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Abstract— This paper introduces intelligent central pattern
generators (iCPGs) that can plan personalized walking trajecto-
ries for lower-limb exoskeletons. This can make walking more
comfortable for the users by resolving one of the significant
shortcomings of most commercially available exoskeletons,
which is the use of pre-defined fixed trajectories for all users.
The proposed method combines reinforcement learning (RL)
with previously introduced adaptable central pattern generators
(ACPGs) to learn a user’s physical interaction behaviour and
refine the exoskeleton’s walking trajectories. The ACPG method
embeds physical human-robot interaction (pHRI) in CPGs to
make changing gait trajectories in real-time, possible. However,
to effectively refine gait trajectories based on pHRIs, the
parameters must be precisely identified and updated as a
user interacts with the exoskeleton. Our proposed method uses
RL to modify (amplify/attenuate) the pHRI energy based on
a user’s interaction behaviour, and form an effective energy
value which can facilitate reaching desired gait pattern for
users via iCPG dynamics. The proposed method can resolve
the aforementioned challenges with ACPGs and personalized
trajectory generation. The simulation and experimental results
provide evidence that the proposed method can effectively adapt
to the user’s behaviour in different walking scenarios with the
Indego lower-limb exoskeleton.

I. INTRODUCTION

Neurological impairments, such as spinal cord injury,
stroke, and multiple sclerosis, result in mobility impairments
that reduce the quality of life of millions worldwide. The
use of assistive and rehabilitative exoskeletons can help
individuals maintain their independence and improve their
physical fitness. Several powered exoskeletons such as In-
dego [1], Exo H3 [2], ReWalk [3], HAL [4], and Ekso GT [5]
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have been developed in recent years for user assistance and
rehabilitation in clinics. Despite the great capability of these
devices, there still exists a need for software improvement
to increase the demand for their use.

The ideal exoskeleton controller must understand a user’s
intention and adapt to their gait pattern. Que et al. [6] used
electroencephalogram (EEG) and electrocardiogram (ECG)
signals to determine a user’s intention and appropriately
adjust the exoskeleton’s assistance level. The method de-
veloped by Gue et al. [7] used EEG and ECG signals to
select between three predefined trajectories (static, normal
walking, high leg lifting) with a neural network classi-
fier. Although using these types of sensors is a promising
way of understanding intention, their usage is limited due
to difficulties in attaching the sensors to the user’s body
in addition to signal processing. In a different approach,
some studies [8, 9] considered the body features, e.g., age
and weight, to reshape the exoskeleton’s walking pattern.
However, to be sufficiently accurate to capture all features
of user’s locomotion, a large number of parameters need
to be considered, which makes implementing the method
challenging. An alternative solution for these challenges is to
use advanced motion planning methods in combination with
machine learning (ML) based intention estimation.

Central pattern generators (CPGs) are among the major
motion planning algorithms for exoskeleton control due
to their ability to generate synchronized rhythmic motions
between different joints [10]–[12]. Inspired by the motion
of the salamander, the dynamics of CPGs in robots were
first proposed by Ijspeert et al. [13]. Due to the inherent
rhythmic motion generation feature, CPGs have been widely
used in high-level control of exoskeletons to plan a fixed
walking pattern [14]–[17]. Different control approaches, e.g.,
impedance control [15, 16] and admittance control [17], are
being used in low-level control strategies to track the desired
trajectories. Although these methods provide a control strat-
egy for exoskeletons, the trajectories need to be changeable
to address the needs of different people. Some studies have
used adaptable CPGs (ACPGs) to let users refine gait trajec-
tory via physical interaction with the robot [10, 12, 18]. These
studies showed that ACPGs could solve the adaptability issue
in the motion planning of exoskeletons if the initialization
is precise and the user’s interaction behaviour does not
change considerably over time. These requirements limit
ACPGs in providing personalized locomotion trajectories in
long periods of walking during which changes in the users’
interaction behavior occurs.
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The inherent characteristic of reinforcement learning (RL)
is learning while interacting in real-time making it a good
fit for personalization applications. The method proposed by
Shen et al. [19] modelled the human-exoskeleton system
as a leader-follower system and used an RL-based control
algorithm to adjust the walking assistant level. Huang et al.
[20] used a mass-spring-damper model to estimate physical
interaction between humans and exoskeletons, and they used
RL to learn the spring and damper coefficients in the
model. They employed the estimated interaction in high-
level control of an exoskeleton [20] (the impedance model
changes the trajectory generated by dynamical movement
primitives; DMPs). RL has also been used in manipulating
motion planning algorithm parameters by Zhang et al. [21].
Here, the RL algorithm adjusted the gain in trajectory
generated by DMPs while taking the stability of thesystem
into consideration [21].

Among RL algorithms used for robotic applications, deep
deterministic policy gradient (DDPG) has been commonly
used, including control of a biped robot [9] and motion
control of a six-degree-of-freedom arm robot [22]. How-
ever, DDPG suffers from overestimating future rewards, and
optimal policy convergence [23]. The twin delayed deep
deterministic policy gradient (TD3) addresses these limita-
tions. TD3 is a model-free, off-policy, actor-critic algorithm
used for online learning in an environment with continuous
action spaces. Thus, TD3 is an improvement over DDPG,
and related algorithms by increasing its robustness through
clipped double-Q learning and decreasing the likelihood of
Q-function exploitation via policy smoothing [23, 24].

This paper introduces the intelligent CPG (iCPG), which
combines reinforcement learning with ACPGs for person-
alized motion planning of exoskeletons. This method re-
solves the need for precise initialization in ACPGs, which
is necessary for effective human-robot interactions (HRIs).
Furthermore, our proposed method can adapt to changes in
the interaction behaviour of users. The contributions of the
paper are summarized as follows:

• We introduce a novel RL-based method to modify HRI
energy based on the user’s interaction behaviour.

• The ACPG structure is improved, and the iCPG method
is introduced for the first time to resolve challenges with
previous ACPGs [10, 12].

II. INTELLIGENT CPG DYNAMICS

A multi-degree-of-freedom lower-limb exoskeleton inter-
acting with a human user can be modeled as follows:

Mq(q)q̈ + Cq(q)q̇ +Gq(q) = τmot + τhum,p + τhum,a (1)

where Mq(q), Cq(q), and Gq(q) are the inertia matrix,
the matrix of Coriolis, centrifugal, and damping terms, and
the vector of gravitational torques, respectively. Further, q
is the vector of the exoskeleton joint positions, τmot is
the exoskeleton’s motor torque, and τhum,p and τhum,a are
the passive and active parts of the human torque vector,
respectively.

Fig. 1: Schematic of the proposed iCPG method for person-
alized motion planning.

The ACPG was used to plan the exoskeleton joints’
motion in real-time during walking [10, 12, 18]. Although it
could refine gait trajectories based on pHRIs, the parameter
values play an important role in the method’s effectiveness.
Furthermore, precise parameter identification in conjunction
with minimum changes in the user’s interaction behaviour is
critically important for the ACPG’s performance. To address
these issues and provide personalized motion planning, we
have integrated RL with ACPGs and introduced iCPGs (see
Fig. 1). The iCPG dynamics for encapsulating variations of
the overall locomotion frequency ω(t), oscillation amplitude
ρ(t), and phase variation of each joint ϕi(t) is

ω̈(t) = γω

(
γω
4
(Ω + ψωEeff(t)− ω(t))− ω̇(t)

)
+ kωu(ω(t)− ωth+

) log

(
ωmax − ω(t)
ωmax − ωth+

)
ρ̈(t) = γρ

(γρ
4
(Aρ + ψρEeff(t)− ρ(t))− ρ̇(t)

)
+ kρu(ρ(t)− ρth+) log

(
ρmax − ρ(t)
ρmax − ρth+

)
ϕ̇i(t) = ω(t) +

mi∑
j=1

ηij sin (ϕi(t)− ϕj(t)− ϕij)

(2)

where mi is the number of adjacent joints to the joint i, and
ηij is the coupling constant between the ith and jth adjacent
joints. Ω and Aρ are the steady-state frequency and amplitude
for ω(t) and ρ(t), and γω and γρ are constant parameters.
The parameters ψω and ψρ are constant values for adjusting
the effect of physical interaction in iCPG dynamics. The
thresholds ωth+

and ρth+
are the positive threshold of ω(t)

and ρ(t), respectively, that trigger the deceleration term with
gains kω and kρ to avoid reaching the maximum allowable
frequency ωmax and amplitude ρmax. Furthermore, u(·) is
a step function that activates the log functions when the
aforementioned thresholds are crossed. In real experiments
with the able-bodied person wearing the Indego exoskeleton,
these values will be determined based on the users’ comfort.

Most notably, and the focus of this paper, is the effective
HRI energy, Eeff(t), which is a function of the HRI energy,
and is determined via the TD3 algorithm, which will be
presented in Sec. III-A [23]. The HRI energy of joint i, Ei(t),
is

Ei(t) =

∫ t

0

τHRI,i(t)q̇i(t) dt (3)



where q̇i(t) is the velocity of the ith joint and τHRI,i(t) is the
estimated human torque on the ith joint, which is estimated
using a trained neural network based on the method described
in Sharifi et al. [12]. The total HRI energy (E(t)) is the
summation of the interaction energies of all joints.

Using a Fourier series expansion, the described iCPG out-
puts are transformed into a reference locomotion trajectory,
qi(t), for the ith joint of the exoskeleton:

qi(t) = ξi(t) + ρi(t)

Ni∑
k=1

(aik cos kϕi(t) + bik sin kϕi(t))

(4)
where Ni is the number of terms in Fourier’s series and aik
and bik are the coefficients of that. The frequency ω(t), and
amplitude ρi(t) of walking, and also phase ϕi(t) of each
joint’s oscillatory motion (see Eq. (2)) are modified in real-
time via the iCPG-based update rules in (2).

III. IMPLEMENTATION OF AN RL AGENT TO ADJUST
ENERGY CONTRIBUTIONS FOR TRAJECTORY SHAPING

Deep reinforcement learning was used to modify pHRI
energy (E(t)) and determine effective energy values (Eeff)
in (2) based on the physical interaction behaviour of lower-
limb exoskeleton users. The RL algorithm employed in this
project and the reward function used for determining the Eeff
are introduced in the following subsections.

A. Deep reinforcement learning

RL is a learning strategy that attempts to model an
agent interacting with its environment while learning reward-
maximizing behaviour. At each time step t in a given state
s ∈ S , an RL agent selects an action a ∈ A with respect
to a policy π : S → A, and receives a reward r and
transitions to a new state s′ ∈ S in its environment. The
return, rt, is defined as the discounted sum of rewards
rt =

∑T
k=t+1 γ

k−tr(sk, rk), where γ is a discount factor
determining the relative importance of future rewards and
T is the end of an episode. The objective in reinforcement
learning is to find the optimal policy πϕ, with parameters ϕ,
which maximizes the expected return J(ϕ) = Eτ∼πϕ

[r(τ)],
where τ is the probability of a trajectory (s0, a0, . . . , sT+1)
following πϕ. To optimize J(ϕ), the agent learns a value
function Q, which maps the agent’s state and action to a
reward, Q : S ×A → R.

A TD3 strategy was used to formulate the RL problem in
this paper. The characteristics of the TD3 algorithm make it
a good fit for the personalized trajectory generation problem
in this paper. In particular, TD3 uses double critic networks
to approximate the reward from a given state and action
using the Bellman equation in terms of the discounted sum
of expected TD errors:

Qθ(s, a) = rt + γE[Qθ(st+1, at+1 − δt]
= rt + γE[rt+1 + γE[Qθ(st+2, at+2)]− δt

= Eτ∼πϕ

[
T∑
i=t

γi−t(ri − δi)

] (5)

where
∑T

i=t γ
i−t(ri − δi) is the discounted sum of returns,

Qθ(s, a) is the differentiable function approximator with the
parameter θ, and E[·] is the expectation from a sequence of
states and actions τ following the policy πϕ. During training,
an actor network and two critic networks are initialized
with random parameters (ϕ, θ1, θ2). Because training a policy
using both actor and critic networks can result in divergence
of the agent behaviour and cause instability, target networks
with parameters (ϕ′, θ′1, θ

′
2) are initialized. A replay buffer

B is also initialized to record a subset of tuples of the
agent’s experiences (st, at, rt, st+1), which is later randomly
sampled for learning. At each timestep, an action is taken
with an added exploration noise to prevent overfitting:

a ∼ πϕ(s) + ϵ, ϵ ∼ N (0, σ) (6)

where ϵ is the exploration noise sampled from a normal
distribution with standard deviation σ. From the action taken,
the resulting transition tuple (st, at, rr, st+1) is stored in the
replay buffer B. Next, an action is selected with target policy
smoothing applied. The action is clipped to the action space,
and the noise is clipped between constants ±c to keep the
target close to the original action:

ã← clip(πϕ′(s′) + clip(ϵ,−c, c), alow, ahigh), ϵ ∼ N (0, σ̃)
(7)

Using this estimate of ã, the target Q values from the double
critic networks are computed using the smaller value of the
two networks to prevent the maximization bias. Next, the
loss function is computed for the two critic networks by
computing the mean squared error between each critic and
the target Q value. The networks are then optimized using
backpropagation.

y ← r + γ min
i=1,2

Qθ′
i
(s′, ã)

θi ← argminθi
N−1

∑
(y −Qθi(s, a))

2
(8)

The actor policy is optimized periodically when t mod d =
1, where d is the number of steps before an update. The
mean of the Q values from the critic networks are used in
the backpropagation of the actor networks:

∇ϕJ(ϕ) = N−1
∑
∇aQθ1(s, a)|a=πϕ(s)∇ϕπϕ(s) (9)

where ∇ϕJ(ϕ) is the gradient of the expected return J(ϕ)
following the target policy πϕ. Finally, the target networks
are updated using a soft update as follows:

θ′i ← τθi + (1− τ)θ′i
ϕ′ ← τϕ+ (1− τ)ϕ′

(10)

where τ is the soft update coefficient selected to provide
stable updates in the policy network.

B. Interaction energy modification via RL

The objective of the TD3 algorithm in our study was to
control the effective HRI energy, Eeff(t), in (2) to facilitate
reaching the user’s desired locomotion trajectory via iCPGs.
In particular, we designed a reward function, R, which the
RL agent attempted to maximize. In this section, we will



first outline the reward function for the TD3 algorithm and
then discuss how the proposed reward function can address
challenges in different scenarios that the agent may face.

The state space for the RL agent is the HRI energy
(E(t)) in Eq. (3) and its average (Eavg(t)); and frequency
(ω) in Eq. (2) and its average (ωavg) which represents RL
estimation about user’s desired frequency. The action space
is the effective HRI energy (Eeff(t)) used in (2).

The following reward function was used to identify the
optimal value of effective interaction energy for the user’s
desired walking pattern via an iCPGs:

R = −
(
KE [E(t)− Eavg(t)]

2 +Kω[ω(t)− ωavg(t)]
2

+Kω̈[ω̈(t)]
2 +Rp +RE

) (11)

where KE , Kω , and Kω̈ are constant values and RP and RE

are defined as follows

Rp =

{
Pp, ω /∈ [ωmin, ωmax] or ρ /∈ [ρmin, ρmax]

0 otherwise
(12)

RE =

{
PE , (E(t)− E(t− τE) > ϵE

0, otherwise
(13)

where PP > 0 and PE > 0 are constant values and ωmax,
ωmin, ρmax, and ρmin are pre-defined safety thresholds to
provide safe locomotion patterns. E(t) is the current HRI
energy state, E(t− τE) is a delayed version of HRI energy
and τE represents the amount of delay. A step is detected if
the difference E(t)− E(t− τE) is greater than a threshold
ϵE . Note that this threshold value will be determined by trial
and error in real experiments with the exoskeleton and able-
bodied user.
RP is the safety term that encourages RL agent to avoid

transitions to unsafe states. The terms of difference be-
tween actual energy and frequency with their average values
(E(t) − Eavg(t) and ω(t) − ωavg(t)), and the acceleration
of the frequency (ω̈(t)), play an important role when the
frequency is close to the user’s desired value and system is
almost in steady state. However, they can make the system
less responsive by introducing lower Eeff, which has been
resolved by adding the term RE , which penalizes based on
the number of interactions that a user has applied.

IV. RESULTS AND DISCUSSION

The hyperparameters for the TD3 algorithm were set
experimentally, and they included a random seed of 10,
starting exploration time steps of 64 on a random policy,
standard deviation of 0.1 from a Gaussian distribution for
exploration noise, batch size of 512, γ of 0.99, τ of 0.005,
policy noise of 0.2 from a Gaussian distribution for critic
updates, and policy update frequency of 2. The averages were
calculated with a moving average with a window size of 10 s,
and τE 0.05 s. The iCPG parameters were all set based on
Sharifi et al. [10], except ψω and ψρ were set 0.0072 and
0.0096, respectively in simulations and ψω = 0.0007 and
ψρ = 0.0009 in experiments.
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Fig. 2: Variation of HRI energy and frequency of walking
for the weak muscle scenario without RL refinements.

A. Simulations

The simulation environment was created in MATLAB
Simulink R2022a. The environment consisted of a frequency-
dependent HRI energy input in (3), which increases or
decreases in rectangular steps at fixed intervals. The desired
frequency was manually set and hidden from the RL agent.
If the current frequency was below the desired frequency, the
HRI energy input increased until the desired frequency was
obtained, and vice versa. The HRI energy input remained
constant while the frequency is close enough to the desired
frequency. The RL agent receives the current state from the
environment and takes an action that modulates the HRI
energy (E) to determine Eeff. Simulations were divided into a
training and testing phase, where the RL agent modulated the
HRI energy to meet the desired frequency. In both training
and testing, the desired frequency was changed every 10 s.
The training phase involved five episodes of training, with
each episode lasting 30 s. Each episode consisted of 300 time
steps corresponding to a sampling rate of 10Hz. The testing
phase consisted of 30 trials with the trained model, again for
30 s.

In real applications were the iCPG was initialized using
experimental user data, and then the dynamics were updated
when a new user interacted with the exoskeleton. Therefore
there were two possible scenarios that need to be considered
in the simulations. Firstly, there was the case of a new user
with weaker muscles generating smaller interaction torques
than the user with whom the initialization was performed.
This is the main scenario we are trying to address in this
research, as people with mobility impairments often have
weaker muscles and are more easily fatigued by interacting
with the exoskeleton than neurologically-intact individuals.
The second case was when a new user has stronger muscles
than the person for whom the exoskeleton was initialized.

1. Weak muscles (small stepwise τHRI): This scenario
represents individuals with weak muscles who apply rectan-
gular pulses of τHRI insufficient alone to reach their desired
frequency. Note that the amplitude of walking is a function
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Fig. 3: Variation of HRI energy due to an RL agent selecting
an effective energy to modify the frequency of walking for
the weak muscle scenario.

of the gait frequency. A constant stepwise torque input is
simulated using the rect function with a positive unity gain
for frequencies below the desired frequency and a positive
unity gain for those greater than the desired values. To aid
the user, a penalty term, RE , is applied for jumps in EHRI to
incentivize the RL agent to choose actions which minimize
the number of jumps. This penalty plays the most critical role
in cases where the user’s muscles are weak, so the RL agent
amplifies the interaction energy to reach the user’s desired
walking speed faster. Also, the other elements of the reward
function improve the agent’s behaviour when it is close to
the desired values.

The results for weak muscle scenario in the absence of RL
modifications show that the user could not reach the desired
frequency (1.8 rad/s) after 30 s (Fig. 2). However, the user
reached the desired frequencies in less than five seconds by
integrating an RL agent introduced in the effective energy
term in the iCPG structure. As seen in Fig. 3, the RL agent
amplified the user’s interaction energy, E(t) (brown dashed-
dot line), and suggested higher values for the effective
energy, Eeff(t) (solid blue line). This amplification rate is
lower when the user is close to the steady-state behaviour
(7-10 s, 18-20 s, and 27-30 s). This is because of fewer jumps
in this period (i.e., fewer jump penalties, PE), which forces
the agent to pay more attention to the other elements of
the reward function. Note that the desired frequencies for
the training phase for the weak muscle case was 2 rad/s,
1.7 rad/s, and 2 rad/s in this order. The testing phase had
desired frequencies of 1.7 rad/s, 2 rad/s, and 1.8 rad/s,
and acceptable frequency range of ±0.05 rad/s around the
desired frequency. The control case had the same acceptable
frequency range.

2. Strong muscles (large stepwise τHRI): This scenario
represents users with strong muscles who apply rectangular
pulses of τHRI to reach their desired frequency. The esti-
mation of the desired values in RL were chosen as the
average value over a constant time window. Our approach
for the reward function was to minimize the sum of the
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Fig. 4: Variations of gait frequency in the absence and
presence of RL modification for the strong muscle scenario.

mean squared error between the actual and desired EHRI
and iCPG frequency, i.e., maximizing the reward function.
For the strong muscle scenario, the desired frequencies for
the training phase were 2.2 rad/s, 1.7 rad/s, and 2.2 rad/s
in this order. The testing phase had desired frequencies of
1.8 rad/s, 2.3 rad/s, and 1.7 rad/s. An acceptable frequency
range of ±0.15 rad/s around the desired frequency was im-
plemented to prevent oscillations about the desired frequency.
The control case had the same acceptable frequency range.
The results showed that the trained agent could facilitate
reaching desired frequency values by adjusting the effective
energy over time (see Fig. 4). As it can be seen in Fig. 4,
the integral of error between the user’s desired frequency
and iCPGs output in the steady-state period (7-10 s, 18-20 s,
and 27-30 s) was decreased by 65% for the case of using
effective energy values which was determined via RL. Note
that the desired frequency is hidden from the RL agent.

B. Experimental evaluations

The experimental set-up in Fig. 6(a) was used to eval-
uate the effectiveness of our proposed iCPG for lower-
limb exoskeletons. A 29-year-old able-bodied user wore the
Indego lower-limb exoskeleton (Parker Hannifin Corporation,
Macedonia, OH). The user was asked to apply physical
interactions to the exoskeleton joints to change the walking
frequency to the user’s desired values. The desired frequency
was hidden from the RL agent, and the agent used the aver-
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Fig. 5: HRI energy and walking frequency variations for a
user interacting with a lower-limb exoskeleton in the absence
of RL modifications.
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Fig. 6: a) Experimental set-up: A 29-year-old neurologically-intact user wearing the Indego lower-limb exoskeleton, b)
Desired and actual trajectories generated via iCPGs for the left hip and right knee joints.
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Fig. 7: HRI energy, effective energy, and walking frequency
variations for a user interacting with a lower-limb exoskele-
ton in the presence of RL modifications.

age value of iCPGs frequency to estimate the user’s desired
frequencies. Three different experiments were performed.
The first experiment was the control case, which used only
ACPGs without an RL agent. The second experiment trained
the RL agent. In this experiment, the user interacted with the
exoskeleton for 150 s to reach different desired frequency
values. In addition, the actor-critic networks in the TD3 al-
gorithm (see Sec. III) were trained in this period and used in
the final experiments for tuning the effective energy values.
Note whole process for training RL can also be performed
in our developed simulation environment for safety reasons.

As shown in Fig. 5, the user reached their desired fre-
quency of 1.5 rad/s after about 150 s and increased the
HRI energy level to more than 1000 J by applying con-
tinuous interaction energies. Continuous energy inputs were
necessary because the ACPG initialization was performed
with a different user with much stronger muscles. However,
the RL agent and iCPGs resolved this issue by adjusting
the HRI energy value and introducing effective energy in
Fig. 7. As observed in Fig. 7, the maximum HRI energy
applied by the user (brown dashed-dot line) was about 125 J.
However, the RL agent amplified that value (solid blue
line) to about 1000 J, which facilitated reaching the user’s

desired frequency. The results for the frequency showed that
users could reach their desired frequencies on average in
10 s with iCPGs, only by modifying their effective energy.
Furthermore, comparing the rate of amplification of HRI
energy shows that the RL agent introduced a lower energy
amplification rate for the period that the user tended to walk
at a constant frequency, which provided a smoother walking
experience for the user.

The amplitude, frequency, and phase values determined
by iCPGs were translated to the desired trajectories of joints
via Fourier series in (4). Fig. 6(b) shows the results for
the desired and actual trajectories of joints for the first
60 s of walking. The RL & iCPGs-based generated desired
trajectories have been commanded to a PD position control
to be tracked. As depicted in Fig. 6(b), the maximum error
between desired and actual trajectories was about 6◦ for
the knee joint and 4◦ for the hip joint, which shows an
appropriate tracking performance.

V. CONCLUSION

This study introduced iCPGs, which combined reinforce-
ment learning with ACPGs to generate user-specific gait tra-
jectories. The previously introduced ACPG algorithm could
change gait trajectories in response to a user’s physical
interaction. However, the effectiveness of ACPGs was limited
to precise parameter identification and a lack of considerable
change in the interaction behaviour of users. The proposed
iCPGs employed RL to learn a user’s interaction behaviour in
real-time and adjusted the HRI energy to facilitate reaching
a user’s desired gait pattern. The simulation results showed
that the proposed RL agent could modify HRI energy and
introduce an effective energy term to the iCPGs, removing
the need for precise parameter identification and fixed inter-
action behaviour. Furthermore, the results provided evidence
for the effectiveness of the proposed iCPGs in scenarios
of having weaker or stronger muscles than the user that
has been used for identifying the parameters. Finally, the
experimental results showed that the method could be used
for personalized motion planning of lower-limb exoskeletons.
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