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In this thesis, methods for improving needle steering during prostate 

brachytherapy are studied. Brachytherapy is a minimally-invasive, out-patient 

therapy for prostate cancer treatment with a fast recovery time. Success of 

brachytherapy depends on precise placement of needle tips in pre-planned 

locations inside and around the prostate. The main sources of needle steering 

errors in brachytherapy are needle deflection and tissue deformation. Considering 

these two factors, the long-term goal of research is to develop fully-automatic 

robot assisted and image guided strategies for needle steering to reduce targeting 

errors, which will result in increased success of brachytherapy. Toward this goal, 

for enhancing the current practice of manual brachytherapy, two approaches are 

proposed in this thesis. First, using Lagrangian formulation, a novel dynamical 

model of flexible needle in soft tissue is derived. This model can be used for 

fully-automatic needle steering; we have studied closed-loop control of the needle 

in simulations. Second, focusing on semi-automatic needle steering in order to 

allow for continued involvement of the brachytherapist in the procedure, we 

develop an experimental set up that closely resembles manual brachytherapy 

except for an enhancement involving automatic needle deflection adjustment. 

Simulation and experimental results reveal the merits of the proposed approaches 

and potentials for future research. 
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Introduction  
 

Recent reported statistics of prostate cancer in Canada show that prostate 

cancer remains as one of the most common cancer among men  [1]. While 24,600 

men were diagnosed with this type of cancer in 2010, the number increased to 

25,500 in 2011 and reached 26,500 in 2012. On the positive side, statistics show 

that in Alberta, number of deaths decreased from 440 to 420 from 2010 to 2011 

and 370 cases of death are predicted for 2012, which may be attributed to 

advances made in prostate cancer treatment. Nevertheless, there is still room for 

improvement in treatment techniques and outcomes. 

Among several prostate cancer treatment options including external beam 

radiotherapy and hormone therapy, brachytherapy is considered to be a patient-

friendly and minimally-invasive surgery with faster recovery time. The main 

reasons for brachytherapy’s popularity are its favorable toxicity profile and its 

convenience as an out-patient day procedure. Furthermore, the ability to maintain 

sexual potency is another advantage of this method  [2]. 

Brachytherapy involves using needles loaded with radioactive seeds for 

eliminating cancerous tissue. Once these seed-carrying needles are inserted, they 

must be steered to reach planned locations in the prostate. After the needle tip 

reaches the target location, the seeds must be deployed inside the tumor during the 

process of retracting the needle.  Fig. 1.1 shows the operating room setting for 

brachytherapy. 

 

  

 

Chapter 1 
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Fig. 1.1. Needle insertion setting in the operating room. 

Presently, brachytherapy has emerged as an efficient treatment option for men 

with localized prostate cancer. Despite good clinical outcomes, brachytherapy’s 

performance is still less than ideal and has room for improvement. In 

brachytherapy, seed placement is not always done accurately due to various 

parameters that may change from one patient to the next. The surgeon’s strategy 

of needle insertion (e.g., speed of insertion, bevel position, order of needles, etc.) 

plays a significant role in the surgical outcome. This project is concerned with 

investigating new automated and semi-automated strategies for needle steering to 

improve the efficiency and accuracy of brachytherapy and make its outcomes less 

dependent on the skill level of the surgeon.  

Current practice is that surgeons use a template grid ( Fig. 1.2) to manually 

guide needles into the prostate while 2D ultrasound images provide visual 

feedback about the depth of insertion if the needle tip is within an acceptable 

neighborhood of a target position; if not, the surgeon normally retracts the needle 

partially and re-inserts it for a better result. This procedure assumes that needles 

remain parallel inside the tissue as they are inserted at different positions in the 

template grid. However, this is not necessarily the case in reality, causing 

somewhat significant needle tip positioning errors. Previous work has shown that 
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seeds can be placed at a target position with an average precision of about 5 mm, 

which is substantial given that the average prostate is only 5 cm in diameter  [3]. 

What is important is that inaccurate needle insertion leads to inaccurate seed 

placement, which in turn results in delivery of a different radiation dose to the 

prostate than planned  [4]- [5] and possibly inferior outcomes  [6]- [7]. 

 

 
Fig. 1.2. Template grid used for brachytherapy. 

With regards to unwanted needle tip misplacement, there are plenty of factors 

contributing to it. These include the nonlinear behavior of tissue, interaction 

forces between needle and tissue in directions other than insertion, needle 

flexibility, prostate deformation and swelling, etc. The most significant factors 

leading to needle tip misplacement are needle deflection and tissue deformation. 

Needle deflection is due to the flexibility of the thin needles (clinically popular 

18-gauge needles are only 1.27 mm in diameter) used in brachytherapy. There is a 

coupled relationship between needle deflection and tissue deformation.  

The objective of this study is to improve the efficiency, accuracy, and 

reliability of seed placement in brachytherapy. This can happen by pursuing a 

dynamic modeling approach to study the needle/tissue system behavior and 

implement computerized needle control strategies for better results in terms of 

seed placement error. Surveying the literature, the lack of generalized strategies 

for steering of needle using available feedback signals that ensure minimized 

needle deflection and tissue deformation is evident. It is expected that such 

strategies yield smaller seed implantation errors than those in manual insertion, 

meaning that they improve the quality and effectiveness of brachytherapy. For this 
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purpose, i.e., closed-loop control of needle, real-time feedback of needle 

deflection and tissue deformation are necessary besides possibly the estimation of 

forces/torques acting on the needle.  

1.1 Literature Survey 
When a needle is inserted into tissue, modeling needle deflection and tissue 

deformation is not easy due to the coupling caused by the interaction forces at the 

interface of the needle and tissue. Needle deflection and tissue deformation are 

coupled effects; with more needle deflection, there is more tissue deformation. 

Thus, ideally, needle deflection and tissue deformation modelling should be done 

with due consideration for this coupling. For simplicity, past work has tried to 

alleviate this coupling’s influence by considering either a flexible needle in rigid 

tissue or a rigid needle in soft tissue.  

1.1.1 Rigid Needle in Soft Tissue 
Alterovitz et al.  [8] assumed a rigid needle and studied the effects of needle tip 

forces and frictional forces in their simulations. They also studied the sensitivity 

of seed misplacement to certain physician-controlled parameters and patient-

related factors. The conclusion was that seed placement error was more sensitive 

to the physician-controlled parameters than the patient-related parameters such as 

tissue compressibility. In their research, soft tissue was modeled using a 2D 

dynamic finite element method. In addition, Dimaio and Salcudean  [9] considered 

2D linear elastic model of a tissue into which a rigid needle is penetrated and, 

based on tissue deformation, calculated needle forces during insertion. Also, 

Dehghan and Salcudean  [10] proposed a new method of path planning for rigid 

needle insertion into soft tissue. Their method works based on optimization of 

needle insertion point, heading, and depth in an iterative manner.  

1.1.2 Flexible Needle in Rigid Tissue 
In contrast to considering a rigid needle in a soft tissue, some researchers have 

reduced the complexity of modeling by assuming a flexible needle is inserted into 

a rigid tissue. Flexible needles can be categorized into two subgroups, namely 
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highly-flexible needles and moderately-flexible needles. For a highly-flexible 

needle, even small lateral forces result in non-negligible bending. This type of 

needle follows a constant curvature due to its bevel tip structure. Webster et al. 

 [11] used nonholonomic bicycle and unicycle modeling for steering highly-

flexible needles. A nonholonomic model is one in which there is a continuous 

closed circuit of the governing parameters, by which the system may be 

transformed from any given state to any other state. Alterovitz et al.  [12] steered a 

flexible needle with a new motion-planning algorithm whose path parameters are 

obtained via 2D camera images in order to get an optimal needle entry point. 

Besides, they assumed an uncertainty in motion and introduced a probabilistic 

method to maximize the success of reaching the target. Similar to Alterovitz   et 

al. [13], Park et al.  [14] have also addressed the problem of steering a highly-

flexible needle through a firm tissue. Therefore, they also used a nonholonomic 

kinematic model and used another approach to planning called diffusion-based 

motion planning. For the highly-flexible needles, another issue makes the control 

problem harder. When one rotates the needle base, since there is a torsional 

deflection along a highly-flexible needle length, the needle tip and base do not 

experience the same amount of rotation. Therefore, one should estimate torsional 

deflection and consider its effect when there is needle rotation at the base  [15]. 

1.1.3 Flexible Needle in Soft Tissue 
The prostate tissue is soft. Common needles in brachytherapy are neither 

completely rigid nor highly flexible. In other words, they deflect under external 

lateral forces but a considerable amount of force is needed to deflect them. The 

most common method of modeling this type of needles is the finite elements (FE) 

method. Using the FE method, Salcudean simulated the needle as an elastic object 

with geometric nonlinearity and 3-node triangular elements  [16]. 

Another approach to modeling flexible needles is the linear beam theory. 

Glozman and Shoham  [17] modeled the needle as a 2D linear beam and then 

simulated it considering tissue model as a virtual spring net (mesh). One possible 

application of their model is to detect the needles shape from image processing. 
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Yan et al.  [18] modeled a needle using linear beam elements. Kataoka et al.  [19] 

did experiments using force sensors to validate the linear beam model of a needle 

by testing its force-deflection characteristics. In their experiments, they measured 

the infinitesimal force per unit length and, based on that, calculated the deflection 

of the needle during insertion. Dehghan et al.  [20] compared three different 

models of needle bending including two FE methods, with tetrahedral elements 

and nonlinear beam elements, as well as an angular spring model. Triangular or 

tetrahedral FE modelling is computationally more expensive compared to beam 

element modeling, making the latter more efficient. 

The aforementioned studies stop short of fully accounting for the coupling 

between tissue deformation and needle deflection when a flexible needle is 

inserted into soft tissue. A few papers have studied the coupled interaction of 

needle and tissue during insertion, which is difficult to model meticulously while 

it is important for accurate modeling of the seed placement process. For example, 

Dimaio et al.  [21] derived a Jacobian matrix for the needle that relates the tip and 

base velocity vectors. For modeling the soft tissue, a Cauchy strain model was 

assumed, which leads to a linear relationship between force and displacement. 

Besides, they considered Green-Lagrange strain model as a non-linear model for 

the force versus displacement relationship.  

1.1.4 Effect of Friction and Cutting Force 
There have been some research efforts at modeling the needle-tissue 

interaction. An example of such an interaction is the friction force between the 

needle and the tissue; this is typically modeled by a force component that exists 

along the needle shaft. The modeling of this force has been done in different 

ways. One approach is to measure only the insertion force during the introduction 

of the needle. Okamura et al.  [21],  [22] used this approach for measuring the 

insertion force in the bovine liver in an ex-vivo experiment. Based on the 

measured force, they defined three components for the insertion force as the 

following: (1) a capsule stiffness force modeled by a non-linear spring to simulate 

the force before puncture of tissue capsule; (2) a cutting force applied at the 
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needle tip, which depends on the type of tissue; and (3) a friction force simulated 

by a modified Karnopp model applied along the needle shaft. The friction force 

can be determined when the needle tip has fully passed through the tissue and the 

tip cutting force has become zero. Misra et al. found the relationship between 

physical parameters such as rupture toughness and nonlinear material elasticity 

and the needle’s tip forces to incorporate these parameters into the FE model of 

the tissue  [23]. For their study, they used several soft phantoms (mimicking 

chicken tissue). A significant amount of needle insertion force is related to the 

needle specifics such as length and diameter and certain patient-specific factors. 

Podder et al.  [24] used experimental data recorded during brachytherapy and 

studied these effects by deriving a statistical model of the force during needle 

insertion. Considering patient-related factors including age, body mass index, 

ethnicity, prior treatment, and stage of cancer along with needle diameter and 

average needle insertion speed/acceleration, the maximum force applied to a 

brachytherapy needle was predicted.  

Another approach to needle-tissue interaction modeling is to have the insertion 

force data combined with the tissue deformation information. In this scenario, 

while the insertion force is simply measurable by a force sensor, tissue 

deformation measurement is not as straightforward. Seeking a model to describe 

tissue deformation, Dimaio and Salcudean used a video camera system to track 

the position of several markers placed on the top surface of a slab of PVC tissue 

phantom while the phantom was perforated by a needle  [9]. Afterward, a force 

distribution model with a peak close to the needle tip was considered based on the 

force and displacement information. The authors had to modify the force model to 

be suitable for high-speed simulations. The modified model was a stick-slip 

interaction model  [25]. In this method, as the needle tip reaches a node, the node 

sticks to the needle tip and moves with it as long as its reaction force is smaller 

than a threshold. When the reaction force exceeds the threshold, the node’s state 

will be changed to the slip state. In this state, the node slips along the needle shaft, 

while a friction force is applied to it.  
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Towards a similar end goal of tissue deformation tracking, Crouch et al.  [26] 

measured 3D displacement of grid markers, which were implanted inside a 

homogeneous tissue. They chose a stereo-camera for their imaging system and a 

transparent silicone gel as the phantom tissue. From different experimental data, 

they derived a force profile dependent to the needle’s insertion velocity and 

distance to the needle’s tip. Another group of researchers, Hing et al.  [27] 

performed a similar study using two C-arm fluoroscope systems and calculated 

3D displacement of tissue motion. A problem with this is that they cannot be used 

in patient studies. For prostate brachytherapy, ultrasound imaging is the best 

modality for measuring tissue displacement in a patient study, yet it has limited 

resolution and update rate compared to regular cameras. 

1.1.5 Effect of Needle Geometry 
Tip type and diameter of a needle affect the needle bending. A straightforward 

and useful relationship is that needles with smaller diameters and beveled tips 

experience more bending  [22]. Besides, during insertion of a bevel-tip needle, 

bending is larger for smaller bevel angles  [28]. In order to simulate large 

deflections more precisely, Dimaio took into account the effects of the non-linear 

geometry of the needle in his simulation of lateral needle deflection [29].  

1.1.6 Effect of Tissue Properties 
Intuitively, tissue deformation is the result of forces (insertion force including 

friction component) between needle and the tissue, as well as tissue properties 

such as stiffness and elasticity. In  [30] Mahvash et al, derived the dynamic 

relationship of insertion force and needle insertion velocity with nonlinear 

coefficients of tissue model (tissue has a modified Kelvin model with nonlinear 

damper and spring coefficients). Results of their experiment on the pig heart tissue 

showed that the insertion force response of the needle has sharper slope when the 

needle moves faster. 
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1.1.7 Needle Steering in Soft Tissue 
There are two major categories for needle path planning and steering 

algorithms. One class of algorithms optimizes certain initial parameters of needle 

insertion. These parameters include the needle heading angle, initial insertion 

point, insertion depth, and bevel tip direction. In this class, we assume that the 

needle will be inserted without any manipulation when the initial insertion 

parameters are set. Alterovitz et al.  [31] introduced a sensorless path planning 

algorithm that optimized the insertion parameters of a rigid needle inserted inside 

a 2D tissue in order to reduce the targeting error for a single target. The insertion 

parameters were the insertion depth and the location of the insertion point. The 

algorithm used a search-based method to optimize the insertion parameters. 

Aside from this, steering the highly-flexible needles have been studied in  [13] 

by Alterovitz et al. In this work, the insertion point, insertion angle and bevel 

direction were optimized for a highly-flexible needle and 2D tissue to reach the 

target and avoid obstacles. First using a gradient descent method, the insertion 

point and the needle initial angle were optimized. Then, to optimize the third 

factor (bevel direction), the two other parameters were optimized twice, once for 

bevel left and once for bevel right. Then, the bevel direction with the better 

overall result was chosen as the optimal one. 

The second class of needle steering algorithms optimizes the manipulation of 

the needle base to reach targets. For steering the rigid needle, Dimaio and 

Salcudean  [29] proposed manipulation of needle base during insertion. They used 

attractive and repulsive potential fields to calculate appropriate needle tip motion 

inside the tissue. They also introduced a needle Jacobian matrix based on the 

needle base and tip velocities. Glozman and Shoham  [32] introduced a needle 

steering algorithm using inverse kinematics. In addition, they used fluoroscope for 

imaging feedback  [17]. 

Furthermore, highly flexible needle steering has also been studied. For 

instance, Alterovitz et al.  [33] used a highly flexible needle with a bevel tip to 

steer it while avoiding obstacles. For this aim, they suggested Markov uncertainty 

and used the bevel tip direction as an input for steering the needle. Kallem and 
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Cowan  [34] developed a non-linear observer-based controller and stabilized a 

highly flexible bevel-tip needle in 2D plane. Reed et al.  [35] combined the 

methods in  [33] and  [34] and presented a functional needle steering system that 

integrates the path planning algorithm in  [33] and the low-level controller in  [34] 

to reach a target, avoid obstacles, and keep the needle in a plane during the 

insertion. In  [33], [34], and  [35], a nonholonomic needle model was used. 

Aside from aforementioned needle steering studies, some researchers 

investigated the effect of specific rules of needle steering on the tip position error. 

Needle insertion can happen in two ways: either as a simple and regular insertion 

or by rotating the needle while it is being inserted. In past studies, there are 

experimental investigations using bidirectional rotation to verify the effect of 

needle rotation on needle deflection. Abolhassani et al.  [36] applied different 

rotational motions to the needle during its insertion and compared the results. For 

constant velocity along the translational (insertion) axis, they examined alternative 

scenarios for needle rotation about its axis: no rotation, continuous rotation with 

different speeds, partial rotation in two alternating directions with different speeds 

and magnitudes, and needle rotation based on measurement of lateral forces. To 

regulate the velocity of needle insertion at the desired level, they used a PID 

controller. They concluded that rotational motion during needle insertion should 

be considered as one of the important control inputs since it leads to less frictional 

force and tissue movement. Moreover, among different needle rotating strategies, 

the best approach is to control the rotational motion in a way to have an ideally 

zero orthogonal forces to the needle’s length. In another work  [37] the same group 

proposed a model for the relationship between needle base forces/torques and the 

amount of needle deflection during needle insertion into relatively soft tissue. 

Afterward, a model-based strategy for changing the needle direction by rotating it 

through 180 degrees was proposed  [38].  In this work, they have used a cantilever 

beam model of a needle to predict the deflection and find the insertion depth 

suitable for changing the bevel direction (i.e., rotate the needle by 180 degrees). 

Moreover, in  [39] they studied the effect of rotating the needle at suggested needle 
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depth on tissue deformation; image data was used to calculate the tissue 

deformation. 

1.1.8 Needle Insertion Pre-planning 
Pre-planning of needle motion has been the focus of some research groups. In 

this category, Alterovitz et al.  [33] employed a dynamic programming approach to 

minimize a defined cost function for the optimum needle path. They assumed 

there are uncertainties in needle-tissue interaction, needle deflection, and obstacle 

location. Later, the same research group  [12] used image feedback to estimate the 

needle tip position in their simulation. Hauser et al.  [40] proposed using a model 

predictive control structure to seek the optimum needle twisting rate, minimizing 

targeting distance and trying different helical path radius for the best 

compensation of perturbations. To validate their controller, they simulated various 

situations incorporating perturbations, image noise, needle deflection, and tissue 

deformation in real time. In  [41] Torabi et al. used a simple mass-spring model of 

tissue and tried to search for the best needle path via a stochastic optimization 

method. Based on their simulation, they showed that this pre-planning led to a 

reasonable amount of error for the needle tip targeting even when the workspace 

included obstacles. Another interesting application is physician training  [42]. In 

that work, having a 2D physically-based model of dynamic needle insertion, 

which included a finite element model for tissue and a model of frictional forces 

for the needle, an optimization method is used for needle insertion with minimum 

tissue deformation. Last but not least is the constant-time motion planning 

algorithm proposed by Duindam et al.  [43]. In their approach, an explicit 

geometric inverse kinematics of the flexible needle is calculated in a static and 

rigid environment and, based on some simplifying assumptions, the needle 

rotation depth is estimated in order to have the shortest path to target. 

1.1.9 Needle Deflection and Tissue Deformation Feedback 
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As mentioned before, needle deflection and tissue deformation are known as 

the two main factors of seed misplacement. There are many ways for measuring 

these two quantities. The following are methods used in the context of 

brachytherapy.  

For needle deflection measurement, one way is to measure the position of 

needle tip directly using a sensor. Fine motion tracking sensors (electromagnetic 

tracking system) are currently available  [44]. These sensors are built very 

delicately with a diameter of around 0.3mm (less than the diameter of common 

needles used in brachytherapy). For the 5DOF model of this type of sensors, an 

accuracy of 0.7mm and 0.2 degree in position and an orientation is estimated, 

respectively. This method of calculating needle deflection is straightforward and 

does not need any calculations. However, the cost of this system along with its 

clinical usability in brachytherapy are causes for concern.  

Another technique for needle deflection measurement is to take advantage of 

image analysis. We can apply object-tracking algorithms to find the needles tip 

throughout the insertion. Selecting a proper object-tracking algorithm is very 

important in this scenario. Among a variety of algorithms, a popular algorithm is 

the generalized Hough transform  [45], which is a feature extraction technique. 

Hough transform involves a voting process in a parameter space. It picks an object 

candidate with most votes for the chosen property. The simplified version of this 

algorithm started with line identification and was later extended to arbitrary 

shapes. To make the shape identification easier, usually some pre-processing is 

needed on the image. Such pre-processing may include edge detection or 

thresholding. While imperfections in an image can cause missing points in a 

shape,  Hough transform performs grouping of points with the same properties. 

Another existing idea for finding the needle deflection is to use a model of 

needle deflection in order to relate input variables such as needle base force to 

needle deflection (i.e., tip position). Some previous studies have used static 

models of the needle. It is also possible to calculate needle deflection based on a 

dynamic model of the needle assuming the control input vector is known at a 
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sample time. The success of such a model-based needle deflection calculation 

hinges on the availability of accurate dynamic models.  

In general, among these three methods for needle deflection measurement, 

image-based algorithm will take the longest and the tracking sensor-based 

solution will take the shortest time. In addition, image-based algorithms will be 

less accurate due to imaging limitations but are relatively inexpensive from a 

hardware perspective. 

Similar to the needle deflection measurement, there are different ways to 

calculate tissue deformation. This quantity can be estimated directly using sensors 

or indirectly via image processing or tissue modeling. For direct measurement of 

tissue deformation, sonomicrometers can be used. Also, studies show that one can 

relate the forces applied on the tissue to the tissue deformation. 

Image analysis is another approach for tissue deformation calculation. In this 

class, we will examine two different algorithms, template matching and 

morphological operations. For this aim, we measure the displacement of markers 

distributed in a grid pattern on the phantom tissue. 

In the template matching algorithm, we extract a part of image of undeformed 

tissue as a template and later, in each sampling interval, search for the most 

similar regions to this template in the current image frame. In this algorithm, it is 

usually required to confine the region of search to increase the speed of template 

matching. Template matching uses the concept of convolution of images and is 

easily performable on gray-scale images. 

Another solution to compute tissue deformation from image data is to take 

advantages of morphological operations. Since tracking tissue deformation is 

equivalent to tracking the grid of markers placed on the tissue, we may find the 

position of these grid nodes by applying morphological operators on a given 

image frame. Morphological theory uses set theory and topology to analyze the 

geometrical structures present in an image.  

The third approach is to relate the lateral forces along the needle length during 

insertion to the tissue deformation. Unlike the two previous methods, we need to 

have needle-tissue interaction forces in this method.  
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Among all previous work, not much attention has been paid to real-time, 

closed-loop control of needle insertion for optimized needle steering when needle 

and tissue are both flexible. While researchers have designed pre-planning 

systems for needle insertion with the aim of training, there has been very little 

attention paid to fully-automated or semi-automated robot-assisted needle 

steering. This fact serves as the main motivation of the research in this thesis. 
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Overview of Proposed Research 
 

The long-term objective of this study is to identify needle insertion precision 

during brachytherapy by considering the most important factors leading to seed 

misplacement, namely needle deflection and tissue deformation. Robots can apply 

control inputs such as the needle insertion force (or speed) more precisely and in a 

more repeatable manner than the surgeon’s hand. Exactly how to apply these 

control inputs, however, requires engineering analysis and control synthesis and 

that is the focus of this thesis.  

As information-driven surgical tools, robots have the potential to implement 

needle steering strategies that are informed by real-time feedback from the needle 

and the tissue and result in minimum seed placement errors. The eventual goal of 

this research is developing a fully-automated needle steering system. A schematic 

of such a system is depicted in  Fig. 2.1. In this thesis, we take steps to this end. 

 

Fig. 2.1. Fully-automated needle steering in soft tissue. 

In this study, we propose two different approaches to improve needle steering. 

For the purpose of fully-automated needle steering using model-based controllers 

for the needle-tissue system, a dynamical model of a flexible needle in soft tissue 

is needed. While there are various static models for the same system derived by 

 Chapter 2 
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previous research groups, few dynamic models have previously been reported. 

The proposed dynamic model considers needle insertion force along its length and 

the torque around an axis perpendicular to the needle deflection plane as the 

control inputs. Chapter 3 fully describes the derivation of the proposed dynamic 

model using the Lagrangian formulation. An advantage of the proposed dynamic 

model is that it directly involves physical parameters of the needle. Later in 

Chapter 3, controllability and observability analyses of the needle in tissue model 

are conducted. Also, simulation results of the closed-loop system with two model-

based controllers are reported.  

For the purpose of semi-automated needle steering, we propose an 

experimental setup that closely imitates the current practice of needle steering in 

the clinic. In this approach, the needle is inserted manually and a lateral force, 

which is normally applied by the surgeon’s finger to the needle at some point 

between the grid template and the prostate, is actuated by the robot end-effector in 

a control loop. The control loop involves image feedback that carries needle 

deflection and tissue deformation information. This experiment is repeated under 

two non-model based controllers. The details of experiments, image analysis 

techniques and results are discussed in Chapter 4.  

For closed-loop control of the needle, we need to measure needle deflection 

and tissue deformation as the feedback signals. Among many ways of measuring 

needle deflection discussed in Chapter 1, an algorithm based on Hough Transform 

is selected for our experiments. There are also different ways to calculate tissue 

deformation. Among all options, we opt for image-based measurement of tissue 

deformation. Specifically, between two possible algorithms of image analysis, 

template matching and morphological theory, we choose morphological methods. 

 Fig. 2.2 shows a schematic of the proposed experimental setup. 
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Fig. 2.2. Semi-automated needle steering in soft tissue. 

 

 

  



18 
 

Fully-Robotic Needle Insertion: 
Mathematical Modeling 

 

This chapter is concerned with deriving a dynamic model of a moderately-

flexible needle inserted into soft tissue, where the model’s output is the needle 

deflection. The main advantage of this approach is that the presented model 

structure involves parameters that are all measurable or identifiable by simple 

experiments. By “moderately-flexible,” we mean that the needle is neither too 

flexible to follow the non-holonomic bicycle model presented by Webster et al. in 

 [11], nor too rigid given that needle deflection during brachytherapy is not small 

and has a significant effect on the targeting accuracy. 

A common assumption in previous research has been that needle behavior 

during insertion can be adequately described by static models relating the needle’s 

forces and torques to its deflection. We hypothesize that the needle flexibility in 

soft tissue should also be studied in terms of its transients for closed-loop control 

purposes. In fact, we hypothesize that enhancing needle insertion accuracy via 

robot-assisted needle steering may require the knowledge of the dynamical 

relationship between what causes the deflection and the deflection itself. 

Therefore, the result of this chapter can be regarded as a first step for future 

research on closed-loop control of flexible needles in soft tissue. 

In the following, a Lagrangian-based dynamic model for the coupled needle-

tissue system is proposed. Afterwards, steerability (controllability) and 

observability analyses are performed, which are only possible with a dynamic 

model. Although inevitably more involved, the proposed dynamic model is 

expected to be more accurate than static models and more fully capture the rich 

dynamics of needle/tissue interaction. To avoid over-complication, we ignore the 

effect of different tip types (e.g., beveled or franseen) for brachytherapy needles in 

 Chapter 3 
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our modeling. In this chapter, we also present system identification for both tissue 

model and needle/tissue friction model. Simulation results are reported at the end. 

3.1 Previously-reported Models 
In the literature, there are several studies on modeling of the needle-tissue 

system using various assumptions. These models are founded either on Euler-

Bernoulli static beam model  

��
��� ��� ���(�)��� 
 = �(�), 

with the simplified version 
�� ����(�)��� 
 = �(�). 

or on the dynamic beam model derived from Euler-Lagrange theory 

��
��� ��� ���(�, �)��� 
 = −� ���(�, �)��� + �(�), 

where �(�, �) is the needle deflection at a given position �, � is the Young’s 

modulus of the beam (needle), � is the needle’s second moment of inertia, � is the 

mass per unit length, and �(�) is the applied load on the needles tip. Below, some 

of the previous models are briefly reviewed. 

In  [46], Haddadi et al. modeled a needle in soft tissue by considering three 

external forces at three discrete points – see  Fig. 3.1. In their model, spatial nodes 

were considered to derive the relationship between the forces and the needle 

displacement. By adding two pseudo joints with angular springs, they could 

capture the flexibility of the needle in their model, leading to the following 

nonlinear model for the system: 

��� + ��� + �� = � − � − ��, 
where � = [ , !, "#, "�] and � is defined as a vector of inputs including �%& and 

'%& in  Fig. 3.1. Also, � is the interaction forces and �� is the friction force. They 

concluded that the linearized model of the tissue-flexible needle is not controllable 



while this was not necessarily

Fig. 3.1. General model of 

Another model is presented

trocar is modeled as shown in

tool from trocar to the ends of flexible tool.

Fig. 3.2. Diagram of the flexible 

The corresponding model 

�(�) =
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)+− �6��

− -6��
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not necessarily the case for the nonlinear system.  

odel of a flexible needle inside a FEM tissue in Haddadi et al

presented by Lindsey in  [47]. A flexible tool going through a 

as shown in  Fig. 3.2, in which .# and .� are the length of flexible 

the ends of flexible tool. 

flexible tool, applied loads, and constraint (trocar). 

corresponding model derived from Euler-Bernoulli theory is 

+ ��� �/ + -.#2�� �� + ��.��6�� + -.#.�2�� − 12.� 
 �;      �
-
�� �/ � -.#2�� �� � ��.��6�� � -.#.�2�� � 12.� 
 �;      �

� 	 � 6��.����	 � 46��12 � �.�/5�
�.��/ � 3.#.��� � 3.#.��� ;    � 7 0, 

 

Haddadi et al  [46]. 
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In  [48] needle deflection 
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where <= is mass per unit length,
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Fig. 3.3. Effective forc

3.2 The Proposed 
In this section, we aim to derive dynamic equation

comprised of a moderately

dynamic model can serve as a cornerstone of 

dynamics-based control strategies for closed
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relates the tip load - and the base load � to the deflection �

needle deflection is modeled after considering the needle 

to consist of two parts: A part that is inside the tissue and 

outside of the tissue, with the length of .#.  Fig. 3.1 shows the different 

in the model. The partial differential equations (PDE)

	  the deflection of the inner and the outer part

�#��, �	
��� � <= ���#��, �	

��� � 0;       0 > � 9 .#,

<= ������, �	
��� � ?�����, �	 � ��

�����, �	
�� ;     

is mass per unit length, ?� is the force per unit length that causes 

is the friction force between the needle and the tissue

Effective forces acting on the curved shaft. 

The Proposed Dynamic Model 
In this section, we aim to derive dynamic equations governing

comprised of a moderately-flexible needle inserted in a soft tissue. 

dynamic model can serve as a cornerstone of future research into designing 

based control strategies for closed-loop needle steering in soft tissue 

���	 for a given 

considering the needle with the 

ue and another part 

shows the different 

partial differential equations (PDE) for 

outer parts of the needle, 

, 

  .# 9 � > ;, 
that causes a unit 

between the needle and the tissue. 

governing a system 

flexible needle inserted in a soft tissue. The proposed 

future research into designing 

loop needle steering in soft tissue 
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aimed at minimizing position error. To derive the coupled needle-tissue model, 

possible tissue models are first discussed and then an energy-based approach for 

acquiring the overall dynamic model is formulated. 

3.2.1 Soft Tissue Model 
Soft tissue modelling has become highly important in the context of computer-

integrated medical intervention. For example, simulators used for the minimally 

invasive surgery require realistic mathematical models of soft tissue. In addition, a 

real-time monitoring system for computer-integrated intervention requires a 

mathematical model of the interaction forces between the tissue and an 

instrument. In such a case, a safety switch can shut down the system when the 

interaction forces exceed set thresholds. 

 Given the complexity versus accuracy tradeoff that exists for tissue models, 

static/dynamic models of varying complexities have been proposed in the 

literature. In general, a tissue model is either involved, accurate and 

computationally expensive or with a simpler structure and faster computation 

times. In practice, real-time computation constraints are more limiting than 

accuracy requirements. For instance, fractional and finite element models suffer 

from computational expense issues and are not suitable for real-time 

implementation. 

 A soft tissue possess characteristics such as deformability, viscoelasticity, 

heterogeneity, isotropy, etc.  [49]. In the following, some of the tissue models that 

have been developed previously are reviewed. Later, a tissue model is selected for 

our application that reasonably captures tissue deformation yet is compact enough 

to keep the resultant coupled needle-tissue model relatively simple. 

All tissue models fall within one of the following three categories: lumped 

models, continuum-mechanical models, and a combination of the first two. 

Lumped models are those heuristically achieved by using the geometry. For 

instance, mass-spring-damper model, linked volumes model, and mass-tensor 

model lie in this group. Despite their limited physical realism, thanks to their 

computational simplicity, lumped models are still used quite frequently for 
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surgical simulation purposes  [50]. The second category of tissue models is based 

on laws of continuum-mechanics and uses either finite element or boundary 

element methods  [51]- [52] to solve them analytically. Simulators based on 

lumped models may enjoy fast computation but stop short of providing realistic 

feedback of tissue deformation and forces to the user. In contrast, continuum 

mechanics based approaches provide higher fidelity but are slower. 

In the following, starting with the standard linear Hooke’s model, tissue 

models of varying complexity and accuracy are presented by incorporating 

different features such as nonlinearity and viscoelasticity. A soft biological tissue 

may possess various nonlinear characteristics listed below.  

Hyperelasticity 

     In a hyperelastic material, the strain energy density function relates the energy 

stored in the material to strain components. The simplest form of the relation 

between stress and strain is covered by Hooke’s law. 

Linear Elasticity 

Linear elasticity amounts to a linear relationship between stress and strain of a 

material. This is a fair approximation in the case of small tissue deformation.  

Nonlinear Elasticity 

Nonlinear elasticity is a generalisation of the linear model for large 

displacements. 

Hyperelasticity vs. Viscoelasticity 

A hyperelastic material returns to its original form after the applied forces are 

removed. Also, in a hyperelastic material, deformation is independent of the path 

followed to obtain it. In contrast, a viscoelastic material has a time-dependent 

behaviour and its acquired deformation is history-dependent.  

Anisotropy 

Mechanical properties of a biological tissue differ along various orientations. A 

pure elastic model that simulates the interaction force with an environment by a 

mesh of connected springs is a primary candidate for our application, considering 

all of the real-time implementation issues with more sophisticated models. It 



should be noted that other needle

and friction  [15]- [16], 

our dynamic model. Further details are provided in the following sections. 

depicts a geometric model of soft tissue under consideration

 

Fig. 3.4. Schematic of a flexible needle inserted into the soft tissue.
the bent and the unbent needle represents the tissue with which the needle interacts.

3.2.2 Lagrangian 
A general dynamic modeling approach is 

principle. The extended Hamilton

be written as the following
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should be noted that other needle/tissue interaction forces including puncture, cut, 

, can be identified separately and eventually considered in 

our dynamic model. Further details are provided in the following sections. 

geometric model of soft tissue under consideration in our study

Schematic of a flexible needle inserted into the soft tissue. A spring mesh connecting 
the bent and the unbent needle represents the tissue with which the needle interacts.

Lagrangian Formulation 
A general dynamic modeling approach is based on the extended Hamilton’s 

The extended Hamilton’s principle for rigid and deformable

the following  [52]: 

� � A-	G� � @ H IJAKJ G� � 0,
L

JM#

CD

CE
 

is the time interval of motion and B and - are kinetic and potential 

energies of the system, respectively. In the above, IJ is the external force in the 

generalized coordinate, AKJ is the vector of corresponding displacements in the 

F is the dimension of displacements. 

conservative system, work done by a force is independent of path, e

the difference between the final and initial values of an energy function, and 

ompletely reversible. If the system we would like to model is conservative, the 

principle is invariant under coordinate transformations and can 

g puncture, cut, 

can be identified separately and eventually considered in 

our dynamic model. Further details are provided in the following sections.  Fig. 3.4 

in our study. 

A spring mesh connecting 
the bent and the unbent needle represents the tissue with which the needle interacts. 

the extended Hamilton’s 

rigid and deformable bodies can 

(1) 

are kinetic and potential 

is the external force in the 

is the vector of corresponding displacements in the 
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is conservative, the 
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@ A (B − -)G� 
CD

CE
= @ A; G� =

CD

CE
0. (2) 

In (2), the Lagrangian is defined as the difference between the kinetic and 

potential energies: ; = B − -. Applying the variation principle on (2), one can 

derive the most common representation of Lagrangian-based dynamics as  [54]                                                                        

GG� N�;�O� P − �;�O = �, (3)

in which O is the vector of generalized coordinates and � is the vector of 

corresponding generalized conservative forces. 

 

Fig. 3.5. Schematic of a flexible needle in soft tissue. The origin  of the {yz} coordinate frame 
(inertial frame) is the needle entry point into tissue while that of the {YZ} frame (non-
inertial frame) is fixed to the needle base and moves forward as needle is inserted. 

In the needle and tissue system, we define an inertial and a non-inertial 

coordinate frames ( Fig. 3.5). A non-inertial frame has acceleration with respect to 

an inertial frame. Writing the Lagrangian dynamics in an inertial reference frame 

is preferable because, if we use a non-inertial reference frame, the laws vary from 

frame to frame depending on the acceleration. For instance, to explain the motion 

of bodies in a non-inertial reference frame, so-called fictitious forces, which do 

not arise from any physical interaction, need to be defined in such a way that the 

motion observed in the non-inertial frame is the same as that from the inertial 

frame. Although sometimes stating a modeling problem in an inertial frame is 

inconvenient, dealing with fictitious forces in a non-inertial frame can be harder. 

Given the difficulties with non-inertial frames, we will use the inertial frame in 



26 
 

our system when writing the Lagrangian dynamics of a needle-tissue system. 

In the needle-tissue system, there are friction forces between the needle and 

tissue that cannot be neglected in the interaction force. These friction forces make 

the system non-conservative and the resulting Hamilton’s principle based 

equations will be complicated. To avoid this complexity, one can first consider 

only conservative forces and their corresponding energy equations for writing the 

Lagrangian dynamics, and then add friction forces directly in the final equations. 

This approach is used for deriving dynamic models of robots as well  [55].  

Disregarding the friction forces, to derive the dynamics of the coupled needle-

tissue system, we need to find all of the kinetic and potential energies in the 

system. Suppose that the flexible needle’s base rotates by A! about an axis 

perpendicular to the plane of needle deflection and moves forward by a distance 

AG in the insertion direction – see  Fig. 3.5. For simplicity, we assume that needle 

deflection and tissue deformation happen only in 2D space, although the 

following procedure is easily extendable to the case of 3D space.  

In  Fig. 3.5, consider the two coordinate frames {RS} and {UV}. While the 

former has its origin fixed to the needle base, the latter has its origin at the point 

of entry of the needle into the tissue, having its U axis aligned with the unbent 

needle’s axis. Therefore, the {UV} frame, which is in inertial motion, is considered 

as the reference frame in this study. In  Fig. 3.5, ��U, �) denotes the needle’s 

deflection as a function of time and space. Also, WX and ' are the force and torque 

(applied by the robot or manually) along the U axis and around the � axis (found 

from completing the {UV} frame using the right-hand rule), respectively.    

Assumptions. The following is a list of simplifying assumptions used in this 

modeling: 

1. Needle insertion and deflection are in a 2D plane that is perpendicular to the 

gravity vector. 

2. Needle bending outside the tissue is negligible in comparison with that 

inside the tissue.  
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3. Torsional deflection of the needle can be neglected. 

4. The effects of needle bevel tip on needle deflection can be neglected.  

Generally, the kinetic energy of a body is found as  

B��	 � @ BY�U, �) GU,Z[\&] ^\_X  

where BY is the kinetic energy density. Using the predefined generalized coordinate 

system, any point on the needle can be specified in the {UV} frame by three 

variables G, �(�, U), and U, which are the length of needle outside of tissue, the 

needle’s deflection along its length, and the needle point’s coordinate along the y-

axis, respectively. The quadratic form of the needle’s kinetic energy is 

B = 12 @ <= K�aK� GU[b_
b_ ,   (4) 

where . is the total needle length (comprised of the needle segments inside and 

outside the tissue) and <= is the linear density. Also, K is the position vector of 

any point on the needle, which is split into K# (for needle points outside the tissue) 

and K� (for needle points inside the tissue).  

    Given the above-mentioned assumptions, the coordinates of a point on the 

needle can be written as follow. For the sake of brevity, we have denoted the 

needle’s deflection ���, U	 by �. 

K = c K# = dU0e        ;   −G < U ≪ 0 K� = dU�e       ;  0 < U < . − G:     ,    

K� = g K# = dU�0e         ;   −G < U ≪ 0
 K� = dU��� e       ;  0 < U < . − G:  .    

Substituting the above K� in (4) leads to the following linear kinetic energy for the 

needle: 
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Bh = 12 @ <=K�#aK�# GUi
–_ + 12 @ <=K��aK�� GU[b_

i
= 12 @ <=U � � GUi

–_ + 12 @ <= �U � � + � � �	GU.[b_
i  

 

(5) 

We can split the above kinetic energy into two terms, namely Bh#, the kinetic 

energy related to the axial and rotational movements of the needle’s rigid body, 

and Bh�, the kinetic energy corresponding to the needle’s flexibility. It is easy to 

show that 

Bh# = #� k <=�U � �	GU = #�[b_b_  <=. U � �, 

Bh� = #� k <=� �� �	 GU[b_i . 

In addition to Bh, the rotational kinetic energy of the needle is calculated by 

Bl = 12 @ �m !�  G!�n�
i =   12 �m !� � .  

The potential energy of the needle/tissue system changes as the tissue deforms. 

This energy generally varies due to three effects: gravity, needle elasticity, and 

tissue deformability. In our system, gravity does not have any effect on the 

potential energy of the system since the plane of needle insertion and deflection is 

assumed to be parallel to the ground. The potential energy stored in needle 

elasticity is  [56]: 

-&o = 12 @ ��X �����U� 	�GU.[b_
i  (6) 

Also, one can write the potential energy stored in the deformed tissue as 

-C_ = @ N@ ?�G, �	��U, �	G�  P[b_
i  GU, (7) 

in which ?�G, �	 is the stiffness coefficients of the spring mesh that models the 

soft tissue. The dependence of k on d accounts for tissue non-homogeneities, and 

its variation with time � allows simulation of in-vivo reaction (such as swelling) of 
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sensitive tissues in response to the applied forces. In this study, for simplicity, we 

assume a homogeneous tissue and ignore phenomena such as swelling in the 

proposed model. Thus,   

?�G, �	 = ?Z = pqrK�sr�.    (8)

In (7), the tissue model will become even simpler after considering one equivalent 

spring connected at the needle’s tip.  

    Overall, the Lagrangian can be calculated from (5)-   (8) as  

; = 12  <=. U � � +  12 @ <=� �� �	 GU[b_
i + 12 �m !� � 

− 12 @ ��X  �����U� 
� GU[b_
i − 12 �?Z	 @ N@ �  G�P GU.[b_

i  
(9) 

For tractability of the derivation of the coupled needle-tissue Lagrangian dynamic 

model, we make two additional common assumptions. Firstly, we assume that the 

needle has a constant linear density <=, a constant Young’s modulus �, and 

constant area moments of inertia �X and  �m. It is generally agreed that this 

assumption is not far from reality. As a result, <= and ��X are constants that can 

be moved to outside of the integrals.  

     Secondly, in (9), the Lagrangian depends on the deflection  ��U, �	, which is a 

function of two variables: time and space. The well-known assumed mode method 

makes the assumption that the deflection can be expressed as  [57] 

��U, �	 = lim&→∞H O%��	�%�U	&
%M# ≈ O#��	�#�U	 + O���	���U	, (10)

where �%�U	 is a vector of r “shape modes” and O%��	 is the corresponding vector 

of generalized coordinates. This means that a continuous deflection is 

approximated by an infinite series composed of products of time-dependent and 

space-dependent functions.  
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     In this study, to limit the complexity and dimension, two dominant first modes 

are considered. The shape mode �%�U	 has the following general structure 

obtained through the Euler-Bernoulli beam equation  [58]: 

�%�U	 = p%y4Kzr�?%U	 − Kzrℎ�?%U	5|
−  Kzr�?%.	 + Kzrℎ�?%.	pqK�?%.	 + pqKℎ�?%.	 4pqK�?%U	 + pqKℎ�?%U	5, (11)

in which ?% can be computed by solving pqK�?%.	 pqKℎ�?%.	 + 1 = 0. Defining � 

as 

� = Kzr�?%.	 + Kzrℎ�?%.	pqK�?%.	 + pqKℎ�?%.	. 
�%�U	 is reduced to 

�%�U	 = p%y4Kzr�?%U	 − Kzrℎ�?%U	5| − �4pqK�?%U	 + pqKℎ�?%U	5, 
 in which p% is a normalizing constant found such that 

@ ���%�U		�GU[
i = 1. 

Simplifying the above for finding coefficients p% leads to 2�?% Kzr�?%.	Kzrℎ�?%.	 + 1?% �1 − ��	pqK�?%.	Kzrℎ�?%.	
− 1?% �1 + ��	Kzr�?%.	pqKℎ�?%.	 + 14?% �1 + ��	Kzrℎ�2?%.	
+ 14?% ��� − 1	Kzr�2?%.	 + �2?% 4pqK�2?%.	 − pqKℎ�2?%.	5 + ��.
= 1p%� 

Consequently, (9) can be rewritten as (12) where a prime denotes 

differentiation with respect to the space variable y (whereas a dot denotes 

differentiation with respect to the time variable t): 

; = 12  <=. U � � +  12 <= O�#� @ �#��U	GU[b_
i  + 12 <= O��� @ ����U	GU[b_

i + 
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<= O�#O�� @ �#�U	 ���U	GU[b_
i + 12 �m !� � − 12 ��XO#� @  4�#" 5�GU[b_

i
− 12 ��XO�� @  4��" 5�GU[b_

i  

−��XO#O� @ �#" ��" GU − 12 ?ZO#� @ �#��U	GU[b_
i −                  [b_

i  

#� ?ZO�� k ����U	GU − ?ZO#O� k �#�U	���U	GU[b_i[b_i .                    (12) 

 To substitute the above in (3), we note that O and � are  

O = � G!O#O�
� , � = �WX'00 � 

It is obvious that the two external forces, WX and ', are applied along the y-axis and 

around the x-axis, respectively. Since no external force is applied along the z-axis 

(i.e., in the direction of O# and O�), the last two rows of � are zero. Also, we note 

that U� = G�. Substituting (12) into (3) followed by simplification and 

rearrangement of the resulting terms yields the nonlinear dynamic equation of the 

needle in the tissue (excluding non-conservative forces) in the general form of 

��O	O� + ��O, O� 	 = �. (13)

It was mentioned previously that the resulting dynamic equations will not 

include friction forces. In the flexible needle-soft tissue system, friction plays a 

significant role. In order to make the dynamic equation (13) represent a more 

accurate model of the system, it is important to at least approximately model 

friction and include it in the dynamics. Therefore, the complete dynamics of the 

system will be expressed as 

��O	O� + ��O, O� 	 = � − �� . (14)

Due to the fact that friction always acts against the movement, it has appeared 

with a negative sign in the right side. Later, possible models for friction are 

discussed. 
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Overall, our proposed dynamic model consists of two types of parameters. One 

group is related to measurable physical properties such as �, �X, < and =. This is 

thanks to a physics-based approach to dynamic modeling, which readily 

incorporates known (or easily measurable) physical parameters such as Young’s 

modulus of the needle. Another group of parameters relate to the tissue model and 

the needle/tissue friction force model, which can be estimated by collecting 

experimental data and using common system identification methods. This will be 

discussed in section  3.2.3.3. 

In summary, the Lagrangian formulation for a dynamic system comprising a 

moderately-flexible needle in soft tissue in (12) was rearranged in the form of the 

generic dynamics of a robot by defining an appropriate state vector. Similar to 

robotic systems, the mass matrix ��O	 turns out to be a symmetric matrix that 

depends on the flexible needle’s physical parameters. The structure of this matrix 

and the matrix ��O, O� 	 are reported below.  

� = ��## 0  0 ��� 0 00 00 00 0 �// �/���/ ���
�. 

��O, O� 	 = � 00�1�O, O� 	�2�O, O� 	�. 

Appendix A shows the elements of matrices M and N. From the physical 

behavior of the system, one may expect the state variables G and ! to evolve in 

time independently from those states that relate to the needle deflection, i.e., O# 

and O�. This expectation is reinforced by the vector ��O, O� 	 in which the first two 

elements are equal to zero. However, in our simulations, we see a negligible yet 

nonzero dependence of the trajectory for G on the initial values of O# and O�. This 

deviation may be coming from the approximation of deflection with only two 

dominant shape modes.  

On the other hand, O# and O� are related only to the state G which is in the 

direction of needle’s insertion. This means that the initial needle deflection 
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changes during needle insertion (even though we have not considered bevel tip 

effect in the dynamic model). Simulation results at the end of this chapter will 

provide more description of this issue.  

In the next section, parametric system identification methods used for both 

tissue model and needle/tissue friction force are presented. 

3.2.3 Parameter Identification 

3.2.3.1 Least Squares Parameter Estimation 

Least squares parameter estimation is an optimization procedure for 

minimizing the squared discrepancies (errors) between data obtained by 

measurement and their expected values. In the context of a regression problem, 

the variation in an independent variable, X, leads to changes in another variable, Y, 

where R = ℎ��	 + white noise. The regression function ℎ maps the two sampled 

data variables to each other, and is to be estimated from n pairs of data point ��%, R%	. Assume that the value of the function h is known in n data points ℎ��%	, z = 0,1, … , r, and that ℎ��%	 = �%#�# + ⋯ + �%2�2. The least squares 

method provides a computationally convenient fit of this linear regression model 

to the experimentally obtained data points. The least squares estimates �% are as 

follows when the n sampled data points are arranged in a matrix framework  [59]:  

�� = ��a�	b#�aR. 

An extension of linear regression is called “weighted least squares”. In this 

method, instead of minimizing the sum of squares, a weighted sum of squares of 

errors is minimized. An ordinary regression calculates the parameters based on the 

assumption that the white noise has a fixed variance. In real experimental data, 

various input/output measurements may experience various levels of noise. Such 

an inconsistency in the magnitude of noise (heteroskedasticity) makes the 

estimation no longer optimal. In input/output channels where the noise is not 

small, that portion of information should be weakened using a weight matrix W. 

Parameter estimation in the weighted least squares method follows  
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�� = ��a�b#�	b#�a�b#R. 
This formulation is used later in this chapter for both needle/tissue friction model 

estimation and tissue stiffness model identification. 

3.2.3.2 Needle/Tissue Friction Modeling and Identification 

The needle/tissue friction model is a component of the dynamic model that 

needs to be identified and incorporated into the Lagrangian dynamics (14). 

Recently, various studies have tried to model the friction force in percutaneous 

procedures  [22] [22]. Given the complex nature of friction, it is common to only 

consider its dominant terms. In the analysis of a dynamic system, a complex 

model of friction is rather uninformative. A simple model is viscous friction in 

which the friction force W� is proportional to the needle insertion velocity G� as W� = μ�G� where μ� is the viscous friction constant. Another simple model is 

Coulomb friction W�, which is constant except for a sign dependence on the 

insertion velocity as W� = μ � Kz�r4G�5 where μ � is the Coulomb friction constant. 

A reasonable and simple model is to include both of these terms as 

W� = μ � Kz�r4G�5+μ�G� = W� + W� . (15)

Thus, the vector form of friction term in (15) can be added to the other dynamic 

terms derived from the energy equations as 

��O	O� + ��O, O� 	 = � − �μ � Kz�r4G�5000 � − �μ �G�000 �. (16)

To further complete the dynamic model of the flexible needle in soft tissue, the 

friction coefficients μ � and μ � need to be estimated. To do so, an experiment is 

set up as described in the following. It is clear that during the time that needle is 

moving through the tissue, a cutting force exists at the tip of the needle in addition 

to the friction along the needle’s length. In our modeling, this cutting force is 

neglected. To be able to ignore this cutting force and deal only with the friction 

force in (15), we collect experimental data when the needle tip has completely 

passed through the tissue. Then, we begin to apply an insertion force WX, starting 



35 
 

from zero and increasing it by small increments, until the needle starts to move; at 

this point, the force at the needle’s base has just passed the Coulomb friction 

level. The needle’s base force measurement data stored after this point 

corresponds to the sum of Coulomb friction and viscous friction. Meanwhile, the 

position and velocity of the needle’s base, which is fixed to the robot, are read 

from the robot while a JR3 force sensor (JR3, Inc., Woodland, CA, USA) records 

the needle base forces. This data is collected from several experiments. Applying 

linear regression estimation to this data will give us an estimation of µ� and µ�.  

 
Fig. 3.6. Needle base force profile recorded for friction model identification. Needle was initially 

passed through the tissue to eliminate cutting forces. 

Following the procedure stated in above and by repeating the experiment 20 

times, Table I. provides the average values and standard deviation (STD) of 

Coulomb and viscous friction coefficients.  Fig. 3.6 shows a sample profile of the 

needle base force measurement in the needle insertion experiment. 

Table I. Friction coefficient estimation 

Standard deviation and typical values for friction coefficients in 20 experiments   

STD of  μ�  STD of μ �  Average μ�  Average μ �  
0.0374 0.0447 0.56 0.3  

3.2.3.3 Tissue Model Identification 

The tissue model that we will be identifying later in this chapter based on 

certain force/displacement measurements is in the form of a stiffness matrix. An 
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important question that arises is, are our experimentally-obtained 

force/displacement measurements describing a spring? A significant characteristic 

of a linear spring is that it stores elastic energy; the time integral of force times 

displacement is zero over a closed contour. In a general spring, force is an explicit 

function of position as � = ���	. Therefore, the potential function related to the 

elastic energy is defined as 

�2��	 = @ −�aG�, 
or 

���	 = −�FsG��2��	, 
where �FsG� represents the gradient with respect to � and the bold symbols 

denote vectors. In the planar Cartesian coordinates, the position and force vectors 

are 

� = d�Ue ,   � = ��m��, U	�X��, U	�. 
−�FsG� �2��, U	 ≜ ���

�−��2��−��2�U ���
� = ��m��, U	�X��, U	�. 

The curl of the vector field � is defined as 

p1F. ���, U	 = ��m�U − ��X�� , 
which is directly related to the mechanical work required for movement. A 

sufficient and necessary condition for spring-like behavior of a system is to have a 

vector field with zero curl, which is equivalent to having a conservative force field 

 [60].   

    If a vector field is nonlinear but differentiable around an operating point, then a 

Taylor series expansion might be used for it. For sufficiently small displacements, 

high order terms in the series can be neglected, resulting in the following first-

order relation between the force and displacement vectors: 
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��m�X� = �−?mm −?mX−?Xm −?XX� �GmGX� ; 
−?mm = ��m�� , −?mX = ��m�U ,  
−?Xm = ��X�� , −?XX = ��X�U . 

The above relationship defines a stiffness matrix. In a pure spring, the stiffness 

matrix is symmetric: 

−?mX = ����X = �� �m = −?Xm. 

Otherwise, the stiffness matrix is not symmetric.  

    We are interested in a metric that determines how closely a given 2D stiffness 

matrix describes an actual spring. The 2D stiffness matrix can be decomposed into 

two parts: a symmetric matrix and an anti-symmetric (skew-symmetric) matrix. 

This decomposition is formulated as 

?�×� = 1 2 �? + ?a  	¢££¤££¥�X¦¦oCL%§ CoL¦
+ 12 �? − ?a	¢££¤££¥Z&C%b�X¦¦oCL%§ CoL¦

. 
The symmetric matrix represents forces that correspond to the elastic energy 

function. Since the force-displacement relation is a vector field, the curl of this 

field is a vector operator that describes the infinitesimal rotation of a field. The 

symmetric component of the stiffness matrix has a zero curl while the anti-

symmetric component possesses a non-zero curl. If the curl of the anti-symmetric 

part is small enough, the total stiffness matrix can be assumed to describe an 

actual spring; this will speak to the validity (or lack thereof) of an identified 

spring model.  

To test the validity of the spring model for our soft tissue, it is only necessary 

to make a small displacement around an equilibrium point by applying a small 

force using an indenter (e.g., a robot end-effector) to the tissue. For this small 

displacement, the force-displacement relation of the tissue can be considered 
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linear. To find the tissue stiffness coefficient denoted by ?Z in    
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Table II. Tissue stiffness identification statistical numbers 

 
Applied forces are in Newton      

f=1.1   f=1.2  f=1.3  f=1.4  f=1.5  

 mean STD mean STD mean STD mean STD mean STD 

¬ 1.26 0.08 0.82 0.54 1.10 0.11 1.03 0.12 0.96 0.12 ¬®® 1.01 0.11 0.81 0.15 0.69 0.18 0.60 0.19 0.52 0.18 ¬® 0.04 0.08 0.04 0.07 0.01 0.09 0.001 0.08 -0.005 0.08 ¬® -0.10 0.06 -0.10 0.10 -0.11 0.09 -0.11 0.09 -0.11 0.09 

        

In both identification procedures for the tissue model and the friction model, 

data were low-pass filtered to attenuate high frequency noise coming from the 

force sensor.  

3.2.4 Analysis of the Dynamical System 
Before designing a controller for an open-loop system, the system 

controllability must be investigated to determine whether there exists an input 

signal that can force the system from an initial state into a particular desired state 

(recall the necessity of state controllability for pole placement in LTI systems). To 

look at the controllability of the needle/tissue system with the dynamics given in 

(16), the state space representation of the system is required. Let us rewrite the 

system equation as 

O� = �b#�O	4� − �′�O, O� 	5, (17)

where �′�O, O� 	 = �� + ��O, O� 	+ ��. By defining the state vector 

� = ��# ��$a = ��# �� �/ �� �° �± �² �³$a 

                        = �G !  O# O�  G� !� O�# O��$a , 
the state space representation of the flexible needle-soft tissue system is given as 
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�� =
���
�� �°�±�²�³−�b#��#	�′��#, ��	���

�� +
���
�� 0000�b#��#	��	���

��. (18)

 

The output equation for the deflection of the needle’s tip is 

R = ��. − G, �	 = O#��	�#�. − G	 +  O���	���. − G	. 
3.2.5 Linearization of the Nonlinear System  

In needle insertion, it is quite reasonable to assume that the surgeon or the 

robotic system applies small changes in inputs. Thus, we only need to study the 

controllability of the linearized system around an operating point instead of that of 

the nonlinear system. The linearization of the general nonlinear system 

�� = W��	 + H �%��	¦
%M# 1%   ,        R = ℎ��, ´	, 

(where �, R and ́  are the state, the output and the input vectors, respectively) 

around �i and ́ i is 

µ�� = =� + ¶´R = �� + ·´:. (19)

In the above, 

= = :�W��	�� ¸¹º
+ :H ��%��	�� 1%

¦
%M# »¹º, ¼º

, ¶ = :H ��%��	1%�1%
¦

%M# »¹º
, 

� = :�ℎ��, ´	�� ½¹º ,   · = :�ℎ��, ´	�´ ½¹º . 
 

For a nonlinear system, the linearized system relates to a nominal input as well 

as nominal states. Therefore, verification of the controllability, observability and 

other possible features of the nonlinear system are only valid around the particular 

operating point of the states and the input.  
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Based on (18) and (19) and for the operating point �Gi !i 0 0 G�i !�i 0 0$a, the linearized model is given by 

 = =  � 0�×� ��×��4−�b#��#	�′��#, ��	5��# + :��b#��#	���# ¸¹º
:�4−�b#��#	�′��#, ��	5��� ¸¹º

�
³×³

, 

¶ =
���
�� 0�×�
:�b#��#	 × �1 00 10 00 0�¾

¹º���
��

³×�
,  

� = �:�4m¿ÀE�[bmE	ÁmÂÀD�[bmE	5�¹ Ã¹º�#×³ , · = 0#×�, 

in which ��×� is the identity matrix.  

We can now study the behavior of the linearized system around a couple of 

operating points for the state vector �.  

3.2.6 Controllability Analysis  
Definition 

A system is output controllable in a period ��i, �[	 if for any given �i and �[, 
any final output at �[ can be achieved starting with arbitrary initial conditions in 

the system at �i. A system is state controllable in a period ��i, �[	 if for any given �i and �[, any final state at �[ can be achieved starting with arbitrary initial 

conditions in the system at �i. 

It has been shown that a linear system described by matrices =, ¶, � and · is 

output controllable if and only if the output controllability matrix I¦×¦&  

I = � �¶  �=¶ …  �=&b#¶ ·$, 
has rank «, where « is the number of inputs and r is the number of the state 

variables. Similar to the output controllability, state controllability is satisfied if 

and only if the controllability matrix �&×¦&  

�&×¦& = �¶ =¶ =�¶ ⋯ =&b#¶$, 
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is full rank. A controllable system is not necessary output controllable and vice 

versa. 

For the linearized system (19), it is found that the needle-tissue system is fully 

controllable around some of the operating points while for some others there is a 

deficiency in the rank of the controllability matrix. In contrast, the output 

controllability is not satisfied for most of the operating points, which means that 

the inputs defined for the system are not able to influence the needle’s tip 

deflection in a desired way. This result was expected as in the manual needle 

insertion it is normally observed that WX and ' in  Fig. 3.5 are inadequate for 

maneuvering the needle; in practice, the surgeon needs to apply a lateral force as 

well or rotate the needle around the y-axis to use the bevel-tip angle for properly 

controlling the needle. 

3.2.7 Observability Analysis 
For designing a state feedback controller, the states of the system are assumed 

to be available. Aside from a control point of view, the knowledge of the states of 

the system is required for fault monitoring and detection purposes. In practice, the 

entire vector of states is rarely available because having each state is equivalent to 

having a physical sensor. In addition to the fact that sensors increase the cost of 

the control system, in some cases a sensor cannot be mounted in the proper 

location and some of the states may not even correspond to physical signals. For 

these reasons, we need to reconstruct the state information from other measurable 

input and output data. In this case, under some conditions – namely when the 

system is observable – an observer can be used to estimate the states. Although 

designing an observer for linear time-invariant systems is well formulated, the 

same problem for nonlinear systems is challenging. 

Definition 

A system is said to be observable if for any initial state �i and fixed time �# > 0, 

the knowledge of the input 1 and output R over �0, �#$ suffices to determine the 

initial state �i uniqely. Once the initial state is determined, any state at time �# 
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can be reconstructed from the dynamic equation of the system. The linear time-

invariant system with state, input and output matrices =, ¶ and � is observable if 

and only if the observability matrix  

Å&×¦&  =  �� �= �=� ⋯ �=&b#$a, 

has a full rank. 

Analyzing the linearized needle-tissue system in (19), it is found that while there 

is a rank deficiency of 2 in the observability matrix, those states that are not 

physically measurable, O# and O�, are observable.  

3.2.8 Controller Design 

3.2.8.1 Inverse Dynamics Control 

If the dynamics of a system is fully given as in (17), an inverse dynamics 

controller becomes an option. For the dynamic system in (17), the inverse 

dynamics controller is given by 

�§ = ��O	4O�_ + ?�O�o+?2Oo5 + �′�O, O� 	, 
O�o ≜ O�_ − O,�  
Oo = O_ − O, 

where �§ is the controller output vector, and ?� and  ?2 are the controller gain 

matrices related to the velocity and position, respectively. The closed-loop system 

dynamics will be  

O� = O�_ + ?�O�o+?2Oo. 
By choosing positive definite matrices for ?� and ?2, the state error Oo and its 

derivative O�o will converge to zero. Later in this chapter, the simulation results for 

this inverse dynamics controller are reported. 

3.2.8.2 Proportional-Integral-Derivative Control 

Among non-model based controllers, PID is famous for its reliable and robust 

results. Here, we optimize the proportional,  integrator  and derivative terms of the 

controller by trial and error to get minimum needle deflection. Understandably, 
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the main issue with this controller is that adjusting its gains does not follow a 

general rule and it varies from one dynamic model to another.  

The next section compares the simulation results for the PID and inverse 

dynamic controllers. 

3.2.9 Simulation Results 
In the following, let us consider a reduced dynamic model of the system in 

order to verify the effect of the insertion force WX on the needle tip deflection. To 

this end, the second state variable ! and its corresponding torque input ' are not 

considered. Accordingly, all matrix dimensions in (14) reduce from order 4 to 

order 3.  

Table III. shows the physical parameter values corresponding to the 18-gauge 

needle in our setup. The Young’s modulus parameter identification is reported in 

Appendix B. 

Table III.  Physical system parameters 

Parameter 

Values are for an 18 gauge 

flexible needle a 

Value Unit � Young’s  modoulus 200 � �s �X Cross-sectional moment of inertia 1.28 × 10b#/ «� �m Cross-sectional moment of inertia 1.0626 × 10bÇ «� < Density 8000 ?� ⁄ «/  = Effective cross sectional area 1.27 × 10b± «� .  Needle’s effective length 0.2 « � Gravity constant 9.89 « ⁄ K� 

a. Model number 102482, World Wide Medical Technologies 

 Fig. 3.8 and  Fig. 3.9 are the simulated responses to the input force equal to 3 N 

with the needle initially inserted 2 cm in the tissue with an initial deflection of 0.5 

mm. For the simulation, the average values reported in Table I are used for the 

friction model. Also, the stiffness coefficient of the phantom tissue is set to  0.52 ?� ⁄ «� as calculated experimentally in section  3.2.3.3. From  Fig. 3.8, it is 
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concluded that the needle tip’s deflection varies as the needle passes through the 

tissue. 

 
Fig. 3.8. Needle tip’s deflection in the open-loop model 

 
Fig. 3.9. State variables of the open-loop system 

 
 Fig. 3.10 and  Fig. 3.11 show the needle tip’s deflection and the states of the 

closed-loop system under the inverse dynamic controller, respectively. Also, the 

PID controller’s results are depicted in  Fig. 3.12. A comparison between the 

results of the inverse dynamic controller with the PID controller reveals that the 
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former leads to zero deflection as time grows whereas the PID controller results in 

a non-zero position error, which is not desired. Therefore, as we expected, the 

controller which is informed by the dynamic model of the system, can better make 

the needle tip follow a desired trajectory. Nonetheless, it must be noted that in 

reality we will not have a zero tip positioning error due to the existence of noise 

and inevitable open-loop model identification inaccuracies. 

 
Fig. 3.10. State variables in the closed-loop system under inverse dynamics control  

 

  
Fig. 3.11. Needle tip’s deflection in the closed-loop system under inverse dynamics control  

0 2 4 6 8 10
0

0.1

0.2

d 
(m

)

0 2 4 6 8 10
0

0.1

0.2

q1

0 2 4 6 8 10
-0.04

-0.02

0

0.02

q2

Time (Sec) 

0 2 4 6 8 10
-0.5

0

0.5

1

1.5

2

2.5

3
x 10

-3

Time (Sec) 

T
ip

 d
ef

le
ct

io
n 

(m
) 



47 
 

 
Fig. 3.12. Needle tip’s deflection in the closed-loop system under PID control 

3.2.10   Conclusion  
Recent studies on steering flexible needles in soft tissue attempt to employ 

computer-controlled steering in order to achieve more precise needle positioning. 

This aim may not be achievable without a complete understanding of the dynamic 

behavior of the needle/tissue system. This motivates deriving dynamical equations 

governing a flexible needle in soft tissue. This chapter explained the derivation of 

the dynamic model of a coupled needle/tissue system based on the Lagrangian 

formulation. The significance of this model is that it is physics-based and includes 

both the needle’s elasticity parameters such as Young’s modulus and the model of 

tissue deformation. This model does not consider unbalanced forces coming from 

the needle’s bevel tip. We considered the effect of needle/tissue friction in the 

dynamic model. Least square estimation method was used for identifying the 

parameters of tissue and friction models. Steerability (controllability) and 

observability analyses of the linearized system was done; the results for selected 

operating points confirm the controllability of this dynamic system. Simulation 

results show that the initial needle deflection can be a cause of further needle 

deflection during insertion. Moving forward, having a dynamic model of the 

flexible needle in soft tissue, we implemented two controllers: an inverse 
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dynamics controller and a PID controller. Simulation results confirmed that 

knowing the dynamical properties of an open-loop system helps to get a better 

performance in the closed-loop system. 
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Semi-automated Robot-Assisted 
Needle Insertion: Preliminary 
Experiments 
 

In this chapter, we first study the advantages and disadvantages of fully-robotic 

needle insertion compared to a proposed semi-automated needle insertion 

framework. The merit of the proposed approach is in its easier clinical 

implementation. We begin by describing the experimental setup used for the 

proposed semi-automated needle insertion. A flowchart of the semi-automated 

procedure is provided for better understanding of the proposed needle steering 

algorithm. Finally, we will discuss the results of preliminary experiments. 

4.1 Motivation: Fully robotic versus semi-
automated insertion 

The main reason for robot-assisted surgery is to improve the surgical 

outcomes. In the procedure of brachytherapy, both semi- and fully-automated 

needle insertions have the potential to improve this procedure in terms of 

accuracy of needle tip targeting. In fully-robotic needle insertion, there is 

minimum intervention from the brachytherapist and he/she plays a supervisory 

role. In this case, needle insertion and most of other needle adjustments (e.g., 

rotating a needle to use the bevel tip effect, applying lateral forces on the needle 

to correct its path, and even retracting the needle) will be executed by the robot. 

Evidently, the reliability of the fully-automated procedure becomes highly crucial 

as the smallest hardware or software errors in the robot or the associated software 

code for image processing and real-time control can have serious safety and 

performance repercussions. Also, compared to the current fully-manual procedure 
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of needle insertion, there are abundant improvements needed in the operating 

room to enable fully-robotic brachytherapy and many practical issues in terms of 

needle steering algorithms and real-time software implementation need to be 

answered. 

While the final, long-term goal may be to facilitate fully-automated needle 

insertion, at least in the short term it is attractive to make it possible for a 

brachytherapist to manually insert the needle while receiving robotic assistance 

for adjusting other motions of the needle; we call this semi-automated 

brachytherapy. The robotic assistance may be offered to the brachytherapist 

through various inputs for needle adjustment. In this work, we try to choose the 

input that is closer to the conventional needle insertion currently practiced in the 

operating room. We propose that the needle is inserted by the brachytherapist’s 

hand while the robot applies lateral forces on the needle that help correct its path; 

 Fig. 4.1 shows a schematic of the proposed approach. 

 

Fig. 4.1. Schematic of experiment for semi-automated needle steering. 

Feedback information used by the robot control system is composed of two 

components: needle deflection and tissue deformation – we chose them because 

they are the most dominant contributors to seed misplacement. In this preliminary 

study, we ignore the effect of needle tip bevel on the needle path. The robot-

provided compensation for minimizing the measured needle deflection and tissue 
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deformation will be a lateral force applied somewhere between the template grid 

and the patient’s body. We were inspired to choose this needle adjustment input 

by our medical collaborator2 who actually applies such a lateral force by his free 

hand during manual needle insertion in order to correct the needle path when 

needed. In current manual brachytherapy, the need for a lateral force exertion is 

decided by the brachytherapist based on intra-operative ultrasound images in the 

sagittal and lateral planes that visualize the needle; given the time constraints, the 

brachytherapist may not use this visual feedback very often. Also, there is no 

force measurement or computational analysis for determining the best magnitude 

and direction of applied lateral force, and it is all experience based. As a result, it 

sometimes happens that, faced with big needle tip targeting errors, the 

brachytherapist is forced to partially or totally retract the needle to perform re-

insertion, which can bring more tissue trauma and prostate swelling. It may be 

possible to apply more accurate and appropriate lateral forces on the needle using 

a robot under image-based feedback of needle deflection and tissue deformation. 

In the proposed experiment, we will find the aforementioned feedback 

information using image processing algorithms. This is done by calculating the 

needle deflection at the needle tip and the tissue deformation around the needle at 

every sampling time. At the same sampling rate, the algorithm calculates the 

lateral force to be applied by the robot on the needle. Here, we are using the same 

equipment as in conventional brachytherapy treatment including a grid template 

for guiding the needle. In the following, various components of the experimental 

setup are discussed.  

4.2 Experimental setup 

4.2.1 Phantom Tissue  
The primary need of the experimental setup is a transparent phantom tissue that 

resembles biological tissue in terms of mechanical characteristics. This phantom 

tissue should be transparent such that the needle insertion path is traceable in 

images. A common material for making artificial tissue is gelatin. Another option 

                                                 
2 Dr. Nawaid Usmani, Radiation Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada. 
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is using a liquid plastic, which can be mixed with a softener in different ratios to 

make tissues with different stiffnesses. Also transparency of this material is good 

enough for our approach. We mix a portion of plastic liquid and a portion of 

softener from M-F Manufacturing Co. (Ft Worth, TX, USA). Fig  4.2 shows two 

different phantom tissues made from gelatin and from plastic material.  

 

 

Fig. 4.2. (Right) Phantom tissue made of plastic; (left) phantom tissue made of gelatin. 

In practice, when making tissues from liquid plastic, there are a few hard-to-

control parameters in the process of baking the tissue that result in tissue samples 

having varying stiffnesses. For this reason, we need to apply tissue identification 

as explained in the session  3.2.3.2 to estimate the tissue stiffness. During needle 

insertion experiments, we need a container for the phantom tissue to avoid tissue 

slippage; this container is seen in  Fig. 4.2.   

4.2.2 Permanent Markers 
As stated, one of the feedback measurement in our experiment is tissue 

deformation. For measuring this using image processing algorithms, we need to 

embed permanent markers in a grid pattern in the phantom tissue. This turned out 

to be harder than it seems. We first tried to place small beads in the middle of the 

phantom tissue during the process of pouring the liquid in the container. After 

different trials, we concluded that the inaccuracy coming from poor visualization 

of the beads will be problematic. Besides, when the needle is inserted in the 
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phantom tissue, it can collide with and move one or more beads. As a result, it 

was decided that markers need to be placed on the surface of the tissue rather than 

inside it. Ink markers did not work well because the tissue would absorb and 

spread them after a few weeks. Eventually, we settled on markers made of 

mechanical pencil lead on the tissue surface; see  Fig. 4.2 (right). 

4.2.3 Digital Camera 
In our experiment, we need an imaging system for measuring needle deflection 

and tissue deformation. It is clear that the most important factor in selecting a 

camera in this application is its frames-per-second image acquisition rate. The 

sampling frequency for applying the control signals will depend on this image 

acquisition rate. In our setup, we started with a simple USB-compatible webcam  

and then upgraded to an IEEE 1394b digital camera (XCD-Sx90CR from Sony). 

This camera, shown in  Fig. 4.3, is programmed in a multithread C++ environment 

and is able to grab images at a rate of 30 frames per second. There are some other 

research groups that use the same camera in their setups. Ultimately, the imaging 

system available in the operating room, namely an ultrasound machine, has to be 

integrated into our experimental setup as the imager but that remains outside the 

scope of this thesis.  

 

 
Fig. 4.3. XCD series digital camera 

4.2.4 Force Sensor 
In our experiment, the needle adjustment input from the robot is a lateral force 

applied on the needle. Although it is not necessary to have a force sensor 
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measurement, we mount a force sensor on the robot’s end-effector in order to 

measure the applied force; the selected sensor is a 6-DOF force/torque sensor 

from JR3, Inc. (Woodland, CA, USA) – see  Fig. 4.4. The force sensor can be used 

in the future to infer the extent of needle deflection without using images  [19]. 

 

 
Fig. 4.4. 6-DOF force/torque sensor 

4.2.5 Grid Template 
Before any brachytherapy procedure, there is a preoperative planning stage in 

which the medical team determines desired positions inside prostate for 

depositing the radioactive seeds. In current clinical practice of brachytherapy, the 

surgeon uses a grid template like the one shown in  Fig. 4.5 to find the right entry 

point for the needle in each insertion. This template also helps the surgeon’s hand 

to remain steady during the needle insertion. We will be using the same template 

in our experimental setup.  

 
Fig. 4.5. Gridded template currently utilized in an OR 

4.2.6 Robot 
In the proposed semi-automated needle insertion experiment, the lateral force is to 

be applied by a robot. Therefore, a 3-DOF PHANToM robot from SensAble 

Technologies/Geomagic, Inc. (Wilmington, MA, USA) is used. This robot has 
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three revolute joints that can translate its end-effector in three orthogonal 

directions.  Fig. 4.6 shows the PHANToM robot with a JR3 sensor attached at its 

end-effector. 

 

 
Fig. 4.6. PHANToM robot 

4.2.7 Needle Holder 
We need to attach the needle to the robot end-effector. For this reason, a small 

needle holder attachment for the robot end-effector is designed that has a small 

hole through which the needle passes.  

4.2.8 Needle 
We utilize standard, bevel-tip, 18-gauge needles ( Fig. 4.7) from Worldwide 

Medical Technologies, Inc. (Oxford, CT, USA), which are for clinical use. While 

most other research groups use super-flexible needles, which are not used 

clinically for prostate implantation, to be able to demonstrate tangible 

performance improvements, our choice of needles will keep us aligned with the 

current clinical practice. Understandably, this may at times come at the cost of 

less dramatic performance improvement going from manual to robot-assisted 

insertion.  
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Fig. 4.7. 18-gauge bevel-tip brachytherapy needles. 

4.2.9 OpenCV  
We require real-time image processing for calculating both needle deflection and 

tissue deformation from a live stream of video images. For this aim, the open 

source C/C++ computer vision library (OpenCV) seems a good option  [61]. This 

library is a collection of C functions along with a few C++ classes and is intended 

for real-time applications. It can be used for acquiring images/videos, processing 

them, and data manipulations such as memory allocation, release, conversion, etc. 

OpenCV accepts file and camera based inputs and directly works with matrices 

and vectors. Some of basic image manipulations such as filtering, edge detection, 

and corner detection possess dedicated functions while more image manipulations 

can be done by combining these basic commands. Motion analysis (optical flow, 

etc.), object recognition, and image labeling (line, conic, polygon, text drawing) 

are commonly used features of OpenCV. In our application, we use the functions 

for template matching and Hough transform. In the next section, the algorithms 

we have used for tissue deformation and needle deflection measurement are 

explained. 

4.2.10 Image Processing 

4.2.10.1 Hough Transform 

Hough transform approximates the parameters of a shape seen in an image 

from its boundary points. For instance, a line is defined by two normal 

parameters: F as the distance between the line and the origin of the coordinate 
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system, and ! as the angle of the vector from the origin to this closest point on the 

line; see  Fig. 4.8 (left). In this way, a line is parameterized by two values in polar 

coordinates; this is sometimes called the Hough space. Using this 

parameterization, the line equation is  F = �pqK! + UKzr!. The lines that go 

through an arbitrary point with coordinates (x0, y0) on the image plane are 

described by F = �ipqK! + UiKzr!. Plotting this for a number of points on the 

line, one can plot the relationship between the two parameters of F and !; see  Fig. 

4.8 (right). Evidently, the pair of parameters F and ! through which the maximum 

number of sinusoidal curves pass represent the line we have been interested in 

detecting.  

In contrast to the analytical shapes, the procedure for non-analytical shapes is 

complicated. For this case, incremental strategies using dynamic programming 

should be applied. Readers are referred to  [62] for more information as this is not 

the case for our application. 

 
Fig. 4.8. (Left) Parameters describing a line. (Right) A Hough space graph  [45]. 

The Hough transform algorithm usually requires some pre-processing such as 

edge detection or thresholding. In our experiment, it may seem that thresholding 

should be enough given that we use camera images instead of ultrasound images. 

However, there are some implementation problems due to lighting (illumination) 

issues.  

4.2.10.2 Lighting Issues 

In our experimental set up, the material that is used for the phantom tissue has 

a very reflective surface that causes serious interference with the image 
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thresholding stage. To solve this, we use an adaptive thresholding level, which is 

roughly calculated based on the average intensity of all pixels.  

4.2.10.3 Template Matching 

Template matching is an image processing technique for object tracking. In our 

experiment, to detect the points marked on a phantom tissue for tracking tissue 

deformation, a solution is applying template matching, which finds areas of an 

image that are similar to a template image. To do so, we need two components: a 

source image and a template image. The former is the image in which we expect 

to find areas that match the latter. This is done by sliding the template image, 

which is commonly in a smaller size than the source image, over the source 

image. As the template moves one pixel at a time (e.g., from left to right and up to 

down), at each location, a similarity metric is calculated to represent how similar 

the template is to that particular area of the source image. After scanning the 

whole source image, for each location of the template, a matrix of similarity 

metrics will be available. According to that matrix, the closest match between a 

particular template-size area of the source image and the template is located.  

In OpenCV coding, the function minMaxLoc locates the highest or lowest 

value in a similarity matrix. There are different types of template matching based 

on the definition of the similarity metric. Some available methods are as follows: 

CV_TM_SQDIFF: sum of squared differences 

CV_TM_SQDIFF_NORMED: normalized CV_TM_SQDIFF 

CV_TM_CCORR: cross correlation 

CV_TM_CCORR_NORMED: normalized CV_TM_CCORR 

Template-matching algorithm is time consuming if the size of the source or the 

template image is big. A generalized version of this method, fast template 

matching, can be applied instead as in the following: 

-Both target and source image are down sampled with a selected rate. 

-Regular template matching algorithm is applied on the shrunken images.  

-After the best locations are found (using a defined similarity metric), for 

each point where a maxima was located:  
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*Original source image is searched at and around that point in both 

x and y direction  

-If similarity score is above a defined threshold, the location and score 

are saved. 

In our experiment, the phantom tissue is marked in a grid pattern, which is 

expected to be tracked by fast template matching; however, the needle path is also 

visible in each image frame. For applying template matching, we need to first get 

rid of the needle’s track in the images since it may block some of the tissue 

markers. Therefore, in the sequence of collecting feedback data, we first find the 

track of needle and then, after subtracting that from the original image, we apply 

the fast template matching method for tracking tissue deformation.  Fig. 4.9 and 

 Fig. 4.10 show the results of template matching and Hough transform on a sample 

frame in our experiment, respectively. 

 

 
Fig. 4.9. (Left) template image. (Right) Result of template matching on the gridded phantom 

tissue. The red spots show the identified center of each marker on the tissue.  
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Fig. 4.10. Hough transform algorithm has detected the needle. 

Template matching was not very successful in our experiments. The reason is 

that we made the tissue marking by hand and the resulting markers are not all 

similar to the template. Since the success of this algorithm depends on how 

similar the markers are to the template, sometimes failures happen. In the 

following, another approach for tracking tissue deformation is discussed. 

4.2.10.4 Morphological Techniques 

Morphological operators are formulated in terms of sets. They accept as inputs 

a binary image and a structuring element and combine them using a set operator 

(intersection, union, inclusion, complement). Commonly-used morphological 

functions are dilation, erosion, opening and closing. Dilation is an operation that 

is used to grow or thicken an object as controlled by the shape of structuring 

element. In fact, the effect of the dilation operator on a binary image is to enlarge 

the boundaries of regions of foreground pixels while holes within those regions 

become smaller. In contrast, erosion shrinks or thins objects in an image.   
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Depending on an original image and the shape and intensity of an object that 

we are searching for, the right combination and arrangement of morphological 

operators should be found.  Fig. 4.11 shows the result of using morphological 

method for finding the center of markers in the phantom tissue. 

In terms of run time, morphological methods are faster than the template 

matching algorithm. In contrast, they are sensitive to the structuring elements and 

the sequence of applying various operators on an image. For instance, we will 

have quite different results if first apply “opening” and then “erosion” as 

compared with first “erosion” and then “opening”.  Fig. 4.12 shows the sequence 

of operations we apply on image frames for calculating the feedback signal. 

 

 
Fig. 4.11. Result of morphological methods on the phantom tissue. The red spots are enlarged for 

more visibility, showing the center of each marker on the tissue. 

4.2.11   PHANToM Coding  
The premium PHANToM robot, which will be in charge of applying lateral 

forces on the needle in our experiment, has a maximum sampling rate of 1000 Hz. 

However, the camera provides images only at a rate of 30 frames per second. 

Besides, we need some time for image analysis to find the needle deflection and 

tissue deformation. Thus, we need to run the robot at a much lower sampling 

frequency.  

 



Fig. 4.12. Sequences of operation on image frames for 
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of operation on image frames for tracking the needle and tissue markers.

applied by the robot is in only one axis perpendicular to the 

in the other two directions, the robot must be position control

so that it does not move. We apply proportional position control in 

Visual Studio (C/C++) code for our Phantom robot

trategy 
representing tissue deformation is calculated from average 

of centers of each marker between two subsequent 

In addition, another metric is calculated based on the needle’s tip distance from 

needle in each image frame. These two metrics are then 

to be used as the feedback measurement (error signal). For the control 

strategy, we use two different approaches; one is what we name 

is proportional control.  

The flowchart of incremental control is depicted in  Fig. 4.13. In 

strategy, there are different thresholds. The lateral force is only

if the error signal is bigger than Threshold 1. In fact,

signal is not bigger than Threshold 1, the lateral force will remain a

sampling interval. The reason for this is that due to the noi

inaccuracies coming from illumination discrepancies

 
tissue markers.  
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position controlled 

control in these two 
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representing tissue deformation is calculated from average 

subsequent image frames. 

s tip distance from an 

. These two metrics are then 

. For the control 

what we name incremental 

. In this control 

only updated in a 

In fact, if the error 

lateral force will remain at the value in 

is that due to the noise and 
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before, small error signals do not necessarily correspond to meaningful changes in 

the needle deflection and tissue deformation measurements. On the other hand, if 

the error signal is bigger than Threshold 1, the error signal is checked with respect 

to its value in the previous sampling interval to see if the difference exceeds 

Threshold 2 or not. This margin is used for the same reason for which Threshold 1 

is used. If the change in the error signal is big enough, the lateral force will be 

incremented by some constant b. Meanwhile, there is a maximum on the lateral 

force (Threshold 3) which is enforced in each sampling interval. Obviously, the 

downside of this method is having too many threshold levels that are selected by 

trial and error.  

4.2.13   Experimental Results  
 In this part, the results of different experiments of semi-automated needle 

steering in a closed-loop feedback control structure are discussed.  Fig. 4.14 shows 

the experimental set up. All the experiments we have done can be categorized into 

two main categories: uncontrolled experiments involving needle insertion without 

any compensation, and controlled experiments where the robot operates in a 

feedback loop and applies lateral forces. These two groups of experiments were 

performed for four different conditions: constant velocity insertion with three 

different speeds (5, 10 and 15 mm/s) using a linear stage, and manual insertion. 

To have a comparison between the two control approaches (incremental control 

and proportional control) the experiment with the velocity of needle insertion 

equal to 10 mm/s is repeated for both of them. The rest of experiments are 

implemented using the incremental control method only. 

In order to collect data from different conditions, each experiment is repeated 

10 times in different locations of the grid template. During the manual insertion, 

the human operator is asked to keep his/her insertion speed as consistent as 

possible. For this study, needle is inserted to a depth of 10 cm holding the tip 

bevel at 0 degrees with respect to the plane of needle insertion. It should be 

mentioned that each sampling interval takes 150 ms based on the required time for 

capturing an image and processing it. 



Table 4.1 summarizes the outcomes of this study. All numbers in this table are 

averages of position errors reported in pixel
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Table 4.1 summarizes the outcomes of this study. All numbers in this table are 

averages of position errors reported in pixels in ten experiments. The last column 

shows the percentage of improvement with semi-automated, image

dback control with respect to uncontrolled insertion.  

Incremental control strategy based on the image feedback. 

automated needle steering setup.  

For a better statistical comparison between two cases of uncontrolled (open

controlled (closed-loop) experiments, we applied a T-test on the 

ten experiments. T-test compares the difference between two means in 

relation to the variation in the data, which is often expressed by

Table 4.1 summarizes the outcomes of this study. All numbers in this table are 

in ten experiments. The last column 

automated, image-based 

 

 

uncontrolled (open-

test on the results 

compares the difference between two means in 

by the standard 
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deviation. Defining the null hypothesis as mean1 = mean2 and an alternative one 

as mean1 > mean2, where mean1 and mean2 were average errors in the 

uncontrolled and controlled experiments, all the results rejected the null 

hypothesis except for 15 mm/s insertion, which failed to reject the null 

hypothesis. The probability of the results were p = 0.016 (for 5 mm/s insertion 

and incremental controller), p = 0.015 (for 10 mm/s insertion and incremental 

controller), p = 0.04 (for 10 mm/s insertion and proportional controller), p = 0.046 

(for 15 mm/s insertion and incremental controller), and p = 0.032 (for manual 

insertion and incremental controller). This indicates that there is indeed a 

significant difference between the two mean values. 

From Table IV, it is found that increasing the velocity of insertion leads to 

lower errors. In contrast, for the controlled experiments, increasing the velocity of 

insertion is equivalent to less number of images (i.e., error signal updates) across 

the total time of insertion, which leads to less frequent and timely control. The 

reported percentage of error improvement reported in the third column of Table 

IV shows this fact. In addition, it is concluded that the proportional control gives 

better results than the incremental control once we compare the second and third 

rows of the table. 

Table IV.  Results of experiment in 10 cm needle insertion depth with different methods. The error 
signal in pixels is shown in the table. 

 

Robot OFF 

(uncontrolled) 

Robot ON 

(controlled) 

Percentage of 
improvement 

Linear stage with constant velocity of 5 
mm/s 

22 8 63.63 

Linear stage with constant velocity of 
10 mm/s 

12 6 50 

Linear stage with constant velocity of 
10 mm/sec and proportional controller 15 4 73.33 

Linear stage with constant velocity of 

15 mm/s 

11 12 -9.09 

Manual insertion 22 17 22.72 
 

Insertion method 
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Conclusions and Future Work 
 

5.1 Conclusions 
The objective of this project was to identify the efficiency, accuracy, and 

reliability of seed placement in brachytherapy. This requires knowledge of the 

dynamic behavior of needle insertion system in order to study possible control 

strategies for minimum seed placement errors. Therefore, a Lagrangian-based 

approach to dynamic modeling of a flexible needle in soft tissue was proposed in 

Chapter 3. 

 The novelty of the study in Chapter 3 is in considering feasible control inputs, 

namely needle insertion force along its length and torque around an axis 

perpendicular to the needle deflection plane. The latter input in template-free 

robotic insertion can be argued to have a similar effect as the lateral force applied 

by the surgeon in template-based manual insertion in terms of correcting the 

needle path. The proposed dynamic model can be arranged to comply with 

generic dynamics of serial robots and involves physical parameters of the needle 

such as its Young’s modulus as well as models of tissue and needle/tissue friction. 

This type of formulation is beneficial since it enables one to use most of the 

control strategies designed for serial robots for this needle insertion application. In 

the proposed dynamic model, physical and model-related parameters can be 

estimated by system identification methods. We applied several tests on phantom 

tissues and extracted both a tissue model parameter and the needle/tissue friction 

model parameters.  

Before any controller design for the system in Chapter 3, we investigated 

properties of the derived dynamical model including its controllability and 

observability. We came to the conclusion that for the proposed dynamic model, 

the linearization around most of operating points is both controllable and 

 

 

Chapter 5 
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observable. Then, the closed-loop system with inverse dynamics control and PID 

control was simulated. 

While the final, long-term goal is fully-automated needle insertion as pursued 

in Chapter 3, in the short term it is attractive to make it possible for a 

brachytherapist to manually insert the needle while receiving robotic assistance 

for adjusting other motions of the needle; we called this semi-automated 

brachytherapy in Chapter 4. For experiments in this chapter, a prototype of a 

needle steering setup was built in the lab with a clinically-used needle and grid 

template in order to closely follow the actual procedure of brachytherapy. We did 

two groups of experiments: needle steering in an open loop manner (uncontrolled 

experiments) and needle adjustment during manual insertion in a closed-loop 

control manner under image feedback (controlled experiments). The second group 

of experiments was done using two different control strategies: incremental 

control and proportional control. In both controlled experiments (i.e., under 

incremental control and under proportional control), the needle insertion was done 

with constant velocities (except for one experiment in which the insertion velocity 

was variable) and all other experimental conditions such as needle insertion depth, 

bevel angle, and phantom tissue were kept the same. We were able to show that 

semi-automated needle steering in a closed-loop control system can improve the 

needle tip position accuracy compared to regular manual needle insertion. 

5.2 Future Work 
Following Chapter 3, the proposed dynamical model of the flexible needle in 

soft tissue can be used for various model-based controller designs for steering the 

needle.  Fig. 5.1 shows a possible framework for future research on model-based 

needle steering. The needle/tissue system consists of two blocks: the needle’s 

dynamics and geometry and the prostate’s deformability characteristic. To steer 

the needle, the control system uses feedback of the needle base’s position in axial 

and torsional directions. On the other hand, the desired velocity of the needle base 

is calculated from an optimization routine that minimizes tissue deformation and 

needle deflection – future work can focus on developing this optimization routine. 
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Fig. 5.1. Proposed control method using the derived dynamical model of the needle-tissue 
system in Chapter 3. 

In Chapter 4, while by default the PHANToM robot has a sampling period of 1 

ms, we had to lower the sampling rate due to the lower sampling rates for image 

acquisition and processing. This was a restriction and remains to be improved in 

the future via multi-threaded C/C++ programming such that the robot control loop 

and the image acquisition/processing loops run in parallel. There were also other 

limitations we faced in the closed-loop control system including the sensitivity of 

the algorithm for tissue deformation measurement, which involved thresholding, 

to the ambient illumination. Eventually, we opted for morphological operations 

that are more robust against lighting conditions in the room. Another experimental 

setup-related limitation that requires enhancement in the future is a repeatable 

way for placing landmarks in phantom’s tissues; currently, we have to use the 

same tissue for all experiments despite the fact that each needle insertion makes 

irreversible cuts to the tissue. Lastly, the current control strategy in our 



69 
 

experiment is based on feedback from camera images. Future work can focus on 

using ultrasound images as used in the operating room. 

In Chapter 4, we concluded that automatically-generated lateral forces on the 

needle could make proper adjustments to the needle in such a way that the needle 

tip followed the desired straight path. For future work, one can also take 

advantage of the beveled tip of needles for more efficient deflection minimization. 

Since the bevel angle is one of the causes of needle deflection, changing the 

rotational location of the bevel with respect to the needle’s longitudinal axis can 

be a way of compensating for unwanted needle deflections. A rotary motor 

mounted on the needle guide can be used for rotating the needle around its axis. In 

this scenario, the insertion is still done manually while the rotary motor adjusts 

the bevel location in order to minimize the needle deflection. Upon success of this 

strategy, one can combine two compensations – the lateral force applied by the 

robot and the bevel location adjustment by the rotary motor. 

Eventually, for the fully-automated needle steering scenario, the framework in 

 Fig. 5.2 can be worked on further. In this scenario, needle insertion and all other 

adjustments such as bevel rotation and/or lateral force exertions are automatically 

applied by a control system. Again, imaging feedback can be used for the needle 

control. The control strategy can be model-based or non-model-based as 

explained below. 

5.2.1 Closed-loop Needle Control Strategies  

5.2.1.1 Model-based Structures 

A model-based control strategy suitable for our application is adaptive control 

given that the tissue and the needle cannot be modeled precisely. In fact, control 

methodologies that ensure robustness are welcome additions as there will always 

be uncertainties in the modeling due to different tissue structures and needle 

parameters. In most control structures, designing a controller requires a state-

space representation of the system. In the needle-tissue system, however, not all of 
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the states are measurable and thus developing appropriate state observers is 

recommended. 

 

Fig. 5.2. Fully-automated needle steering. 

5.2.1.2 Non-model-based Structures 

Similar to model-based controllers, this category of controllers needs image-

based measurement of feedback signals. One appropriate control approach is 

fuzzy control, which is built on logical rules. A fuzzy controller tries to map a 

logical input variable via a membership set into a logical output variable. The 

main flexibility of a fuzzy controller is that the set of rules can be changed or 

adaptively updated throughout the procedure. Fuzzy controllers have close 

resemblance to the way a human applies control. The incremental control strategy 

that we applied in Chapter 4 has some resemblance to this as it tried to simulate 

the way that surgeons decide about the level of applied lateral forces. 

Another suitable intelligent controller is artificial neural networks, which 

demonstrate adaptability to different operating conditions. A neural network can 

learn the properties of the system. Genetic algorithm, ant colony optimization 

algorithms, etc. are other examples of non-model-based, intelligent control 

approaches that can be implemented for closed-loop needle steering. 

5.3 Clinical Limitations 
Similar to other robot-assisted, image-guided clinical procedures, in 

brachytherapy we should consider all practical limitations imposed by the 

operating room settings. Further studies can be done to find the best control 
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strategy in operating room conditions. Finally, the location of the template, which 

is placed somewhere between the surgeon’s hand and the patient’s tissue, can be 

optimized to yield minimum needle tip positioning errors.  
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Appendices 
Appendix A: Elements of M and N matrices 
In this appendix, the elements of matrixes ��O	 and ��O, O� 	 in Section 3.2.2 are 

shown. The vector � is defined as 
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L

x5 + 

0.4616776776 1010 r A L4 x8 x5eeee








4.694100000x1
L 






cos

1.875100000x1
L

 + 

0.5046199940 1012 r A L4 x8 x5eeee






− 4.694100000x1

L 





cos

1.875100000x1
L

 − 

0.1329532527 1012 r A L4 x7 eeee








1.875100000x1
L 






cos

1.875100000x1
L

x5 + 

0.9760121890 1011 r A L4 x7 x5eeee








1.875100000x1
L 






sin

1.875100000x1
L

 − 

0.8670472855 1012 r A L4 x7 eeee






− 1.875100000x1

L 





cos

1.875100000x1
L

x5 + 

0.1209956669 1013 E Iy x4 L 







cos

3.750200000x1
L

 + 

0.7108732740 1011 k L4 x4 





sin

2.819000000x1
L

 − 

0.4381405776 1012 k L4 x4 







sin

6.569200000x1
L

 − 

0.6365009515 1012 r A L4 x7 x5eeee






− 1.875100000x1

L 





sin

1.875100000x1
L

 − 

0.4002961620 1010 k L4 x4 eeee








2.819000000x1
L − 
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0.5046199950 1012 k L4 x4 







cos

1.875100000x1
L

eeee






− 4.694100000x1

L + 

0.4616776778 1010 k L4 x4 







cos

1.875100000x1
L

eeee








4.694100000x1
L − 

0.1329532526 1012 k L4 x3 







cos

1.875100000x1
L

eeee








1.875100000x1
L − 

0.6365009520 1012 k L4 x3 







sin

1.875100000x1
L

eeee






− 1.875100000x1

L + 

0.9760121880 1011 k L4 x3 







sin

1.875100000x1
L

eeee








1.875100000x1
L + 

0.6647701850 1011 k L4 x4 eeee








1.875100000x1
L 







cos

4.694100000x1
L

 + 

0.8670472860 1012 k L4 x3 







cos

1.875100000x1
L

eeee






− 1.875100000x1

L − 

0.3704424340 1012 k L4 x4 







sin

1.875100000x1
L

eeee






− 4.694100000x1

L − 

0.3389184028 1010 k L4 x4 





sin

1.875100000x1
L

eeee








4.694100000x1
L + 

0.4335262002 1012 k L4 x4 eeee






− 1.875100000x1

L 





cos

4.694100000x1
L

 + 

0.4415244356 1012 k L4 x4 eeee






− 1.875100000x1

L 





sin

4.694100000x1
L

 − 

0.6770346990 1011 k L4 x4 eeee








1.875100000x1
L 






sin

4.694100000x1
L

 − 

0.4375291616 1012 k L4 x4 eeee






− 6.569200000x1

L
 + 

0.6308905475 1011 k L4 x4 





cos

6.569200000x1
L

 + 

0.3799912256 1012 E Iy x4 L 







sin

3.750200000x1
L

 + 

0.4335262006 1012 r A L4 x8 eeee






− 1.875100000x1

L 







cos

4.694100000x1
L

x5 − 

0.4369141638 1012 k L4 x4 





cos

2.819000000x1
L

 + 

0.6709083360 1011 k L4 x4 eeee






− 2.819000000x1

L + 
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0.4415244352 1012 r A L4 x8 x5eeee






− 1.875100000x1

L 







sin

4.694100000x1
L

 + 

0.6770346990 1011 r A L4 x8 eeee








1.875100000x1
L 







sin

4.694100000x1
L

x5 + 

0.613815159 109 r A L4 x8 x5eeee








6.569200000x1
L + 

0.3670510852 1012 r A L4 x7 





sin

3.750200000x1
L

x5 − 

0.1152737078 1012 r A L4 x7 







cos

3.750200000x1
L

x5 + 

0.3758852956 1012 r A L4 x7 x5eeee






− 3.750200000x1

L + 

0.8838278945 1010 r A L4 x7 x5eeee








3.750200000x1
L + 

0.4375291610 1012 r A L4 x8 x5eeee






− 6.569200000x1

L − 

0.6709083355 1011 r A L4 x8 x5eeee






− 2.819000000x1

L − 

0.4002961622 1010 r A L4 x8 x5eeee








2.819000000x1
L + 

0.6308905455 1011 r A L4 x8 





cos

6.569200000x1
L

x5 − 

0.7108732715 1011 r A L4 x8 





sin

2.819000000x1
L

x5 + 

0.4369141636 1012 r A L4 x8 





cos

2.819000000x1
L

x5 − 

0.4381405776 1012 r A L4 x8 





sin

6.569200000x1
L

x5 + 

0.5000032560 1012 r A L4 x7 x5 + 




 L5

N2 0.4000000000 10-17 r A 0.2499985684 1018 x8 x5 0.2499985684 1018 x8 x1−  + 




 := 

0.2499985684 1018 L x8 0.36587107 108 L x7 −  + 

0.3323850922 1017 x7 eeee








1.875100000x1
L 







cos

4.694100000x1
L

x5 + 

0.2523099970 1018 x7 eeee






− 4.694100000x1

L 





cos

1.875100000x1
L

x5 + 
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0.5254493875 1017 L x7 eeee






− 4.694100000x1

L 





sin

1.875100000x1
L

 − 

0.1694592014 1016 x7 eeee








4.694100000x1
L 






sin

1.875100000x1
L

x5 + 

0.4701980600 1016 x8 x5eeee








4.694100000x1
L 







sin

4.694100000x1
L

 − 

0.4616804010 1016 x8 eeee








4.694100000x1
L 







cos

4.694100000x1
L

x5 + 

0.9072728650 1013 L x8 eeee








4.694100000x1
L 







sin

4.694100000x1
L

 + 

0.5046229712 1018 x8 eeee






− 4.694100000x1

L 





cos

4.694100000x1
L

x5 − 

0.3385173495 1017 x7 x5eeee








1.875100000x1
L 






sin

4.694100000x1
L

 − 

0.5602452832 1017 L x7 eeee






− 1.875100000x1

L 





sin

4.694100000x1
L

 − 

0.1852212167 1018 x7 x5eeee






− 4.694100000x1

L 





sin

1.875100000x1
L

 − 

0.2167631003 1018 x7 eeee






− 1.875100000x1

L 





cos

4.694100000x1
L

x5 + 

0.2308388388 1016 x7 x5eeee








4.694100000x1
L 







cos

1.875100000x1
L

 − 

0.9926061025 1015 L x8 eeee








4.694100000x1
L 







cos

4.694100000x1
L

 − 

0.2465022571 1017 L x7 eeee






− 1.875100000x1

L 







cos

4.694100000x1
L

 − 

0.5484548005 1015 L x7 eeee








4.694100000x1
L 






cos

1.875100000x1
L

 + 

0.8658472820 1016 L x7 eeee








1.875100000x1
L 






cos

4.694100000x1
L

 − 

0.2207622176 1018 x7 x5eeee






− 1.875100000x1

L 







sin

4.694100000x1
L

 − 

0.5139328888 1018 x8 x5eeee






− 4.694100000x1

L 





sin

4.694100000x1
L

 + 

0.1419195198 1015 L x7 eeee








4.694100000x1
L 







sin

1.875100000x1
L

 − 
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0.9916616075 1015 L x8 eeee






− 4.694100000x1

L 







cos

4.694100000x1
L

 + 

0.3622208058 1016 L x7 eeee








1.875100000x1
L 







sin

4.694100000x1
L

 − 

0.3276090890 1017 L x7 eeee






− 4.694100000x1

L 





cos

1.875100000x1
L

 + 

0.1084932000 1018 L x8 eeee






− 4.694100000x1

L 





sin

4.694100000x1
L

 + 

0.3069075795 1015 x7 x5eeee








6.569200000x1
L − 

0.4654917862 1016 x8 







cos

9.388200000x1
L

x5 + 

0.3330155582 1017 L x7 eeee






− 6.569200000x1

L
0.4671917120 1014 L x7 eeee









6.569200000x1
L +  + 

0.2131461634 1014 x8 x5eeee








9.388200000x1
L − 

0.2184570818 1018 x7 





cos

2.819000000x1
L

x5 + 

0.2546154545 1018 x8 





sin

9.388200000x1
L

x5 + 

0.3154452728 1017 x7 





cos

6.569200000x1
L

x5 + 

0.3334809242 1017 L x7 





cos

6.569200000x1
L

 − 

0.3354541678 1017 x7 x5eeee






− 2.819000000x1

L + 

0.2546412018 1018 x8 x5eeee






− 9.388200000x1

L − 

0.1260860716 1017 L x7 







cos

2.819000000x1
L

 − 

0.7099967402 1015 L x7 eeee








2.819000000x1
L

0.1189975764 1017 L x7 eeee






− 2.819000000x1

L +  + 

0.7749453062 1017 L x7 





sin

2.819000000x1
L

 − 

0.4801882615 1016 L x7 







sin

6.569200000x1
L

 − 

0.2190702888 1018 x7 





sin

6.569200000x1
L

x5 − 

0.2712353825 1017 L x8 eeee






− 9.388200000x1

L − 
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0.4958264482 1015 L x8 





sin

9.388200000x1
L

 − 

0.2712079572 1017 L x8 





cos

9.388200000x1
L

 + 

0.3554366358 1017 x7 







sin

2.819000000x1
L

x5 − 

0.2187645805 1018 x7 x5eeee






− 6.569200000x1

L + 

0.2001480811 1016 x7 x5eeee








2.819000000x1
L

0.2270362406 1013 L x8 eeee








9.388200000x1
L −  + 





 L/
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Appendix B: Estimation of the Young’s modulus of 
a flexible needle 

Following is an experimental procedure for finding the Young’s modulus of a 

flexible needle used in brachytherapy. By applying different weights to the distal 

end of the needle that is held horizontally, deflections of the needle’s tip are 

reported in the table below. We have the following relation between the applied 

force and deflection:  

� = 4«�;/���  

where � is the Young’s modulus, ; is the effective length of the needle, � is the 

deflection at the needles tip, � = 9.89 is the gravity constant, and � = 1.27 «« is 

the diameter of the needle. The observed variation in the estimation of the 

Young’s modulus E is because the theoretical model did not consider the fact that 

the needle is hollow. 

L(mm) �(mm) m (kg) � (Gpa) 

19.3 10.08 0.024 242.19 

18.2 11.7 0.024 188.59 

17.1 11 0.024 165.90 

16.1 10.3 0.024 147.40 

19.3 18.3 0.033 196.78 

18.2 17.5 0.033 172.87 

17.1 16.7 0.033 150.55 

16.1 16.7 0.033 125.66 

19.3 33.3 0.083 272.22 

18.2 32.5 0.083 234.13 

17.1 30 0.083 210.37 

16.1 25.8 0.083 203.90 
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Appendix C: Phantom robot’s codes 
This appendix contains the Phantom robots’ codes for experiments in Chapter 

4. Each section is separated by a comment line in italics before it starts.  

 

Include general libraries and header files. 

#define WIN32_LEAN_AND_MEAN 

#include “stdafx.h" 

#include <iostream> 

#pragma comment(lib, “winmm.lib") 

#pragma comment(lib, “wsock32.lib") 

#include <windows.h> 

#include <mmsystem.h> 

#include <fstream> 

#include “conio.h" 

#include “stdio.h" 

#include “math.h" 

HANDLE pEvent; 

#include “MyRealTimeDefs.h" 

#define Ts   150  sampling time in mille sec  

#define MIN(a1,b1)  ((a1 <= b1) * a1 + (a1> b1) * b1) 

#define MAX(a1,b1)  ((a1 <= b1) * b1 + (a1 > b1) * a1) 

 

Include standard OpenCV headers 

#include <cv.h> 

#include <cxcore.h> 

#include <highgui.h> 

using namespace cv; 

using namespace std; 

#include <sstream> 
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Robot and force sensor definition 

#define FORCE_SENSORS 

DWORD start,start1, stop, finish0, finish, Time, T1, T2,T3, T4,T5, T6; 

HHD hHD1, hHD2; 

 

Initializations 

int k1=0, R=0; 

int counter=0; 

int T=0; 

int i=0, j=0; 

int ii=0, v=50, L=0, ch=0; 

int  DataIndex = 0; 

const int memlength = 200000; 

float pT[memlength];   

float pxm[memlength]; 

float pym[memlength]; 

float pzm[memlength]; 

float vxm[memlength]; 

float vym[memlength]; 

float vzm[memlength]; 

float fxm[memlength]; 

float fym[memlength]; 

float fzm[memlength]; 

float Xr[1000]; 

float Yr[1000]; 

float Xc [1000]; 

float Yc [1000]; 

const int BufferLength = 1;  delay in ms 

float BufferPos_m[3][BufferLength]; 

float forcesensor0_x[memlength]; 
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float forcesensor0_y[memlength]; 

float forcesensor0_z[memlength]; 

CvMat *dots   = cvCreateMat (3,2,CV_32FC1); 

CvMat *dots1 = cvCreateMat (3,2,CV_32FC1); 

int k=0; 

 

Mouse handler event definition 

void mouseHandler(int event, int px, int py, int flags, void *param) 

{  

   switch(event)  

 { 

   left button down  

   case CV_EVENT_LBUTTONDOWN: 

 CV_MAT_ELEM (*dots,float,k,0) = px; 

 CV_MAT_ELEM (*dots,float,k,1) = py; 

 if (k==0) {fprintf(stdout, “Needle entry point (%d, %d).\n,” px, py);} 

 if (k==1) {fprintf(stdout, “click on one of the dots (%d, %d).\n,” px, py);} 

 if (k==2) {fprintf(stdout, “click on onother point neighbor of the first dot 

(%d, %d).\n,” px, py); 

} 

k++; 

break; 

switch(event) 

 { 

  case CV_EVENT_RBUTTONDOWN: 

 k++; 

 cvDestroyWindow(""); 

 break; 

 } 

} 
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For finding the needle entry point in the cropped image 

void mouseHandler1(int event, int px, int py, int flags, void *param) 

{ 

 switch(event)  

 { 

   left button down  

   case CV_EVENT_LBUTTONDOWN: 

  CV_MAT_ELEM (*dots1,float,k,0) = px; 

  CV_MAT_ELEM (*dots1,float,k,1) = py; 

  if (k==0) {fprintf(stdout, “Needle entry point (%d, %d).\n,” px, py);} 

  k++; 

  cvDestroyWindow(""); 

  break; 

 } 

 switch(event) 

 { 

  case CV_EVENT_RBUTTONDOWN: 

 k++; 

 cvDestroyWindow(""); 

 break; 

 } 

} 

 

Main loop 

int _tmain(int argc, _TCHAR* argv[]) 

{ 

ofstream DataFile; 

DataFile.open("c:\\NonMdlCntr_Oct25.txt"); 

HHD hHD1; 

hduVector3Dd pos1; 

hduVector3Dd gimbalAngle; 
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hduVector3Dd jointAngle; 

hduVector3Dd v1; 

hduVector3Dd force1; 

hduVector3Dd init_pos; 

force1 = hduVector3Dd(0,0,0);  

init_pos = hduVector3Dd(0,0,0); 

float xRef=0,yRef=0,zRef=0, theta, rho; 

int A=1; 

int ih=0; 

 

Definition and initialization of local variables 

IplImage   *img0;  First frame 

IplImage   *img;   frames in the loop 

IplImage   *img_1;  grayscale from img 

IplImage   *img_n;  normalized 

IplImage   *img_n_gama; gama normalized 

IplImage   *img_n_dsp;  for displaying only 

IplImage   *img_op;  opening 

IplImage   *img_cl;  closing 

IplImage   *img_er;  Eroded 

IplImage   *img_diff;  Difference 

IplImage   *img_can;  canny function 

IplImage   *img_tr;  threshlded  

IplImage   *img_t;  threshlded 

IplImage   *img_t2;  second threshold to find a needle 

IplImage   *img_2;  pattern as white pixels 

IplImage   *color_img;  used for hough transformation 

IplImage   *color_img_t;  colored thresholded 

IplImage   *tpl; 

IplImage   *res; 

IplImage   *cnt;  
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IplConvKernel  *shape_er; 

IplConvKernel     *shape_di; 

IplConvKernel     *shape_op; 

IplConvKernel     *shape_cl; 

IplConvKernel     *shape_g; 

IplConvKernel     *shape_th; 

Mat   frame0; 

Mat   frame; 

Mat   imagMat; 

Mat   img_nMat;  

CvMat   *Xr=cvCreateMat(1,1000,CV_32FC1); 

CvMat   *Yr=cvCreateMat(1,1000,CV_32FC1); 

CvMat   *EX=cvCreateMat(1,1000,CV_32FC1); 

CvMat   *EY=cvCreateMat(1,1000,CV_32FC1); 

CvMat   *D =cvCreateMat(1,1000,CV_32FC1); 

CvPoint  minloc, maxloc,p, pt1, pt2; 

CvMemStorage *storage; 

CvMemStorage *storage_h; 

CvSeq   *contour; 

CvSeq   *lines=0; 

CvScalar  s,z; 

double   minval, maxval,Xsum=0,Ysum=0, ex=0, ey=0, a , b, x0; 

double   y0, slp,  e=0, ex_c=0, ey_c=0, e_c=0, er=0, distance=0;  

double   total_old=0, fz_old=0.5, total=0, L_ins=0, v_ins=10, def=0; 

float   w,h,C_Out_x, C_Out_y, C; 

 

Real time performance-timer 

HighPriority(); 

pEvent = CreateEvent(NULL, TRUE, FALSE, “Interrupted"); 

SetUpTimer(); 
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Robot prepare for actuating 

hHD1 = hdInitDevice("ROBOT"); 

hdEnable(HD_FORCE_OUTPUT); 

hdStartScheduler(); 

 

MMTIME current_time, start_time; 

start1= timeGetSystemTime(&current_time, sizeof(MMTIME)); 

start1= current_time.u.ms; 

  

Open the image frame 

VideoCapture capture(0); 

cvNamedWindow(,”” CV_WINDOW_AUTOSIZE); 

while (k<4) 

{ 

capture >> frame; 

img0 = new IplImage(frame); 

cvShowImage(,””img0); 

cvWaitKey(33); 

cvSetMouseCallback( ,”” mouseHandler, NULL ); 

} 

distance=sqrt((cvmGet(dots,1,0)-cvmGet(dots,2,0))*(cvmGet(dots,1,0)-

cvmGet(dots,2,0))+(cvmGet(dots,1,1)-cvmGet(dots,2,1))*(cvmGet(dots,1,1)-

cvmGet(dots,2,1))); 

 

Crop and ask for the needle entry point in the cropped image 

img = cvCreateImage(cvSize(img0->width, img0->height ), img0->depth, 3 ); 

cvCopy(img0,img,NULL); 

CvRect rect = cvRect (cvmGet(dots,0,0),cvmGet(dots,0,1)-100,img->width-

cvmGet(dots,0,0),200); 

cvSetImageROI(img,rect); 
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cvCopy(img,img,NULL); 

k=0; 

while (k<1) 

{ 

cvShowImage(,””img); 

cvWaitKey(33); 

cvSetMouseCallback( ,”” mouseHandler1, NULL ); 

} 

  

Main control loop infinite times (till needle is totally inserted) 

while(!kbhit()) 

{ 

T1=timeGetTime(); 

long status = WaitForSingleObjectEx(pEvent, Ts, FALSE);//(pEvent, 1 * Ts, 

TRUE) 

ResetEvent(pEvent);//return to non-signaled state 

finish= timeGetSystemTime(&current_time, sizeof(MMTIME)); 

finish= current_time.u.ms; 

 

Reading camera through the loop 

capture >> frame; 

img0 = new IplImage(frame); 

   

Pre-Processing level 1 

img = cvCreateImage(cvSize(img0->width, img0->height ), img0->depth, 3 ); 

cvCopy(img0,img,NULL); 

CvRect rect = cvRect (cvmGet(dots,0,0),cvmGet(dots,0,1)-100,img->width-

cvmGet(dots,0,0),200); 

cvSetImageROI(img,rect); 

cvCopy(img,img,NULL); 
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cvtColor(img,imagMat,CV_RGB2GRAY,0); 

img_1 = new IplImage(imagMat); 

  

Pre-Processing level 2 

img_n = cvCreateImage(cvSize(img_1->width, img_1->height ), 

IPL_DEPTH_32F, 1 ); 

img_n_dsp = cvCreateImage(cvSize(img_n->width, img_n->height ), 

IPL_DEPTH_32F, 1 ); 

cvNormalize(img_1,img_n, 0.0, 255.0, CV_MINMAX); 

cvConvertScale(img_n,img_n_dsp,0.003921,0.0); // 0.003921=1/255 

img_n_gama = cvCreateImage(cvSize(img_n->width, img_n->height 

),IPL_DEPTH_32F, 1 ); 

cvConvertScale(img_n, img_n, -0.0031, 0.0); //0.0031=0.8/255 

cvExp(img_n,img_n_gama); 

cvConvertScale(img_n_gama,img_n_gama,-1.1458,1.2577); 

   

Pre-Processing level 3 

cvConvertScale(img_n_gama, img_n_gama, 255, 0.0); 

img_nMat=cvCreateMat(img_n->height, img_n->width,CV_32FC1); 

img_nMat=cvarrToMat(img_n_gama); 

int(img_nMat.data); 

img_n_gama = new IplImage(img_nMat);  

img_t = cvCreateImage(cvSize(img_n_gama->width, img_n_gama->height ), 

IPL_DEPTH_8U, 1 ); 

cvThreshold(img_n_gama,img_t,80,255,CV_THRESH_BINARY);  

img_tr = cvCreateImage(cvSize(img_n_gama->width, img_n_gama->height ), 

IPL_DEPTH_8U, 1 ); 

cvSubRS(img_t,cvScalar(255),img_tr); 

  

color_img_t = cvCreateImage(cvSize(img_n_gama->width, img_n_gama->height 

), IPL_DEPTH_8U, 3 ); 
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cvCvtColor( img_tr, color_img_t, CV_GRAY2BGR ); 

   

img_2 = cvCreateImage(cvSize(img_1->width, img_1->height ), 

IPL_DEPTH_8U, 3); 

cvScaleAdd(img, cvScalar(1), color_img_t, img_2 ); 

    

Pre-Processing level 4 

cvtColor(img_2, imagMat, CV_RGB2GRAY,0); 

img_2 = new IplImage(imagMat); 

img_t2 = cvCreateImage(cvSize(img_1->width, img_1->height ), 

IPL_DEPTH_8U, 1 ); 

cvThreshold(img_2,img_t2,130,255,CV_THRESH_BINARY); 

cvSubRS(img_t2,cvScalar(255),img_t2); 

img_op=cvCreateImage(cvGetSize(img_tr), img_tr->depth,img_tr->nChannels); 

shape_op=cvCreateStructuringElementEx(1,1,0,0,CV_SHAPE_ELLIPSE,NULL)

cvMorphologyEx(img_t2, img_op, NULL, shape_op, CV_MOP_OPEN, 100); 

  

Hough Transformation 

img_can = cvCreateImage( cvGetSize(img_1), 8, 1); 

color_img = cvCreateImage( cvGetSize(img_1), 8, 3); 

cvCanny( img_op, img_can, 0, 20, 3 ); 

 cvCvtColor( img_diff, color_img, CV_GRAY2BGR );//input can be either 

img_can or img_diff 

storage_h = cvCreateMemStorage(0); 

lines = cvHoughLines2( 

img_diff,storage_h,CV_HOUGH_STANDARD,1,0.5*CV_PI/180,50,0,0); 

if (lines->total!=0) 

{ 

 L=5; 

 for( ih = 0; ih < MIN(lines->total,L); ih++ ) 

 { 
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  float* line = (float*)cvGetSeqElem(lines,ih); 

  rho   += line[0]; 

  theta += line[1]; 

 } 

 rho=rho/MIN(lines->total,L); 

 theta=theta/MIN(lines->total,L); 

 if (abs(theta)>0.1745) //greater than 10 degree is not allowed! 

 { 

  theta=CV_PI/2; 

 } 

 a = cos(theta), b = sin(theta); 

 x0 = a*rho, y0 = b*rho; 

 slp=-a/b; 

 L_ins=L_ins+Ts*v_ins*0.001; 

 def=L_ins*abs(a); 

 pt1.x = cvmGet(dots1,0,0); 

 pt1.y = cvmGet(dots1,0,1); 

 pt2.x = cvRound(x0 - v*(-b)); 

 pt2.y = cvRound(y0 - v*(a)); 

 cvLine( img, pt1, pt2, CV_RGB(0,255,255), 1, 8 ); 

} 

 else 

 { 

  def=0;   

  

 } 

 //reset variables 

 rho=0; 

 theta=0; 

 if (lines->total>0 && v<img->width-10) 

 { 
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 v +=5; 

 } 

 

Processing for tissue deformation 

img_er=cvCreateImage(cvGetSize(img_op), img_op->depth,img_op-

>nChannels); 

shape_er=cvCreateStructuringElementEx(15,15,0,0,CV_SHAPE_ELLIPSE,NUL

L); 

cvErode( img_tr,img_er,shape_er,1); 

img_op=cvCreateImage(cvGetSize(img_tr), img_tr->depth,img_tr->nChannels); 

cvMorphologyEx(img_er,img_op, NULL, shape_op, CV_MOP_OPEN, 100); 

img_cl=cvCreateImage(cvGetSize(img_tr), img_tr->depth,img_tr->nChannels); 

shape_cl=cvCreateStructuringElementEx(5,5,0,0,CV_SHAPE_ELLIPSE,NULL); 

cvMorphologyEx(img_tr,img_cl, NULL, shape_cl, CV_MOP_CLOSE,3); 

img_diff=cvCreateImage(cvGetSize(img_tr), img_tr->depth,img_tr->nChannels); 

cvScaleAdd(img_tr, cvScalar(-1), img_cl, img_diff ); 

  

Tissue Deformation      

contour = 0; 

cnt = cvCreateImage( cvGetSize(img_tr), 8, 3); 

storage = cvCreateMemStorage(0); 

int numcont=cvFindContours( img_tr, storage, &contour, sizeof(CvContour), 

CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE ); 

int n=0; 

for( ; contour != 0; contour = contour->h_next ) 

{       

 int i=0; 

  while(i<= contour->total-1) 

 { 

 CvPoint* p = CV_GET_SEQ_ELEM(CvPoint,contour,i); 

 Xsum += p->x;  
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 Ysum += p->y; 

 i++; 

  } 

 Xsum=int(Xsum/contour->total); 

Ysum=int(Ysum/contour->total); 

if (Xsum<img->width && Ysum<img->height) 

{ 

cvSetAt (img,CV_RGB(255,0,0), Ysum, Xsum); 

} 

   

cvAbsDiffS(Xr,EX,cvScalar(Xsum)); 

minMaxLoc (EX, &minval, &maxval); 

ex_c=minval*minval; 

cvAbsDiffS(Yr,EY,cvScalar(Ysum)); 

minMaxLoc (EY, &minval, &maxval); 

ey_c=minval*minval; 

    

cvMul(EX,EX,EX); 

cvMul(EY,EY,EY); 

cvAdd(EX,EY,D); 

minMaxLoc(D, &minval, &maxval); 

e_c=sqrt(minval); 

    

if ( e_c> distance ) 

{ 

 e_c = 0; 

} 

ex += ex_c; 

ey += ey_c; 

e  += e_c; 

Xr->data.fl[n]=Xsum; 
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Yr->data.fl[n]=Ysum; 

n++; 

Xsum=0; 

Ysum=0; 

} 

cvShowImage( “Contours,” img); 

cvWaitKey(33); 

  

BEGIN WORKING WITH PHANTOM 

hdBeginFrame(hHD1); 

 

hdGetDoublev(HD_CURRENT_POSITION, pos1); 

hdGetDoublev(HD_CURRENT_VELOCITY, v1);   

hdGetDoublev(HD_CURRENT_JOINT_ANGLES, jointAngle); 

hdGetDoublev(HD_CURRENT_GIMBAL_ANGLES, gimbalAngle); 

    

if (i==0){ 

//RESTETING THE FIRST POINT 

hdGetDoublev(HD_CURRENT_POSITION, init_pos); 

} 

  

Feedback from image analysing 

C_Out_x=ex/numcont; 

C_Out_y=ey/numcont; 

C=e/numcont; 

C=C*50/16;  

ex=ey=0; 

e=0; 

xRef=init_pos[0]; 

yRef=init_pos[1]; 

force1[0] = 0.125*(xRef-pos1[0]); 
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force1[1] = 0.125*(yRef-pos1[1]); 

 

 “total" is the tissue deformation (square root of sum of errors of center of the 

counters with respect to the previous frame) plus needle deflection (in pixel). 

total=(C+def)/2; 

  

Control strategy: Proportional 

if ((total-total_old)>0.5 && total<4) 

{  

force1[2]=1*total; 

total_old=force1[2]; 

} 

else 

{ 

force1[2]=total_old; 

} 

cout << “D=" << def << “'\t'"<< “T=" << C << “'\t'" << “Out=" << force1[2] << 

endl; 

hdSetDoublev(HD_CURRENT_FORCE, force1); 

hdEndFrame(hHD1); 

i++; 

counter++; 

 

Saving the variables at every cycle 

if(DataIndex < memlength) 

{ 

pT[DataIndex] = T;  

pxm[DataIndex] = pos1[0];  

pym[DataIndex] = pos1[1];  

pzm[DataIndex] = pos1[2];  
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vxm[DataIndex] = v1[0];  

vym[DataIndex] = v1[1]; 

vzm[DataIndex] = v1[2]; 

fxm[DataIndex] = force1[0]; 

fym[DataIndex] = force1[1]; 

fzm[DataIndex] = force1[2]; 

} 

else 

{ 

cout << “NOT WRITING TO FILE PAST THIS POINT" << endl; 

} 

DataIndex++; 

T2=timeGetTime()-T1; 

/cout << “Time = “ << T2 << endl; 

R++; 

}  end of INF loop 

   

Find the deflection from the last image when the escape key is pressed 

k1=getch(); 

while (k1!='a') 

{ 

 k1=getch(); 

} 

if (k1='a') 

{ 

 k=0; 

 cvWaitKey(10000); 

 while (k<2) 

 { 

  capture >> frame; 

  img = new IplImage(frame); 
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  cvShowImage(,””img); 

  cvWaitKey(33); 

  cvSetMouseCallback( ,”” mouseHandler, NULL ); 

 } 

 cout << “Final Def=" << cvmGet(dots,0,1)-cvmGet(dots,1,1)<< endl; 

 cvWaitKey(100000); 

} 

hdStopScheduler(); 

hdDisableDevice(hHD1); 

KillTimer(); 

 

 Writing the variables into a text file when the experiment is over 

int ss; 

for(ss = 0; ss < min(memlength,DataIndex); ss++) 

{ 

DataFile   <<  

pT[ss]     << '\t' <<  

pxm[ss]    << '\t' <<  

pym[ss]    << '\t' << 

pzm[ss]    << '\t' << 

vxm[ss]    << '\t' <<  

vym[ss]    << '\t' << 

vzm[ss]    << '\t' << 

fxm[ss]    << '\t' <<  

fym[ss]    << '\t' << 

fzm[ss]    << '\t' << 

endl; 

} 

return 0; 

} 

                                                                                                                                                                                                                                         


