem based on the mirror training and imagery approach,” Behav Res Methods,

vol. 46, pp. 634–640, Sep 2014.

[81] S. V. Adamovich, A. S. Merians, R. Boian, M. Tremaine, G. S. Burdea, M. Recce,

and H. Poizner, “A virtual reality based exercise system for hand rehabilitation

post-stroke: transfer to function,” in The 26th Annual International Conference

of the IEEE Engineering in Medicine and Biology Society, vol. 2, pp. 4936–4939,

Sept 2004.

85

[82] V. H. Andaluz, P. J. Salazar, M. Escudero V., C. Bustamante D., M. Silva S.,

W. Quevedo, J. S. Sánchez, E. G. Espinosa, and D. Rivas, “Virtual reality inte-

gration with force feedback in upper limb rehabilitation,” in Advances in Visual

Computing, (Cham), pp. 259–268, Springer International Publishing, 2016.

[83] C. Vidrios-Serrano, I. Bonilla, F. Vigueras-Gómez, and M. Mendoza, “Devel-

opment of a haptic interface for motor rehabilitation therapy using augmented

reality,” in 2015 37th Annual International Conference of the IEEE Engineering

in Medicine and Biology Society (EMBC), pp. 1156–1159, Aug 2015.

[84] X. Luo, T. Kline, H. C. Fischer, K. A. Stubblefield, R. V. Kenyon, and D. G.

Kamper, “Integration of augmented reality and assistive devices for post-stroke

hand opening rehabilitation,” in 2005 IEEE Engineering in Medicine and Biology

27th Annual Conference, pp. 6855–6858, 2005.

[85] M. Khademi, H. M. Hondori, C. V. Lopes, L. Dodakian, and S. C. Cramer,

“Haptic augmented reality to monitor human arm’s stiffness in rehabilitation,” in

2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences, pp. 892–

895, Dec 2012.

[86] M. Khademi, H. M. Hondori, L. Dodakian, S. Cramer, and C. V. Lopes, “Com-

paring ”pick and place” task in spatial Augmented Reality versus non-immersive

Virtual Reality for rehabilitation setting,” Conf Proc IEEE Eng Med Biol Soc,

vol. 2013, pp. 4613–4616, 2013.

[87] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti, “Surround-screen projection-

based virtual reality: the design and implementation of the cave,” in Proceedings

of the 20th annual conference on Computer graphics and interactive techniques,

pp. 135–142, ACM, 1993.

86

[88] J. Westwood et al., “Caren-computer assisted rehabilitation environment,”

Medicine Meets Virtual Reality: The Convergence of Physical & Informational

Technologies: Options for a New Era in Healthcare, vol. 62, p. 373, 1999.

[89] A. Hussain, S. Balasubramanian, N. Roach, J. Klein, N. Jarrassé, M. Mace,

A. David, S. Guy, and E. Burdet, “Sitar: a system for independent task-oriented

assessment and rehabilitation,” Journal of Rehabilitation and Assistive Technolo-

gies Engineering, vol. 4, p. 2055668317729637, 2017.

[90] A. A. Rizzo, D. Strickland, and S. Bouchard, “The challenge of using virtual

reality in telerehabilitation,” Telemedicine Journal & E-Health, vol. 10, no. 2,

pp. 184–195, 2004.

[91] “Unity.” https://unity3d.com/.

[92] M. Plotnik, Y. Dagan, T. Gurevich, N. Giladi, and J. M. Hausdorff, “Effects

of cognitive function on gait and dual tasking abilities in patients with parkin-

son’s disease suffering from motor response fluctuations,” Experimental Brain

Research, vol. 208, pp. 169–179, Jan 2011.

[93] M. Lezak, D. Howieson, and D. Loring, Neuropsychological assessment. Oxford

University Press, New York, fourth ed., 2004.

[94] A. D. Wilson and H. Benko, “Combining multiple depth cameras and projectors

for interactions on, above and between surfaces,” in Proceedings of the 23Nd

Annual ACM Symposium on User Interface Software and Technology, UIST ’10,

(New York, NY, USA), pp. 273–282, ACM, 2010.

[95] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision.

Cambridge University Press, ISBN: 0521540518, second ed., 2004.

[96] “Spss statistics.” https://www.ibm.com/analytics/spss-statistics-software.

87

[97] C. A. Marshall, “An analysis of motivation as a predictor of vocational rehabili-

tation outcomes,” 1989.

[98] L. S. Williams, S. S. Ghose, and R. W. Swindle, “Depression and other mental

health diagnoses increase mortality risk after ischemic stroke,” American Journal

of Psychiatry, vol. 161, no. 6, pp. 1090–1095, 2004.

[99] A. E. F. Da Gama, T. M. Chaves, L. S. Figueiredo, A. Baltar, M. Meng, N. Navab,

V. Teichrieb, and P. Fallavollita, “Mirrarbilitation: A clinically-related gesture

recognition interactive tool for an ar rehabilitation system,” Computer methods

and programs in biomedicine, vol. 135, pp. 105–114, 2016.

[100] J. Broeren, K. S. Sunnerhagen, and M. Rydmark, “Haptic virtual rehabilitation

in stroke: transferring research into clinical practice,” Physical Therapy Reviews,

vol. 14, no. 5, pp. 322–335, 2009.

[101] M. A. Murphy, H. C. Persson, A. Danielsson, J. Broeren, Å. Lundgren-Nilsson,

and K. S. Sunnerhagen, “Salgot-s troke a rm l ongitudinal study at the university

of got henburg, prospective cohort study protocol,” BMC neurology, vol. 11, no. 1,

p. 56, 2011.

[102] D. Swapp, V. Pawar, and C. Loscos, “Interaction with co-located haptic feedback

in virtual reality,” Virtual Reality, vol. 10, pp. 24–30, May 2006.

[103] Y. S. Tanagho, G. L. Andriole, A. G. Paradis, K. M. Madison, G. S. Sandhu, J. E.

Varela, and B. M. Benway, “2d versus 3d visualization: impact on laparoscopic

proficiency using the fundamentals of laparoscopic surgery skill set,” Journal of

Laparoendoscopic & Advanced Surgical Techniques, vol. 22, no. 9, pp. 865–870,

2012.

[104] P. Storz, G. F. Buess, W. Kunert, and A. Kirschniak, “3d hd versus 2d hd: sur-

gical task efficiency in standardised phantom tasks,” Surgical endoscopy, vol. 26,

no. 5, pp. 1454–1460, 2012.

88

[105] H. Benko, R. Jota, and A. Wilson, “Miragetable: freehand interaction on a

projected augmented reality tabletop,” in Proceedings of the SIGCHI conference

on human factors in computing systems, pp. 199–208, ACM, 2012.

[106] B. Jones, R. Sodhi, M. Murdock, R. Mehra, H. Benko, A. Wilson, E. Ofek,

B. MacIntyre, N. Raghuvanshi, and L. Shapira, “Roomalive: Magical experiences

enabled by scalable, adaptive projector-camera units,” in Proceedings of the 27th

Annual ACM Symposium on User Interface Software and Technology, UIST ’14,

(New York, NY, USA), pp. 637–644, ACM, 2014.

[107] R. Raskar, J. Van Baar, T. Willwacher, and S. Rao, “Quadric transfer for immer-

sive curved screen displays,” in Computer Graphics Forum, vol. 23, pp. 451–460,

Wiley Online Library, 2004.

[108] F. J. Massey Jr, “The kolmogorov-smirnov test for goodness of fit,” Journal of

the American statistical Association, vol. 46, no. 253, pp. 68–78, 1951.

[109] E. R. Girden, ANOVA: Repeated measures. No. 84, Sage, 1992.

[110] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practi-

cal and powerful approach to multiple testing,” Journal of the royal statistical

society. Series B (Methodological), pp. 289–300, 1995.

[111] D. P. Gross and M. F. Reneman, Functional Capacity Evaluation, pp. 1–4. New

York, NY: Springer New York, 2017.

[112] “Functional Capacity Evaluation.” https://www.aota.org/About-Occupational-

Therapy/Professionals/WI/Capacity-Eval.aspx.

[113] “BTE EvalTech.” https://www.btetech.com/product/evaltech/.

[114] “Ergos II Work Simulator.”

http://www.simwork.com/Products/ErgosIIWorkSimulator.aspx.

89

[115] D. Peppers et al., “Influence of functional capacity evaluation on physician’s

assessment of physical capacity of veterans with chronic pain: a retrospective

analysis,” PM&R, vol. 9, no. 7, pp. 652–659, 2017.

[116] D. P. Gross et al., “A cluster randomized clinical trial comparing functional

capacity evaluation and functional interviewing as components of occupational

rehabilitation programs,” Journal of occupational rehabilitation, vol. 24, no. 4,

pp. 617–630, 2014.

[117] D. P. Gross, M. C. Battié, and J. D. Cassidy, “The prognostic value of functional

capacity evaluation in patients with chronic low back pain: part 1: timely return

to work,” Spine, vol. 29, no. 8, pp. 914–919, 2004.

[118] F. Schaafsma et al., “Physical conditioning programs for improving work out-

comes in workers with back pain,” Cochrane Database Syst Rev, vol. 1, 2010.

[119] C. James, M. Reneman, and D. Gross, “Functional capacity evaluation research:

Report from the second international functional capacity evaluation research

meeting,” Journal of occupational rehabilitation, vol. 26, no. 1, pp. 80–83, 2016.

[120] F. Yakub, A. Z. M. Khudzari, and Y. Mori, “Recent trends for practical reha-

bilitation robotics, current challenges and the future,” International Journal of

Rehabilitation Research, vol. 37, no. 1, pp. 9–21, 2014.

[121] B. Taylor, M. E. Cupo, and S. J. Sheredos, “Workstation robotics: a pilot study

of a desktop vocational assistant robot,” American Journal of Occupational Ther-

apy, vol. 47, no. 11, pp. 1009–1013, 1993.

[122] J. L. Schuyler and R. M. Mahoney, “Assessing human-robotic performance for

vocational placement,” IEEE Transactions on Rehabilitation Engineering, vol. 8,

no. 3, pp. 394–404, 2000.

90

[123] H. M. Van der Loos, D. J. Reinkensmeyer, and E. Guglielmelli, “Rehabilita-

tion and health care robotics,” in Springer handbook of robotics, pp. 1685–1728,

Springer, 2016.

[124] “BTE Eccentron.” https://www.btetech.com/product/eccentron/.

[125] R. Ocampo and M. Tavakoli, “Improving user performance in haptics-based re-

habilitation exercises by colocation of user’s visual and motor axes via a three-

dimensional augmented-reality display,” IEEE Robotics and Automation Letters,

vol. 4, no. 2, pp. 438–444, 2019.

[126] J. Fong and M. Tavakoli, “Kinesthetic teaching of a therapist’s behavior to a reha-

bilitation robot,” in 2018 International Symposium on Medical Robotics (ISMR),

pp. 1–6, March 2018.

[127] C. Mart́ınez and M. Tavakoli, “Learning and robotic imitation of therapist’s

motion and force for post-disability rehabilitation,” in Systems, Man, and Cy-

bernetics (SMC), 2017 IEEE International Conference on, pp. 2225–2230, IEEE,

2017.

[128] N. Hogan and S. P. Buerger, “Impedance and interaction control,” in Robotics

and automation handbook (T. R. Kurfess, ed.), ch. 19, CRC press, 2004.

[129] F. Dimeas and N. Aspragathos, “Online stability in human-robot cooperation

with admittance control,” IEEE Transactions on Haptics, vol. 9, pp. 267–278,

April 2016.

[130] R. Tao, “Haptic teleoperation based rehabilitation systems for task-oriented ther-

apy,” Master’s thesis, University of Alberta, 2015.

[131] J. J. Abbott, P. Marayong, and A. M. Okamura, “Haptic virtual fixtures for

robot-assisted manipulation,” in Robotics research, pp. 49–64, Springer, 2007.

91

[132] G. Fasano and A. Franceschini, “A multidimensional version of the kolmogorov–

smirnov test,” Monthly Notices of the Royal Astronomical Society, vol. 225, no. 1,

pp. 155–170, 1987.

[133] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, “Numerical

recipes in c,” Cambridge University Press, vol. 1, p. 3, 1988.

[134] “Ink Painter.” https://assetstore.unity.com/packages/tools/particles-

effects/ink-painter-86210.

92

Appendix A

2D AR System Development in

Unity

A.1 Overview of the System

The setup uses two main computers, each one handles a certain area of the system.

The rehabilitation robot is connected to the Quanser computer and is controlled by

Matlab/Simulink software. The game environment is developed in the Unity computer

using the Unity Game Engine and uses the projector to display the game to the user.

The process for moving the circular avatar in Unity is as follows: the user moves the

end-effector of the rehabilitation robot in which its position data is captured by the

Matlab/Simulink software and sent to Unity. A calibration script in Unity converts

the robot position coordinates to screen coordinates to display it properly using the

projector. When the circular avatar collides with the car in the game environment,

the collision information (normal vector of the contact point) is sent by Unity to the

Matlab/Simulink computer to move the rehabilitation robot for force feedback.

93

Quanser Computer

Unity Computer

Rehabilitation Robot

End-E�ector

Movement

Collision

End-E�ector

Position

Collision End-E�ector

Position

Visual FeedbackVideo Output

Projector

User

Force Feedback

Figure A.1: The overall process of how each individual system interacts with each other for
the 2D AR system.

Main Menu

Settings Calibration

Game

Figure A.2: The flowchart of how to navigate the graphical user interface for the 2D AR
game. Top Left: Main menu. Top Right: Game. Bottom Left: Settings. Bottom Right:
Calibration

94

A.2 Layout of the Game User Interface

Main Menu

Three options are given in the main menu: Play, Settings, and Quit. Play brings the

user to the main task of the game. Settings leads to the settings screen that allows

for customization of the game. Quit exits the game.

Settings

There are eight customizable options found in settings. Randomize Loop per Lap

produces a random circular trajectory for the car to travel on each time the car finishes

a lap. Clockwise Movement toggles either clockwise movement of the car along the

trajectory when checked or counter-clockwise when unchecked. Offset adds a set

offset to the circular object that collides with the car. This is intended to prevent the

shadow during the 2D AR game from blocking the circle to let the users see direct

contact between the circle and the car. Show Line shows a percentage (given by the

slider beside the option) of the total length of the spline the car travels on. This is

shown in front of the car to inform the user where to go. IP connection lets the user

connect to the IP where the rehabilitation robot is located or localhost (127.0.0.1) for

testing purposes. Force Feedback toggles the haptic feedback received from colliding

with the car. Evaluation type can be changed to two options: Fixed Length or Fixed

Time. This sets the limit of how far can travel, or how long the game runs before

timing out. The specific value can be changed in following box below it labeled Set

Length (changes to Set Time when evaluation type is set to fixed time). Calibrate

brings the user to the calibration screen and Back returns them to the main menu.

Calibration

The calibration screen is where the calibration is done to align the movements of the

rehabilitation robot with the movement of the circle the user controls on the screen. The

95

user leads the end-effector to the crosshair shown on the screen and presses spacebar

to record the point. This is done thrice more to get a total of four points required

for calibration. This is also where the users can practice moving the car around by

colliding with it.

Game

The game screen contains the actual game itself where the user pushes the car along

the invisible track within the specified time limit or distance. Reset restarts the screen

and returns the car back to its starting position. Calibrate returns the user to the

calibration screen if any adjustments are needed.

A.3 C# code for the 2D AR System

While Unity is the game development engine used to create the game environment, the

scripts attached to the objects were written in C#. This section presents the main C#

codes used for the 2D AR System and a brief explanation of what each script does.

For certain scripts, only excerpts of the code are displayed to minimize the length and

improve readability. Areas of code that are removed are denoted by an ellipsis.

A.3.1 C# code for the Calibration Scene

The calibration scene allows the projector and the movement of the rehabilitation robot

to match in both axes and scale. This code is based on the equations found in Chapter

3.

The steps to find the homography transformation are:

1. The user presses space on the displayed crosshair and the Update() function

stores the robot position and screen position of that point (done for 4 points in total).

2. Calibrate() function is run. It uses the CreateCorrespondencePointsForH() func-

tion to build a 2 x 9 matrix for each set of robot-screen point based on Equation 3.11

96

and 3.12. The matrices are then combined to form an 8 x 9 matrix in which SVD is

performed onto to find H.

Script: Calibration

public class Calibration : MonoBehaviour

{

public static Calibration instance; // Allows easy access from other scripts.

public GameObject calibrationCrosshair;

public GameObject doneText;

public GameObject instructionsText;

public GameObject characterObject;

private int spacePressed = 0;

private GrabScript characterScript;

private Vector3 aR, bR, cR, dR; // Robot positions

private Vector3 aS, bS, cS, dS; // Screen positions

private Vector2 firstPos = new Vector2(-7, -2); // Positions the crosshair will move to

private Vector2 secondPos = new Vector2(-7, 2);

private Vector2 thirdPos = new Vector2(7, 2);

private Vector2 fourthPos = new Vector2(7, -2);

private Vector2 offset = new Vector3(0f, 2.2f); // Offset to lower the crosshairs when handle

offset is turned on

private void Start()

{

// Initializes the positions of the crosshairs

firstPos = (GameControl.instance.handleToggle) ? firstPos + offset : firstPos;

secondPos = (GameControl.instance.handleToggle) ? secondPos + offset : secondPos;

thirdPos = (GameControl.instance.handleToggle) ? thirdPos + offset : thirdPos;

fourthPos = (GameControl.instance.handleToggle) ? fourthPos + offset : fourthPos;

calibrationCrosshair.transform.position = firstPos;

characterScript = characterObject.GetComponent<GrabScript>();

}

// Update is called once per frame

void Update()

{

if (Input.GetKeyDown("space"))

{

spacePressed++;

switch (spacePressed)

{ // Captures the 4 points needed for calibration

case 1:

aR = new Vector3(MatlabServer.instance.xMove, MatlabServer.instance.yMove, 0); //

Record 1st robot pos

aS = new Vector3(calibrationCrosshair.transform.position.x,

calibrationCrosshair.transform.position.y, 0); // Record 1st screen pos

calibrationCrosshair.transform.position = secondPos; // Move crosshair to 2nd pos

instructionsText.SetActive(false); // Turn off instructions

break;

case 2:

bR = new Vector3(MatlabServer.instance.xMove, MatlabServer.instance.yMove, 0); //

Record 2nd robot pos

bS = new Vector3(calibrationCrosshair.transform.position.x,

calibrationCrosshair.transform.position.y, 0); // Record 2nd screen pos

calibrationCrosshair.transform.position = thirdPos; // Move crosshair to 3rd pos

break;

case 3:

97

cR = new Vector3(MatlabServer.instance.xMove, MatlabServer.instance.yMove, 0); //

Record 3rd robot pos

cS = new Vector3(calibrationCrosshair.transform.position.x,

calibrationCrosshair.transform.position.y, 0); // Record 3rd screen pos

calibrationCrosshair.transform.position = fourthPos; // Move crosshair to 4th pos

break;

case 4:

dR = new Vector3(MatlabServer.instance.xMove, MatlabServer.instance.yMove, 0); //

Record 4th robot pos

dS = new Vector3(calibrationCrosshair.transform.position.x,

calibrationCrosshair.transform.position.y, 0); // Record 4th screen pos

calibrationCrosshair.SetActive(false);

Calibrate();

characterScript.Calibrate(); // Run the calibration function

doneText.SetActive(true);

break;

default:

// Do nothing

break;

}

}

}

public void Recalibrate() // Reinitialize the calibration to redo the process

{

calibrationCrosshair.SetActive(true);

doneText.SetActive(false);

instructionsText.SetActive(true);

spacePressed = 0;

calibrationCrosshair.transform.position = new Vector3(-4f, -2f, 0);

}

private void Calibrate()

{

// Homography DLT method

// Each matrix is 2 x 9

Matrix<float> point1 = Matrix<float>.Build.DenseOfArray(CreateCorrespondencePointsForH(aR, aS));

Matrix<float> point2 = Matrix<float>.Build.DenseOfArray(CreateCorrespondencePointsForH(bR, bS));

Matrix<float> point3 = Matrix<float>.Build.DenseOfArray(CreateCorrespondencePointsForH(cR, cS));

Matrix<float> point4 = Matrix<float>.Build.DenseOfArray(CreateCorrespondencePointsForH(dR, dS));

// Build 8 x 9 matrix

Matrix<float> combinedPoints = point1.Stack(point2).Stack(point3).Stack(point4);

Svd<float> svd = combinedPoints.Svd(); // Perform SVD on the matrix

Matrix<float> Vmatrix = -svd.VT.Transpose(); // Transpose V matrix

// H is the last column of V

float[,] Hmatrix = { { Vmatrix[0, 8], Vmatrix[1, 8], Vmatrix[2, 8] },

{ Vmatrix[3, 8], Vmatrix[4, 8], Vmatrix[5, 8]},

{ Vmatrix[6, 8], Vmatrix[7, 8], Vmatrix[8, 8]} };

// Save the Hmatrix so the game scene can reference it

PlayerPrefs.SetFloat("T11", Vmatrix[0, 8]);

PlayerPrefs.SetFloat("T12", Vmatrix[1, 8]);

PlayerPrefs.SetFloat("T13", Vmatrix[2, 8]);

PlayerPrefs.SetFloat("T21", Vmatrix[3, 8]);

PlayerPrefs.SetFloat("T22", Vmatrix[4, 8]);

PlayerPrefs.SetFloat("T23", Vmatrix[5, 8]);

PlayerPrefs.SetFloat("T31", Vmatrix[6, 8]);

PlayerPrefs.SetFloat("T32", Vmatrix[7, 8]);

PlayerPrefs.SetFloat("T33", Vmatrix[8, 8]);

}

private float[,] CreateCorrespondencePointsForH(Vector3 robotPoint, Vector3 screenPoint)

{

98

// Function to create a 2 x 9 matrix from each set of robot-screen point

float[,] pointHomography = { {-robotPoint.x, -robotPoint.y, -1, 0, 0, 0,

robotPoint.x*screenPoint.x, robotPoint.y*screenPoint.x, screenPoint.x },

{0, 0, 0, -robotPoint.x, -robotPoint.y, -1,

robotPoint.x*screenPoint.y, robotPoint.y*screenPoint.y,

screenPoint.y} };

return pointHomography;

}

}

A.3.2 C# code for the Game Scene

The game scene is the environment where the user does the task of pushing the car

along a track. It is comprised of five main scripts:

- GameControl: Oversees all aspects of the game

- MatlabServer: Connects the game to Simulink in the Quanser Computer

- BezierSpline: Creates the Bezier spline track

- SplineForce: Handles all car movement and interactions

- GrabScript: Handles all circular avatar movement and interactions

These scripts are described more in detail below.

Script: Game Control

The Game Control script handles the overall flow of the game. It grabs the settings

chosen by the user from the settings screen and is referenced by all the other scripts.

The timer, red blinker, and data collection are taken care of by the Game Control

script along with starting and ending the game.

public class GameControl : MonoBehaviour

{

//Main script that oversees all aspects of the game

public static GameControl instance; // Allows easy access from other scripts. They just have to do

GameControl.instance.something

...

// Use this for initialization

void Awake() // Initialize Settings variables

{ //Always called before start() functions

//Makes sure that there is only one instance of GameControl (singleton)

if (instance == null) //If no game control found

99

{

instance = this; //Then this is the instance of the game control

sceneIndex = (SceneName)SceneManager.GetActiveScene().buildIndex;

isRehab = PlayerPrefs.GetInt("RehabToggle", 0) == 1 ? true : false;

randomize = PlayerPrefs.GetInt("RandomizeToggle", 1) == 1 ? true : false;

forceFeedback = PlayerPrefs.GetInt("ForceToggle", 1) == 1 ? true : false;

isCW = PlayerPrefs.GetInt("DirectionToggle", 1) == 1 ? true : false;

handleToggle = PlayerPrefs.GetInt("HandleToggle", 1) == 1 ? true : false;

evalType = PlayerPrefs.GetInt("EvalType", 0);

DetermineCharacter();

goal = (evalType == 0) ? PlayerPrefs.GetFloat("Length", 40f) : PlayerPrefs.GetFloat("Time",

30f);

if (sceneIndex == SceneName.Main) calibrateButton.SetActive(isRehab); //If main game, turn

on blinker

blinkerTime = blinkTimerOn;

}

else if (instance != this) //If the game object finds that instance is already on another game

object, then this destroys itself as it’s not needed

{

Destroy(gameObject);

}

}

private void Start()

{

if (isRehab && MatlabServer.instance.serverRunning == false)

{

MatlabServer.instance.StartThread();

}

carScript = car.GetComponent<SplineForce>();

}

// Update is called once per frame

void Update()

{

if (sceneIndex == SceneName.Main && !gameOver)

{

if (!gameStart) //During countdown

{

timeLeft -= Time.deltaTime;

viewedTime = timeLeft - 1;

if (viewedTime < -1) //Start of game

{

gameStart = true;

countdownText.enabled = false;

SaveToExcel.instance.parameters.Add(forceFeedback ? 1:0);

}

else if (viewedTime > 0.5)

{

countdownText.text = viewedTime.ToString("F0");

}

else

{

countdownText.text = "GO!";

}

}

else //When game starts

{

blinkerTime -= Time.deltaTime; //For blinker

if (blinkerTime < 0 && blinker.enabled)

{

blinker.enabled = false;

blinkerTime = blinkTimerOff;

}

100

else if (blinkerTime < 0 && !blinker.enabled)

{

blinker.enabled = true;

blinkerTime = blinkTimerOn;

}

timeElapsed += Time.deltaTime; //For time score

SaveToExcel.instance.timeElapsed.Add(timeElapsed);

SaveToExcel.instance.characterPositionX.Add(characterController.transform.position.x);

SaveToExcel.instance.characterPositionY.Add(characterController.transform.position.y);

SaveToExcel.instance.carPositionX.Add(car.transform.position.x);

SaveToExcel.instance.carPositionY.Add(car.transform.position.y);

SaveToExcel.instance.lap.Add(car.GetComponent<SplineForce>().GetLap);

timeText.text = "Time \n" + timeElapsed.ToString("F1");

}

CheckGameEnd();

}

}

public void Restart()

{

if (isRehab)

{

MatlabServer.instance.StopThread();

}

SceneManager.LoadScene(SceneManager.GetActiveScene().buildIndex); //Reload current scene to

restart

}

public void Calibrate()

{

if (GameControl.instance.isRehab)

{

MatlabServer.instance.StopThread();

}

SceneManager.LoadScene("Calibrate"); //Load scene

}

private void CheckGameEnd()

{

if (evalType == 0) //Length

{

if (carScript.GetScore >= goal)

{

GameOver();

}

}

else if (evalType == 1) //Time

{

if (timeElapsed >= goal)

{

GameOver();

}

}

else

{

//Do nothing

}

}

private void GameOver() // Function to put the game in GameOver state

{

gameOver = true;

gameStart = false;

carScript.SetCurrentPosition(carScript.GetCurrentPosition); //Stop it at current position

car.GetComponent<Rigidbody2D>().velocity = Vector2.zero; //Remove any velocity

gameOverText.enabled = true;

101

}

private void DetermineCharacter() // Used if the "Handle Offset" in Settings is turned on

{

if (handleToggle)

{

handleOffset.SetActive(true);

characterController.SetActive(false);

}

else

{

handleOffset.SetActive(false);

characterController.SetActive(true);

}

}

}

Script: Matlab Server

Matlab Server is the main communication script that allows the Rehab robot and Unity

to share information with each other. The Rehab robot sends Unity the position data

of the end-effector, and Unity sends back collision information.

public class MatlabServer : MonoBehaviour {

//This code connects the unity program with matlab to acquire end-effector data

public static MatlabServer instance;

public float xMove, yMove = 0;

public float xForce, yForce = 0;

public float collisionStatus = 0;

public float forceFeedback = 0;

[ReadOnly] public bool serverRunning = false;

[ReadOnly] public string ipAddress = "127.0.0.1"; //This comp: ***.***.**.**, Localhost: 127.0.0.1

[ReadOnly] public int port = 9000;

private Thread thread;

private Socket newsock;

private bool stop = false;

// Use this for initialization

void Awake()

{ //Always called before start() functions

//Makes sure that there is only one instance of Matlab Server (singleton)

if (instance == null) //If no game control found

{

instance = this; //Then this is the instance of the game control

}

else if (instance != this) //If the game object finds that instance is already on another game

object, then this destroys itself as it’s not needed

{

Destroy(gameObject);

}

ipAddress = PlayerPrefs.GetString("IPAddress", "127.0.0.1");

forceFeedback = (float)PlayerPrefs.GetInt("ForceToggle", 1);

}

102

void OnApplicationQuit()

{

if (GameControl.instance.isRehab)

{

Debug.Log("Quit~!");

thread.Abort();

newsock.Close();

}

}

public void StartThread()

{

thread = new Thread(new ThreadStart(ThreadMethod));

thread.Start();

}

public void StopThread()

{

if (serverRunning)

{

stop = true;

}

else

{

thread.Abort();

}

newsock.Close();

}

private void ThreadMethod()

{

int recv;

byte[] dataRecv = new byte[16]; //Data Received from Simulink

byte[] dataSend = new byte[32]; //Send Collision Status, X, Y

IEnumerable<byte> dataSendLINQ = new byte[32]; //Initialize LINQ for easy concatenation later

for sending

//Create IP End point, where I want to connect (Local IP/Port)

IPEndPoint ipep = new IPEndPoint(IPAddress.Parse(ipAddress), port);

//Create UDP Socket

newsock = new Socket(AddressFamily.InterNetwork, SocketType.Dgram, ProtocolType.Udp);

//Bind to ip. Server waits for a client at specified ip & port.

try

{

newsock.Bind(ipep);

}

catch (Exception e)

{

Debug.Log("Winsock Error: " + e.ToString());

}

Debug.Log("Connecting to IP: "+ ipAddress + " Port: "+ port +" Waiting for a client...");

//Get IP of client

IPEndPoint sender = new IPEndPoint(IPAddress.Any, 0);

EndPoint Remote = (EndPoint)(sender);

//Receive binary Data from client

recv = newsock.ReceiveFrom(dataRecv, ref Remote);

//Decode data and display

Debug.Log("Message received from " + Remote.ToString());

serverRunning = true;

while (true)

{

//Receive X Y positions

103

dataRecv = new byte[16];

recv = newsock.ReceiveFrom(dataRecv, ref Remote);

//Convert Bytes into Doubles (This gets referenced by mainPlayer.cs to move the character)

X/Y Position

xMove = (float)BitConverter.ToDouble(dataRecv, 0); //x

yMove = (float)BitConverter.ToDouble(dataRecv, 8); //y

//Concatenate Collision Status, ForceFeedbackStatus, xForce, yForce.

dataSendLINQ = (BitConverter.GetBytes((double)collisionStatus))

.Concat(BitConverter.GetBytes((double)forceFeedback))

.Concat(BitConverter.GetBytes((double)xForce))

.Concat(BitConverter.GetBytes((double)yForce));

dataSend = dataSendLINQ.ToArray(); //Convert to byte Array from IEnumerable byte Array

//Send Info to Simulink

newsock.SendTo(dataSend, dataSend.Length, SocketFlags.None, Remote);

if (stop)

{

break;

}

}

Debug.Log("Exiting Thread...");

}

}

Script: Bezier Spline

This script handles the creation of the Bezier spline that is used for the track that the

car is restrained to. The actual code for creating the Bezier spline is excluded from the

script to minimize the length, however, it can be found in the link in the commented

part. Below are the functions written to snap the car onto the spline. The function

divides the whole path into multiple steps and iterates through each step to find the

closest point. It then cuts a segment around the point in which it then subdivides the

interval into multiple steps once more to find the closest point. This happens five times

in total.

public class BezierSpline : MonoBehaviour {

// This script is the basis for creating a bezier spline for the car’s track.

// Code here is based upon work by: https://catlikecoding.com/unity/tutorials/curves-and-splines/

...

// The following functions are added to snap the car onto the closest point on the spline

public float ClosestBezierTime(Vector3 point) // Returns t of bezier where point in worldspace is

closest to (multiple iterations)

{

float t = BestFitTime(point, 0, 1, 100);

float delta = 1.0f / 10.0f;

for (int i = 0; i < 4; i++)

104

{

t = BestFitTime(point, t - delta, t + delta, 100);

delta /= 10;

}

return t;

}

public float BestFitTime(Vector3 point, float start, float end, int steps) //Calculate best fit

time in given interval

{

start = Mathf.Clamp01(start);

end = Mathf.Clamp01(end);

float step = (end - start) / (float)steps;

float Res = 0;

float Ref = float.MaxValue; // Will be replaced by distance of bezier(t) to point

for (int i = 0; i < steps; i++)

{

float t = start + step * i;

float L = (GetPoint(t) - point).sqrMagnitude;

if (L < Ref)

{

Ref = L;

Res = t;

}

}

return Res;

}

public Vector3 ClosestBezierPoint(Vector3 point)

{

return GetPoint(ClosestBezierTime(point));

}

public Vector3 OnLine(Vector3 point) // If on line, return 0, else return point closest to line

{

Vector3 closestPoint = ClosestBezierPoint(point);

if (closestPoint == point)

{

return Vector3.zero;

}

return closestPoint;

}

public Vector3 GetPoint(float t) { // Gets point in total spline corresponding to [0,1]

int i;

if (t >= 1f) {

t = 1f;

i = points.Length - 4;

}

else {

t = Mathf.Clamp01(t) * CurveCount;

i = (int)t;

t -= i;

i *= 3;

}

return transform.TransformPoint(Bezier.GetPoint(points[i], points[i + 1], points[i + 2],

points[i + 3], t));

}

public float SplineLength() // Returns spline total length

{

float length = 0;

float start = 0;

float steps = 100f; // Amount of times we’ll divide the spline

for (float i = 1f; i <= steps; i++)

105

{

length += (GetPoint(i / steps) - GetPoint(start)).magnitude;

start = i / steps;

}

return length;

}

public float CurrentLength(float t) //Returns current length travelled through spline from start

{

float length = 0 , start = 0 , next = 0;

float end = t;

float steps = 100f; // Amount of times we’ll divide the spline

float step = end / steps;

for (float i = 1f; i <= steps; i++)

{

next = step * i;

length += (GetPoint(next) - GetPoint(start)).magnitude;

start = next;

}

return length;

}

Script: Spline Force

This script handles everything that involves the movement of the car such as collisions

with the end-effector, progress of the car along the track, and proper car rotation. It

also uses the Bezier Spline script discussed previously to restrain the car on the track.

public class SplineForce : MonoBehaviour

{

//This script handles the collisions experienced by the car and ensures it stays on the track

//Also keeps track of how far the car is in the track

...

private void Start()

{

spline = (GameControl.instance.isCW) ? splineCW : splineCCW; // CW or CCW movement

rb2d = GetComponent<Rigidbody2D>(); // Get rigidbody of car

rb2d.velocity = Vector2.zero; // Set velocity to 0

transform.localPosition = spline.GetPoint(0); // Move car to start of spline

currentPosition = transform.localPosition; // Save current position

randomizerScript = spline.GetComponent<SplineRandomizer>(); // Randomize spline shape

}

private void Update() // Uses the functions listed below to update the car frame by frame

{

// Move method

if (!GameControl.instance.gameStart || GameControl.instance.gameOver || goingBackwards)

{ // Prevents car from moving during countdown or gameover

transform.localPosition = currentPosition; // Locks car in current position

}

else

{

MoveBySnappingToCurve(); // Runs function to snap to curve

106

}

UpdateScore(); // Runs function to update score

CarRotation(); // Runs function to rotate car to the right orientation

}

private void OnCollisionEnter2D(Collision2D collision) // During collision with end-effector

{

Vector3 contactNormal = collision.contacts[0].normal.normalized; // Gives unit vector direction

normal to point of contact

float dotProduct = Vector3.Dot(contactNormal, spline.GetDirection(progress));

if (!goingBackwards) // Prevents movement of car backwards

{

currentPosition = transform.localPosition;

}

goingBackwards = (dotProduct < 0) ? true : false;

}

private void CarRotation() // Used to make sure sprite is looking at the right direction

{

Vector3 diff = spline.GetDirection(progress); // Get direction based on progress

float rot_z = Mathf.Atan2(diff.y, diff.x) * Mathf.Rad2Deg;

transform.rotation = Quaternion.Euler(0f, 0f, rot_z);

}

private void MoveBySnappingToCurve() // Restricts the car to spline

{

progress = spline.ClosestBezierTime(transform.position); // Finds at what point t [0,1] the car

is at

Vector3 position = spline.GetPoint(progress); // Finds the location on the spline t is

if ((prevProgress - progress) > 0.9 && mode == SplineWalkerMode.Loop) //If there’s a big jump

in progress (going from current loop to the next)

{

lap++;

lengthSum += spline.SplineLength(); //total length

if (GameControl.instance.randomize) // Randomize spline after each lap

{

randomizerScript.Randomize(true);

}

}

if (position != transform.position) //If the position is not equal to current position, move to

position

{

transform.localPosition = position;

prevProgress = progress;

}

}

private void UpdateScore() // Updates total distance traveled

{

score = lengthSum + spline.CurrentLength(progress);

scoreText.text = " Score \n" + score.ToString("F2");

}

}

Script: Grab Script

This script handles the movement of the circular avatar. The calibration parameters

saved by the Calibrate script are referenced and used to convert the robot coordinates

107

to screen coordinates. Force feedback due to collision with the car is also sent to the

end-effector for the user to feel.

public class GrabScript : MonoBehaviour {

//Moves the circular avatar to the position of the end-effector

...

private void Start()

{

Calibrate(); // Get saved calibration data

carRb2d = car.GetComponent<Rigidbody2D>(); // Get rigidbody of car

forceFeedback = GameControl.instance.forceFeedback; // If haptics ON in settings

characterTransform = (GameControl.instance.handleToggle) ? transform.parent.transform :

transform; //Get parent transform if handle offset is on. If not, get object transform

}

public void Calibrate() //Initialize position from saved calibration matrix

{

try

{

T11 = PlayerPrefs.GetFloat("T11");

T12 = PlayerPrefs.GetFloat("T12");

T13 = PlayerPrefs.GetFloat("T13");

T21 = PlayerPrefs.GetFloat("T21");

T22 = PlayerPrefs.GetFloat("T22");

T23 = PlayerPrefs.GetFloat("T23");

T31 = PlayerPrefs.GetFloat("T31");

T32 = PlayerPrefs.GetFloat("T32");

T33 = PlayerPrefs.GetFloat("T33");

}

catch

{

Debug.Log("Please Calibrate");

}

}

// Update is called once per frame

void FixedUpdate ()

{

...

characterTransform.position = CalibratedMovement();

...

}

private void OnCollisionEnter2D(Collision2D collision)

{

//Gives unit vector direction normal to point of contact

Vector3 contactNormal = collision.contacts[0].normal.normalized;

//Forces experienced by player from contact

xForce = contactNormal.x * carRb2d.mass;

yForce = contactNormal.y * carRb2d.mass;

}

private void OnCollisionStay2D(Collision2D collision) // While in contact with ball

{

//Gives unit vector direction normal to point of contact

Vector3 contactNormal = collision.contacts[0].normal.normalized;

if (forceFeedback) // If haptics is ON

108

{

//Forces experienced by player from contact

xForce = contactNormal.x * carRb2d.mass;

yForce = contactNormal.y * carRb2d.mass;

}

else // Haptics is OFF

{

xForce = 0;

yForce = 0;

}

MatlabServer.instance.collisionStatus = 1f;

MatlabServer.instance.xForce = xForce;

MatlabServer.instance.yForce = yForce;

}

private void OnCollisionExit2D(Collision2D collision)

{

// Reset forces to 0 after exiting collision

xForce = 0;

yForce = 0;

MatlabServer.instance.collisionStatus = 0f;

MatlabServer.instance.xForce = xForce;

MatlabServer.instance.yForce = yForce;

}

public Vector3 CalibratedMovement() // Converts Robot points to Screen points

{

// Ps = T*Pr

float xS = MatlabServer.instance.xMove * T11 + MatlabServer.instance.yMove * T12;

float yS = MatlabServer.instance.xMove * T21 + MatlabServer.instance.yMove * T22;

float lambda = MatlabServer.instance.xMove * T31 + MatlabServer.instance.yMove * T32 + T33;

return new Vector3(xS/lambda, yS/lambda, 0f);

}

}

109

Appendix B

3D AR System Development in

Unity

B.1 Layout Overview of Game

The system is comprised of two main areas: the Quanser computer, and the Unity com-

puter. The Quanser computer controls the HD2 Robot using MATLAB and Simulink.

It receives information from the HD2 about the end-effector’s position and orientation.

The Unity Computer houses the game developed using the Unity Game Engine and

C#, utilizes the Kinect for head-tracking, and displays the game to the user through

the projector. The system is split into two areas to decrease the load on each com-

puter and instead, the two computers communicate through a User Datagram Protocol

(UDP) connection.

The user’s movement of the end-effector of the HD2 is captured by Simulink and

then sent to the Unity computer. This information is used to move the user’s cursor

(e.g. small sphere/hoop/ball depending on the task) in the 3D environment. The

projector displays the game in front of the user. The position of the user’s head is

taken by the Kinect to adjust the user’s point of view in the 3D environment to display

the correct perspective. Compared to the 2D system, the user is required to use the

110

Quanser Computer

Unity Computer

Force Feedback

End-E�ector

Movement

Collision

End-E�ector

Position

Collision End-E�ector

Position

Visual Feedback

Kinect

Head PositionUnity Camera

Movement

Projector

Video Output

User

Figure B.1: The overall process of how each individual system interacts with each other for
the 3D AR system.

DLP Link 3D shutter glasses to properly see 3D. Collisions in the game are detected

by Unity and sent to the Quanser computer to give the user haptic feedback. Since the

virtual objects (e.g. balls that bounce off the hoop) have no actual mass, the feedback

is tuned by trial-and-error.

B.2 C# Code for the Three Tasks

The scripts used for this work are mainly derived from the codes used in Chapter

3, namely, GameControl, MatlabServer, and GrabScript. Since minor changes

were done to integrate these scripts into this 3D system, they will not be described.

This system does not have a graphical user interface. The settings were configured by

changing the values in a text file for the application to read at start-up. In order to

improve readability and decrease the amount of code, only the code for the snapping

task will be shown. These codes aim to show the general idea behind the development

of the other tasks in which there are spawner scripts to instantiate the holes and the

111

spheres and the object scripts that attach directly to the instantiated holes and spheres

that handle the interaction with the end-effector.

B.2.1 Code for Snapping

The main codes in the snapping task involve the creation of the spheres that the end-

effector snaps on to, and the interaction of these spheres with the end-effector to allow

for snapping.

Script: GravityWellSpawner

This script spawns a specified number of spheres randomly around the workspace that

the end-effector can snap on to. It can also pre-generate a table of spawn points which

it can load later to allow for the presentation of the same set of spawn points to different

users. This script also handles highlighting of the spheres and increasing/decreasing

user scores.

public class GravityWellSpawner : MonoBehaviour {

...

// Use this for initialization

void Start () {

GameControl.instance.sceneNumber = 2; // Change scene number on Game Control

spawnedBalls = new GameObject[initialSpawnCount]; // Initialize array of balls

// Instantiate initial point to reach

initialStart = new Vector3(-0.0523f, -0.0542f, 0.8347f); //Initial point

spawnedBalls[0] = Instantiate(gravityWellPrefab, initialStart, Quaternion.identity); //First

spawn

rend = spawnedBalls[0].GetComponent<Renderer>();

originalColor = rend.material.color;

rend.material.color = Color.yellow; // Make it color yellow

spawnedBalls[0].GetComponent<GravityWell>().highlightedBall = true; // Set its status to

highlighted

// Set boundaries for area of spawn

boxSize = spawnBoxArea.GetComponent<Collider>().bounds.size;

boxCenter = spawnBoxArea.transform.position;

colliderRadius = gravityWellPrefab.GetComponent<SphereCollider>().radius;

colliderScale = gravityWellPrefab.GetComponent<SphereCollider>().transform.lossyScale.x;

if (GameControl.instance.useData)

{

LoadData(); // Use data from CSV

}

// Spawn # of balls cased on spawn count

for (int i = 1; i < initialSpawnCount; i++)

{

SpawnGravityWell(i);

112

if (GameControl.instance.useData)

{

randomizeList.Add(int.Parse(loadedData[3][i-1]));

}

else

{

randomizeList.Add(i);

}

}

if (!GameControl.instance.useData) ListShuffle.Shuffle<int>(randomizeList); //Shuffle List

backupRandomizedList = new List<int>(randomizeList); // Must make new instance or else backup

will just reference randomizeList

Debug.Log(backupRandomizedList.Count);

}

// Update is called once per frame

void Update () {

if (Input.GetKey(KeyCode.Space) && KeyInputDelayTimer + 0.1f < Time.time)

{

KeyInputDelayTimer = Time.time;

HighlightRandomBall();

}

if (Input.GetKey(KeyCode.G) && KeyInputDelayTimer + 0.1f < Time.time)

{// Press G to generate spawn points

KeyInputDelayTimer = Time.time;

GeneratePositionSets();

}

}

// Spawn gravity well

public void SpawnGravityWell(int index)

{

if (GameControl.instance.useData)

{

pos = new Vector3(float.Parse(loadedData[0][pointIndex]),

float.Parse(loadedData[1][pointIndex]), float.Parse(loadedData[2][pointIndex]));

pointIndex++;

}

else

{

// Randomize location within box

xSpawn = Random.Range(boxCenter.x - boxSize.x / 2, boxCenter.x + boxSize.x / 2);

ySpawn = Random.Range(boxCenter.y - boxSize.y / 2, boxCenter.y + boxSize.y / 2);

zSpawn = Random.Range(boxCenter.z - boxSize.z / 2, boxCenter.z + boxSize.z / 2);

pos = new Vector3(xSpawn, ySpawn, zSpawn);

// Check if spawn point will collide with other points

while (Physics.CheckSphere(pos, colliderRadius * colliderScale, layerMask))

{

// Randomize again if it will collide

xSpawn = Random.Range(boxCenter.x - boxSize.x / 2, boxCenter.x + boxSize.x / 2);

ySpawn = Random.Range(boxCenter.y - boxSize.y / 2, boxCenter.y + boxSize.y / 2);

zSpawn = Random.Range(boxCenter.z - boxSize.z / 2, boxCenter.z + boxSize.z / 2);

pos = new Vector3(xSpawn, ySpawn, zSpawn);

}

//Save point locations

xSpawnList.Add(xSpawn);

ySpawnList.Add(ySpawn);

zSpawnList.Add(zSpawn);

}

// Spawn point

spawnedBalls[index] =Instantiate(gravityWellPrefab, pos, Quaternion.identity);

}

113

public Vector3 MoveGravityWell()

{

xSpawn = Random.Range(boxCenter.x - boxSize.x / 2, boxCenter.x + boxSize.x / 2);

ySpawn = Random.Range(boxCenter.y - boxSize.y / 2, boxCenter.y + boxSize.y / 2);

zSpawn = Random.Range(boxCenter.z - boxSize.z / 2, boxCenter.z + boxSize.z / 2);

pos = new Vector3(xSpawn, ySpawn, zSpawn);

return pos;

}

// Highlighting a random ball

public void HighlightRandomBall()

{

spawnedBalls[randomizeList[0]].GetComponent<Renderer>().material.color = Color.yellow; // Make

it color yellow

spawnedBalls[randomizeList[0]].GetComponent<GravityWell>().highlightedBall = true; // Set its

status to highlighted

randomizeList.RemoveAt(0);

if (randomizeList.Count == 0) // If list went empty

{

randomizeList = new List<int>(backupRandomizedList); // Restart from the beginning

}

}

public void IncreaseScore()

{

hits++;

score = hits - misses;

scoreText.text = " Score\n" + score.ToString();

}

public void DecreaseScore()

{

misses++;

score = hits - misses;

scoreText.text = " Score\n" + score.ToString();

}

// Generate a CSV file of spawn locations. First row is X, 2nd is Y, 3rd is Z. Each column

corresponds to a point in space

private void GeneratePositionSets()

{

table.Add(xSpawnList);

table.Add(ySpawnList);

table.Add(zSpawnList);

randomizeList.ForEach(i => doublesRandomizedList.Add(i));

table.Add(doublesRandomizedList);

SaveToExcel.instance.Save(table, 4, "Gravity_Spawn");

table.Clear();

xSpawnList.Clear();

ySpawnList.Clear();

zSpawnList.Clear();

Debug.Log("Generated positions!");

}

// Load pre-generated spawn point data

private void LoadData()

{

loadedData = SaveToExcel.instance.Load("SpawnGeneration/Gravity_Spawn_" +

GameControl.instance.spawnNumber + ".csv");

Debug.Log("Loaded Data");

}

}

114

Script: GravityWell

This script handles the properties of each sphere spawned by the GravityWellSpawner.

It sends forces to the MatlabServer when the end-effector snaps onto the sphere and

saves the information of each snapping point and the movement of the end-effector in

a CSV file.

public class GravityWell : MonoBehaviour {

...

// Use this for initialization

void Start () {

myCollider = GetComponent<SphereCollider>(); // Get collider of this object

normalizedGain = gain/0.01f; //

topJoint = GameObject.Find("Top").transform; // Get the top part of the end effector

gravitySpawnerScript =

GameObject.Find("GravityWellSpawner").GetComponent<GravityWellSpawner>(); // Get access to

the spawner script

timeSpawned = Time.time; // Time this object was spawned

ballRenderer = GetComponent<Renderer>(); // Get the renderer to control color for later

originalColor = new Color(108/255f, 104/255f, 159/255f); // Unhighlighted color

gravityWellPosition.Add(transform.position.x); // Save the x y z position in a table

gravityWellPosition.Add(transform.position.y);

gravityWellPosition.Add(transform.position.z);

}

// Update is called once per frame

void Update() {

// Checks how close the end-effector is from it

xDiff = topJoint.position.x - transform.position.x;

yDiff = topJoint.position.y - transform.position.y;

zDiff = topJoint.position.z - transform.position.z;

displacementFromTopJoint = new Vector3(xDiff, yDiff, zDiff);

if (snap) // If the end-effector hits the object, send forces to snap

{

MatlabServer.instance.xFTop = -normalizedGain * displacementFromTopJoint.z;

MatlabServer.instance.yFTop = normalizedGain * displacementFromTopJoint.x;

MatlabServer.instance.zFTop = -normalizedGain * displacementFromTopJoint.y;

}

}

// When end-effector enters the trigger

private void OnTriggerEnter(Collider other)

{

if (other.gameObject.tag == "Player") { // If it was the end-effector

snap = true; // Turn on snap

}

if (highlightedBall == true) // If this is the highlighted ball

{

highlightedBall = false; // Mark that it’s not highlighted anymore

wasHighlightedBall = true; // Mark that it was highlighted

ballRenderer.material.color = originalColor; // Unhighlight

if (!GameControl.instance.gameOver) gravitySpawnerScript.HighlightRandomBall(); // Stop

highlighting if gameover

if (!GameControl.instance.gameStart) // If game has not started, start game (for initial

point)

{

GameControl.instance.gameCountdown = true;

115

GameObject cylinder = GameObject.Find("CalibrationCylinder");

cylinder.SetActive(false);

}

else // Increase score after game started

{

gravitySpawnerScript.IncreaseScore();

timeEntered = GameControl.instance.timeElapsed; // Time user entered the point

timeDuration = timeEntered - gravitySpawnerScript.timeLastBallLeft;

timeDurationList.Add(timeDuration); // Time to reach this point from the previous point

}

}

else

{

if (GameControl.instance.gameStart)

{ // Decrease score if it was an unhighlighted ball

gravitySpawnerScript.DecreaseScore();

}

}

}

// When end-effector exits the trigger

private void OnTriggerExit(Collider other)

{

if (other.gameObject.tag == "Player") // If it was the end-effector

{

pointSnapperScript = other.GetComponent<PointSnapper>();

snap = false; // Turn off snap and reset forces to 0

MatlabServer.instance.xFTop = 0;

MatlabServer.instance.yFTop = 0;

MatlabServer.instance.zFTop = 0;

gravitySpawnerScript.timeLastBallLeft = GameControl.instance.timeElapsed; // Time user

exited the point

if (GameControl.instance.gameStart && wasHighlightedBall)

{ // If it exited a highlighted ball

wasHighlightedBall = false;

pointSnapperListLength = pointSnapperScript.listLength;

timeDurationList.Add(gravitySpawnerScript.score); // Add current net score

timeDurationList.Add(gravitySpawnerScript.hits); // Add current # of highlighted balls

hit

timeDurationList.Add(gravitySpawnerScript.misses); // Add current # of unhighlighted

balls hit

table.Add(timeDurationList); // Contains timeduration, score, hits, misses

table.Add(gravityWellPosition); // contains x,y,z of current gravity well

// Next rows add: time, x, y, z trajectories

table.Add(pointSnapperScript.time.GetRange(pointSnapperScript.time.Count -

pointSnapperListLength, pointSnapperListLength));

table.Add(pointSnapperScript.xDir.GetRange(pointSnapperScript.xDir.Count -

pointSnapperListLength, pointSnapperListLength));

table.Add(pointSnapperScript.yDir.GetRange(pointSnapperScript.yDir.Count -

pointSnapperListLength, pointSnapperListLength));

table.Add(pointSnapperScript.zDir.GetRange(pointSnapperScript.zDir.Count -

pointSnapperListLength, pointSnapperListLength));

pointSnapperScript.listLength = 0;

SaveToExcel.instance.Save(table, 6, "Snapping" + GameControl.instance.spawnNumber +

"_AV" + GameControl.instance.ARVR + "_CL" + GameControl.instance.cognitiveLoading +

"_Sc" + gravitySpawnerScript.hits);

timeDurationList.Clear();

table.Clear();

}

}

}

}

116

Appendix C

Motoman AR System Development

in Unity

C.1 Layout Overview of Game

The system is comprised of four main areas: the Matlab computer, the Motoman

computer, the Unity computer, and the Motion Tracker computer. The Matlab com-

puter handles the admittance control for the Motoman robot. It is the main ”hub”

for the communication between the Motoman computer and the Unity computer. The

Motoman computer runs a WinCE virtual operating system environment that com-

municates with the Motoman robot using C++ to make it move. The Unity computer

runs the game environment that is developed in C# and projects it to the user. The

Motion Tracker computer is not connected to the other systems, rather, it is only used

to collect the user’s arm biomechanics.

To directly manipulate the Motoman robot to move to a position, the user has to

apply forces on the force sensor that is attached to the Motoman’s end-effector. The

force sensor sends these forces directly to the admittance controller in Simulink and

calculates the velocity vector for the Motoman robot to move towards. The position

of the Motoman is sent to Unity to update the position of the cursor (in this case, the

117

Force Feedback

Forces

Visual Feedback

Kinect
Head PositionUnity Camera

Movement

Video Output
Projector

Forces

End-E�ector

Position

Force

Feedback

Velocity

Motoman Computer

Motion Tracker

Computer

User
Arm

Biomechanics

Force Sensor

Figure C.1: The overall process of how each individual system interacts with each other for
the Motoman AR system.

virtual paint roller) in the virtual environment. When the paint roller collides with the

virtual wall, the direction of the collision normal (from the wall) is sent to Simulink and

it is used to nullify all the forces sent to the admittance controller at that particular

direction. This results in the robot not moving in towards the direction of the collision.

The position of the user’s head is retrieved by the Kinect to adjust the point of view

shown by Unity to the correct perspective. DLP Link 3D Shutter glasses are worn by

the user to see the virtual environment in 3D.

C.2 C# Code for the Painting Task

The scripts used for this work are mainly derived from the codes used in Chapter

3, namely, GameControl, MatlabServer, and GrabScript. Since minor changes

were done to integrate these scripts into this Motoman AR system, they will not be

described. This system does not have a graphical user interface. The painting task

makes use of the InkPainter Asset [134] available for download in Unity.

118

Script: CanvasCollision.cs

This script displays the percentage of the wall filled by paint. It also signals the start

and stop time for when the motion tracker camera collects data. Data collection starts

once the paint roller is in contact with the wall. It stops when contact with the wall is

broken after reaching ≥95%

public class CanvasCollision : MonoBehaviour {

// Use this for initialization

void Start () {

canvasScript = GetComponent<Es.InkPainter.InkCanvas>(); // Grab attached inkpainter canvas

fillPercent = GetComponentInChildren<TextMesh>(); // Grab the text compontent to update

paintMaterial = GetComponent<MeshRenderer>().material.name; // Grab the material to be painted

on

}

private void OnCollisionEnter(Collision collision)

{

if (!colorGrabbed)

{

Debug.Log("GameStart");

GameControl.instance.gameStart = true; // Start game

MatlabServer.instance.gameStart = 1; // Send to Matlab game start

collisionPainterColor =

collision.gameObject.GetComponent<Es.InkPainter.Sample.CollisionPainter>().Color;

colorGrabbed = true;

}

}

private void OnCollisionStay(Collision collision)

{

if (KeyInputDelayTimer + 0.5f < Time.time)

{

KeyInputDelayTimer = Time.time; // To update the percentage ever 0.5s

activeTexture = canvasScript.GetPaintMainTexture(paintMaterial); // Get render texture of

gameobject from material

thisTexture = new Texture2D(activeTexture.width, activeTexture.height); // Create new

texture2D using render texture sizes

RenderTexture.active = activeTexture; // Set as the active texture

thisTexture.ReadPixels(new Rect(0, 0, activeTexture.width, activeTexture.height), 0, 0); //

Read rendertexture pixels into texture2D

pix = thisTexture.GetPixels32(); // Get all the pixels in texture2D into array format in

RGBA

for (int i = 0; i < pix.Length; i++) // Compare each pixel’s RGB to paint RGB. If within

range, it’s painted on.

{

if (InRange(collisionPainterColor.r - 40, collisionPainterColor.r + 40, pix[i].r) &&

InRange(collisionPainterColor.g - 40, collisionPainterColor.g + 40, pix[i].g) &&

InRange(collisionPainterColor.b - 40, collisionPainterColor.b + 40, pix[i].b))

{

fill++; // Adds +1 per pixel in range

}

}

fillPercent.text = "Fill: " + (fill / pix.Length * 100).ToString("N") + "%"; // Displays

fill pct into game

fill2 = fill / pix.Length * 100;

119

fill = 0; // Resets fill

}

}

private void OnCollisionExit(Collision collision)

{

if (fill2 >= 95)

{

GameControl.instance.gameOver = true; // Gameover

colorGrabbed = false; // Reset color

canvasScript.ResetPaint(); // Reset canvas

fillPercent.text = "Fill: 0.00%"; // Displays fill pct into game

}

}

private bool InRange(int low, int high, int x) // Returns true if x is between the two numbers

{

return ((x - low) <= (high - low));

}

}

120

	Abstract
	Preface
	Dedication
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Motivation
	Objective
	Organization of the Thesis
	Patient Simulation
	Contribution of the Thesis

	Literature Review
	Robot-Assisted Rehabilitation
	Serious Games
	Serious Games in Rehabilitation

	Virtual Reality and Augmented Reality
	Virtual Reality Displays
	Augmented Reality Displays

	Investigation of User Performance Improvement in a 2D Visual-Haptic Colocated Rehabilitation Task
	Introduction
	Virtual Reality & Augmented Reality in Rehabilitation
	Haptic Feedback in Rehabilitation
	Motivation for Visual-Haptic Colocation in Rehabilitation

	Related Work
	Virtual Reality Rehabilitation Systems
	Augmented Reality Rehabilitation Systems

	Rehabilitation Game Design
	Experiment
	Experimental Setup & Challenges
	Procedure
	Results and Discussion

	Conclusion

	A 3D Augmented Reality Display to Improve User Performance in Rehabilitation Exercises
	Introduction
	Virtual Reality & Augmented Reality Game Displays
	Visual and Motor Axes Colocation
	Related Work

	Proposed 3D Spatial AR System
	Representative Tasks
	Experimental Setup

	Experiment
	Procedure
	Results and Discussion

	Conclusion

	A Robotic System with an Augmented-Reality Display for Functional Capacity Evaluation and Rehabilitation of Injured Workers
	Introduction
	Related Work
	FCE
	Robot-assisted Assessment Rehabilitation
	Virtual Reality & Augmented Reality in Rehabilitation

	Materials and Methods
	Rehabilitation Task Design
	Robotic Manipulator Choice and Control Strategy
	Experimental Setup
	Experimental Procedure

	Results and Discussion
	Conclusion

	Conclusion
	Summary
	Future Work
	Assist-as-needed Functionality
	Larger Scale Setup
	Improved Occlusion Mitigation
	Therapist-Patient Telerehabilitation
	Clinical Trials and Validation

	Bibliography
	Appendix
	2D AR System Development in Unity
	Overview of the System
	Layout of the Game User Interface
	C# code for the 2D AR System
	C# code for the Calibration Scene
	C# code for the Game Scene

	3D AR System Development in Unity
	Layout Overview of Game
	C# Code for the Three Tasks
	Code for Snapping

	Motoman AR System Development in Unity
	Layout Overview of Game
	C# Code for the Painting Task

