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Abstract— Estimation of dynamic uncertainties is a critical
and fundamental problem when designing a control system
for a robot. During robot-environment interaction, in addition
to the internal dynamic model uncertainties, the external
environment-exerted force will also enter the dynamics. For
robot impedance control, an exact dynamic model of the robot
is needed but usually not available. It has been shown that in-
tegrating an impedance controller with a disturbance observer
can achieve accurate impedance control. However, it works only
for robots in free motion but not robot-environment interaction.
Although a disturbance observer is able to accurately estimate
the dynamic uncertainties, the estimation is lumped uncertain-
ties that contain all uncertainty sources including both the in-
ternal and the external disturbances. Without separating these
two parts, the method of combining an impedance controller
and an observer will result in the human-applied force being
canceled instead of interacting with the robot. To solve this
problem in this paper, we propose a framework for learning the
internal disturbances and separating the external disturbances
by integrating three entities: an impedance controller, a neural
network (NN) model, and a disturbance observer. In the
framework, the impedance controller provides compliant robot
behavior, while the observer captures the lumped uncertainties,
and the NN learns to separate the external disturbances.
Simulation results of an application scenario with an obstructive
virtual fixture demonstrate the effectiveness of the proposed
framework.

I. INTRODUCTION

In the field of robot control, having an accurate dynamic
model of a robot is fundamental for ensuring an accurate
and stable control [1]. This is especially the case in medical
robotic systems where accuracy and safety are overriding
concerns. However, accurate dynamic models only exist in
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theory but not in practice, which means that dynamic uncer-
tainties in a robotic system are inevitable. Common dynamic
uncertainties include joint friction, inaccurate center of mass
location and link weight, and extra payloads attached to the
robot body [1]. Therefore, estimation and compensation of
dynamic uncertainties are critical in robot control.

Various observers have been developed to estimate and
thus compensate for dynamic uncertainties [2]–[5]. Typical
approaches include generalized momentum observer (GMO)
[5], extended state observer (ESO) [6], nonlinear disturbance
observer (NDOB) [7], disturbance Kalman filter (DKF)
method [8], [9], as well as their variations.

GMO, also known as classic first-order momentum ob-
server, is one of the most commonly used observers due
to its advantages of being simple and easy to implement
[10]. It is often used as a reference when designing new
observers [8], [9], [11]. ESO was originally proposed by
Han in 1995 [12], [13]. Since then, many of its variations
have been developed for different purposes such as collision
detection [14] and interaction force estimation [6]. NDOB is
designed specifically by considering the nonlinearity of the
dynamics of robots which enabled it to have an advantage
over the linear ones [7], [15], [16]. DKF is another novel
method to estimate the dynamic uncertainties in the control
system [8], [17]. The accuracy of its estimation is excellent,
but the complexity of implementation could be a limitation
for it to be widely used.

All of these observers estimate lumped uncertainties.
While the lumped uncertainties do include various compo-
nents (e.g., joint friction), it is not possible to separate that
specific component out of the lumped estimate. Especially in
human-robot interaction scenarios, the observer will take the
human-exerted force as a part of uncertainties and thus reject
it [18]. On the other hand, estimating contact force between
human-robot or robot-environment is a critical problem in
the field of human-robot interaction and the field of collision
detection [5]. Without separating the human-applied force
out of the lumped estimate, a disturbance observer will
cancel the human-applied force and thus reject human-robot
interaction. Finding a solution to this issue is important for
robots with impedance control especially in medical robotic
applications involving human-robot interaction.

Some methods have been developed to estimate the robot-
environment interaction force by involving learning tech-
niques. Hu and Xiong [8] developed a method to estimate
external contact force using a semiparametric model and
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DKF. In their method, the semiparametric dynamic model
containing a multilayer perceptron (MLP) neural network
was used to provide a more accurate dynamic model, while
a DKF was used to estimate the contact force between the
robot and the environment. Similarly, an integrated frame-
work of neural network (NN) and DKF was developed to
estimate external contact force [9]. In the framework, an
NN model was used to learn the joint friction, while a DKF
observer was used to estimate the contact force. In another
work, NN was used to approximate the global friction, while
a momentum observer was used to estimate the external
force. Additionally, a Kalman filter was employed to filter
the measurement noise for a more accurate force estimation.

Sharifi et al. [19] employed a nonlinear autoregressive
network with exogenous inputs (NARX) to learn and es-
timate the robot dynamics plus the passive dynamics of a
user who wore an exoskeleton. Then the human-exoskeleton
interaction force was separated out by subtracting the NARX-
learned dynamics from the motor torques in the scenario of
active user dynamics. Note that the movement trajectories of
the exoskeleton is nearly periodic, which helped with training
the NARX model to generate its model predictions.

Inspired by these methods, in this paper we propose a
framework for training a NN model to learn the robot
dynamic uncertainties so that we can later isolate the exter-
nal disturbances. Specifically, the framework involves three
entities, i.e., an impedance controller, an NDOB, and an NN
model, where the impedance controller provides compliance,
the NDOB measures dynamic uncertainties plus external
disturbance (i.e., the lumped uncertainties), and the NN
estimates the dynamic uncertainties. Thus, by subtracting the
NN output from the NDOB output, the external disturbance
(e.g., human-applied force) can be isolated. A simulation
of an application scenario is conducted to evaluate the
effectiveness of the framework.

The remaining parts of this paper are organized as follows.
Section II describes impedance control, NDOB, and NN
model, as well as detailed procedures of the proposed frame-
work. Section III presents simulations, validations, and cor-
responding results related to implementing the framework.
Section IV summarizes and remarks on the conclusions.

II. METHODS

A. Robot dynamics and impedance control

A general dynamic model for an n-degree-of-freedom
(DOF) rigid robot [20] can be given by

M(q)︸ ︷︷ ︸
M̂+∆M

q̈+ S(q, q̇)︸ ︷︷ ︸
Ŝ+∆S

q̇+ g(q)︸︷︷︸
ĝ+∆g

+τfric(q, q̇) = τ+ τext︸︷︷︸
JTFext

(1)
where M ∈ Rn×n denotes the inherent inertia matrix, S ∈
Rn×n denotes a matrix of the Coriolis and centrifugal forces,
g ∈ Rn represents the gravity vector. M̂, Ŝ, ĝ represent
the user’s model estimates, while ∆M, ∆S, ∆g are the
corresponding estimate errors. τfric ∈ Rn is joint friction,
τ ∈ Rn is the commanded joint torque vector, τext ∈ Rn

is the torque caused by external force, Fext ∈ R6 is the

external force in Cartesian space, and J ∈ R6×n is the
Jacobian matrix.

A desired impedance model [18], [21], [22] for robot-
environment contact can be expressed as

Fimp = Mm(ẍ− ẍd) + (Sx +Dm)(ẋ− ẋd) +Km(x− xd)
(2)

where Mm,Dm,Km are user-designed matrices for inertia,
damping, and stiffness, respectively. Note that xd, ẋd, ẍd

are the desired position, velocity, and acceleration, respec-
tively in Cartesian space, while x, ẋ, ẍ are the actual ones.
Sx is the Coriolis and centrifugal matrix of the robot in
Cartesian space and Sx = J−TSJ−1 −MxJ̇J

−1, where
Mx = J−TMJ−1 is the inherent inertia of the robot in
Cartesian space [23].

To avoid the need for the measurement of external forces,
the designed inertia matrix can be set as Mm = Mx. Then,
to reach (2) as the closed-loop dynamics governing the robot-
environment interaction (Fext = Fimp) in an ideal scenario
of no model errors and no joint friction, the impedance
control law can be given by [18]

τ = MJ−1(ẍd − J̇J−1ẋd) + SJ−1ẋd + g

+JT[Dm(ẋd − ẋ) +Km(xd − x)]
(3)

Note that when implementing the impedance controller (3)
in practice, the estimates M̂, Ŝ, ĝ will be used since the
accurate model of the robot is usually not accessible.

For robot impedance control around a fixed point in space,
i.e., set-point regulation, it has ẍd = 0, ẋd = 0. Then, the
impedance control law (3) can be simplified to (4), which
is also known as task-space proportional–derivative (PD)
controller with gravity compensation.

τ = JT[Km(xd − x)−Dmẋ] + g (4)

B. Friction model

The joint friction in this work is modeled by the Stribeck
model [7], [9] as expressed by (5), which is viewed as the
most classical nonlinear expression that can include many
characteristics of friction.

τfric = Fcsign(q̇) + (Fs − Fc)sign(q̇)e−|q̇/νs|σ + Fvq̇
(5)

where Fc is the Coulomb friction, Fs is the static friction,
Fv is the viscous friction, q̇ is the joint velocity, νs is
the Stribeck parameter, σ is the exponent of the Stribeck
nonlinearity and σ = 2 is employed in this work.

C. Disturbance observer

In order to organize all the disturbances together, the
dynamic model (1) of a robot can be re-written as

M̂q̈+ Ŝq̇+ ĝ = τ+ τext − [τfric + (∆Mq̈+∆Sq̇+∆g)]︸ ︷︷ ︸
τdist

(6)
where τdist denotes the lumped uncertainties that usually
include three main aspects, i.e., (source-1) the model error
(∆Mq̈+∆Sq̇+∆g), (source-2) the joint friction τfric, and



the external disturbances τext which may involve (source-
3) constant disturbance and (source-4) time-varying distur-
bance. The constant disturbance may be a constant payload
attached to the robot end-effector (EE) or body, while time-
varying disturbance may be robot-environment interaction
forces such as human-applied forces during human-robot
interaction. In this paper, internal disturbances refer to the
summed uncertainties from source-1,2, while external distur-
bances refer to the summed uncertainties from source-3,4.
Disturbance observer is a commonly used tool to estimate
the lumped uncertainties. Note that any other uncertainties
beyond the four sources will also be included in the lumped
uncertainties that are estimated by the observer.

NDOB is easy to be implemented and has the advantage
of estimating the nonlinearities [7]. Therefore, NDOB is
employed in this work to estimate the lumped uncertainties.
An adapted NDOB design based on [7] is used in this paper
which can be expressed as

L = YM̂−1

p = Yq̇

ż = −Lz+ L(Ŝq̇+ ĝ − τ − p)

τNDOB = z+ p

(7)

where L ∈ Rn×n is the observer gain matrix, Y ∈ Rn×n is
a constant invertible matrix that needs to be designed, M̂ is
designed to be a symmetric and positive definite matrix and
thus invertible, z is an auxiliary variable, p is an auxiliary
vector determined from Y, τNDOB is the estimated lumped
uncertainties via the NDOB observer, i.e., τ̂dist = τNDOB.

D. Neural network

A promising neural network (NN) structure for modeling
nonlinear dynamic systems is the nonlinear autoregressive
network with exogenous inputs (NARX), which is a recurrent
dynamic network with a special feature of feeding its delayed
output back as input. This special feature requires the NARX
to be trained by using time-series data, which means that the
training data set needs to be collected from a long period
of one single continuous task, while concatenating datasets
collected from a set of separate short-period tasks is usually
not acceptable. This is because the learning effect will
be distorted by the outliers occurring at the concatenating
points. A common feed-forward neural network (fNN) does
not have this requirement.

Considering that machine learning usually requires a large
amount of data for training, while a single exciting robot
trajectory over a long continuous period of time may not be
easy to generate. Therefore, a fNN model as shown in Fig.
1 is employed. For the fNN model, the training data can
be collected from a set of separate short-period trajectory
tracking tasks. Also, one of its variations, cascade-forward
neural network (cNN), is used to compare the learning
performance. The fNN and cNN have the same structure
except that the cNN includes an additional connection from
its input layer to each of the following layers.
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Fig. 1: The structure of feed-forward neural network (fNN) model.

E. Collecting training and testing data

For training the fNN model (Fig. 1), the robot EE position
x and velocity ẋ will be taken as the inputs, while the
estimate of lumped uncertainties from the NDOB will be
taken as the learning targets. Since exciting trajectories are
often employed for robot dynamic identification [1], the
training data will be collected in a set of separate exciting
trajectory tracking tasks. In the tasks, the robot is controlled
by an impedance controller (3) and NDOB observer (7),
a simple addition of the two equations when doing the
implementation [18].

First of all, a set of exciting trajectories are generated
which include joint position q, velocity q̇, and acceleration q̈
with a sampling rate of 1, 000 Hz. Each exciting trajectory is
generated from a harmonic function with random parameters
and lasts 20 seconds, thus every exciting trajectory is unique.
In total, 39 exciting trajectories are generated among which
38 of them will be used for training while another for testing.

As mentioned earlier, the lumped uncertainties in this
work will come from four sources, which can be categorized
as internal disturbances from source-1 (model error) and
source-2 (friction), and external disturbances from source-
3 (constant payload) and source-4 (time-varying payload).
Since this work focuses on simulations, all the uncertainties
are fully known and can be precisely controlled.

In source-1, dynamic model error is controlled to be at
four different levels, i.e., 0%, 10%, 50%, 100%. The level
of model error is tuned by value assignment on matrix
Ŝ and ĝ, while the inertia matrix M̂ is fixed at M̂ =
diag(0.001, 0.001, 0.001). For example, model error 10%
means Ŝ = 90%S, ĝ = 90%g, where M̂, Ŝ, ĝ will be
used for the calculation in the impedance controller (3) and
NDOB observer (7). Model error 100% means Ŝ = 0, ĝ = 0.

In source-2, joint friction is controlled by (5). In source-3,
a constant payload of 22 gram is controlled to be attached
to the robot EE or not. In source-4, a time-varying payload
is controlled by a set of Fourier series functions given by
Fx = a1 sin(

2πn1
t1

t) + a2 sin(
2πn2
t1

t− ϕ2) + a3 sin(
2πn3
t1

t− ϕ3)

Fy = a1 cos(
2πn1
t1

t) + a2 cos(
2πn2
t1

t− ϕ2) + a3 cos(
2πn3
t1

t− ϕ3)

Fz = a1 cos(
2πn1
t1

t) + a2 sin(
2πn2
t1

t− ϕ2) + a3 cos(
2πn3
t1

t− ϕ3)
(8)

where Fx, Fy, Fz are the time-varying payload expressed in
Cartesian space, and t1 = 10, a1 = 0.1, a2 = 0.15, a3 =
0.05, n1 = 1, n2 = 2, n3 = 3, ϕ2 = 1

2π, ϕ3 = π.
In our previous work [18], it has been shown that by

integrating an impedance controller and an observer, an
accurate impedance control can be achieved in a trajectory



tracking task when the actual velocity and acceleration
converge to the desired ones. It is noteworthy that the
disturbance tracking of the observer works independently
from the trajectory tracking of the controller, which means
that the observer estimation accuracy is not affected by the
trajectory tracking accuracy. In other words, even if the
trajectory tracking performance is poor (e.g., due to fully
or partially uncompensated disturbances), the observer can
still accurately estimate the lumped uncertainties.

The training data are collected by running a trajectory
tracking task on each of the 38 exciting trajectories with
only internal disturbances (from source-1,2) involved. The
testing data are collected by running the trajectory tracking
task on a simple figure-eight trajectory as given by (9) and a
new exciting trajectory with all of the internal disturbances
(from source-1,2) and external disturbances (from source-
3,4) involved. In the tasks both of collecting training and
testing data, the robot is controlled by an impedance con-
troller (3) and NDOB observer (7), where the former is used
to accurately track the trajectory while the latter is used to
estimate the lumped uncertainties and compensate them in
the controller. 

xd = R sin( 2πt1 t) cos(
2π
t1
t)

yd = R sin( 2πt1 t) +R

zd = 0

(9)

where R = 0.02 m is the amplitude of the figure-eight
trajectory, t1 = 5 s is the period for generating a full cycle.

The fNN model is first trained on the training dataset
and then tested on the two testing datasets individually.
The training goal is that the fNN is expected to learn to
estimate only internal disturbances (from source-1,2), thus
the external disturbances (from source-3,4) can be separated
out by subtracting the fNN prediction outcome from the
lumped uncertainties estimated by the NDOB. Note that
the NDOB observer can always be implemented to online
estimate the lumped uncertainties but not necessarily to do
the compensation in the controller. The procedures of the
proposed learning framework are illustrated in Fig. 2.

III. SIMULATIONS, VALIDATIONS, AND RESULTS

A. Robotic system

A 3-DOF PHANToM Premium 1.5A robot (3D Systems,
Inc., Cary, NC, USA) is used for simulations in this paper. To
build a virtual model of this robot, the kinematic model and
dynamic model of the PHANToM robot are reconstructed
based on [24]. All the simulations are conducted by using
MATLAB/Simulink (version R2020a, MathWorks Inc., Nat-
ick, MA, USA), which is running on a computer with a 3.70
GHz Intel(R) Core(TM) i5-9600K CPU and a Windows 10
Education 64-bit operating system. The control rate of the
virtual robot is set as 1, 000 Hz, while the sampling rate
for acquiring training/testing data is 100 Hz. For all the
simulations in this section, the parameter assignments used
in the impedance control law, the NDOB, and the fNN model
are summarized in Table I.

Uncertainties source
+        +         +

Generate exciting trajectories

collet
training
data

collect
testing
data

Train fNN
Goal: learning         +

Test fNN
Goal: separate         +

Online fNN application

1 2 3 4

Impedance Controller + NDOB

1 2Track exciting trajectories

1 23 4

Uncertainties source
+        

Impedance controller + NDOB

Fig. 2: The procedures of the proposed framework of training
fNN to learn internal disturbances and thus separate external
disturbances. Uncertainties source-1, model error; source-2, friction;
source-3, constant payload; source-4, time-varying payload.

TABLE I: Parameterization for simulations.

Description Parameter Location

Spring stiffness Km = 7.5I Eq.(3)
Damping Dm = 2

√
7.5I Eq.(3)

Inertia matrix M̂ = 1.0× 10−3 × I Eq.(3),(7)
Observer gain Y = 9.58× 10−2 × I Eq.(7)
Coulomb friction Fc = [0.0049, 0.0031, 0.001] Eq.(5)
Static friction Fs = [0.0035, 0.0028, 0.00165] Eq.(5)
Viscous friction Fv = [0.06, 0.048, 0.032] Eq.(5)
Stribeck parameter νs = [0.00038, 0.0003, 0.00024] Eq.(5)
Neurons 12 Fig. 1
Input of fNN [x1, x2, x3, ẋ1, ẋ2, ẋ3]′ Fig. 1
Output of fNN τ̂dist Fig. 1
Training function Bayesian regularization Fig. 1
Transfer function Symmetric sigmoid Fig. 1
Data division Random Fig. 1
Data division ratio trainRatio = 0.8, valRatio = 0.2 Fig. 1

Note: I ∈ R3×3 denote identity matrix.

B. Comparing observers

The disturbance tracking performance among several typ-
ical observers, i.e., NDOB [7], GMO [5], DKF [8], [9],
and ESO [6], are qualitatively compared when a disturbance
of a controlled constant payload (22 gram) along y-axis is
tracked. As shown in Fig. 3, all of the observers can quickly
and accurately estimate the controlled disturbance, although
the ESO needs slightly longer time to track the disturbance
while the other three observers have comparable disturbance
tracking performance among each other.

Considering that NDOB has the advantage of capturing
nonlinearities and is easy to implement, NDOB is selected
for all simulations in the remaining part of this paper. We
also assume that the NDOB can accurately estimate all the
lumped uncertainties (i.e., τdist = τNDOB), and its outputs will
be taken as the target values during the later training process.

C. Comparing NN models

The feed-forward neural network (fNN), cascade-forward
neural network (cNN), and NARX model are compared on
their estimation accuracy. As introduced earlier, the fNN and
cNN have the same structure except that the cNN includes
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Fig. 3: Comparison on disturbance tracking error of various
disturbance observers. The disturbance is a constant payload
of 22 gram along the y-axis.

an additional connection from its input layer to each of the
following layers. Considering that the learning target in our
case is the dynamic model uncertainties rather than the whole
dynamic model, only one hidden layer is designed.

For fNN and cNN, as shown in Fig. 1, the input is a 6-by-
1 vector of Cartesian position x and velocity ẋ of the robot
EE, and the hidden layer has 12 neurons with Bayesian reg-
ularization training function and symmetric sigmoid transfer
function. The output layer has 3 neurons with a linear transfer
function, and the output is a 3-by-1 vector.

The fNN, cNN, and NARX models are trained separately
on data collected from 38 exciting trajectories with each tra-
jectory lasting 20 seconds. The three NN models are trained
to learn the uncertainties from source-1,2 by controlling only
these two uncertainties sources to exist in the training data.
When it comes to the testing process, the three NN models
are expected to predict uncertainties only from source-1,2
although uncertainties from all four sources will exist in
the testing data. Then, by subtracting the NN prediction
output from the NDOB output, the estimation of external
disturbances (sum of source-3,4) can be obtained.

The estimation accuracy of fNN, cNN, and NARX on the
external disturbances are compared in Fig. 4. As shown in the
figure, there is no significant difference between the fNN and
cNN models, but the NARX has a much worse performance.
This is because the NARX requires time-series data for its
training, and if training data is concatenated from several
separate datasets then the training effect will be distorted.
Since the fNN model has a common and more compact
structure, it is selected for the subsequent simulations.

It is worth mentioning that the learning outcomes of
fNN and cNN models are already relatively good when the
training data involve 8 exciting trajectories. More exciting
trajectories can further improve the learning effect to some
extent but at a slow speed, which means that when higher
prediction accuracy is not demanding, a relatively small set
of training data may meet the requirements.
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Fig. 4: Compare the estimation performance of the feed-
forward neural network (fNN), cascade-forward neural net-
work (cNN), and NARX model on external disturbances.

D. The effect of dynamic model error

When building a dynamic model of a robot and identifying
its dynamic parameters, dynamic model error is inevitable.
The effect of dynamic model error (i.e., uncertainties source-
1) on the fNN prediction accuracy is explored. More specif-
ically, different levels of model error (0%, 10%, 50%, 100%)
are studied. The level of model error is tuned by value
assignment on matrix Ŝ and ĝ as introduced earlier.

The estimation performance of the fNN model on external
disturbances under various levels of model error when track-
ing a simple figure-eight curve (9) and a complex exciting
trajectory curve is shown in Fig. 5a and Fig. 6a, respectively.
Correspondingly, the estimation errors are shown in Fig. 5b
and Fig. 6b. From the figures, we can see that under all
levels of model error except the level of 100%, there is
no significant difference between each other. Even with the
level of model error 100%, the estimation performance can
be acceptable (see the dashed black line in Fig. 5a and
Fig. 6a). In general, the effect of model error level on the fNN
estimation accuracy is relatively small. The reason could be
that for the lightweight robot used in this work, the dynamic
model errors are on a relatively small scale. For other heavy
industrial robots with dynamic model errors on a large scale,
the effect of the model error level needs to be re-evaluated.
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Fig. 5: The effect of dynamic model error on fNN estimation
performance when tracking a simple figure-eight trajectory.

E. Application on virtual fixture

During a trajectory tracking task, when the robot encoun-
ters external disturbances (e.g., an obstacle in the surrounding
environment), the NDOB will estimate and compensate for
lumped uncertainties including both internal and external
disturbances. This may escalate the adverse effect caused by
external disturbances. On the other hand, the fNN model can
be trained to estimate only internal disturbances, which can
make the robot preserve the compliant behavior provided by
the impedance controller when external disturbances occur.

In the above sections, the fNN model has been proved
to be capable of predicting the total internal disturbances
(sum of source-1,2) thus estimating the external disturbances
(sum of source-3,4). Here we further explored a potential
application of the proposed framework of fNN learning on
dynamic model uncertainties.

There are two conditions designed in a scenario of a robot
encounters a stiff obstacle of virtual fixture (VF) on its way
(i.e., external disturbances) when executing a trajectory track-
ing task. Condition 1 is a scenario with implementing NDOB
to estimate and compensate for the lumped uncertainties.
Condition 2 is a scenario that is the same as Condition 2
except that the NDOB is replaced with an fNN model that
was trained to learn the internal uncertainties at a level of
model error 10%.

Fig. 7 shows the trajectory tracking task performance in
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Fig. 6: The effect of dynamic model error on fNN estimation
performance when tracking a complex exciting trajectory.

each of the two conditions. In the figure, the gray area
represents the obstacle VF which will exert a contact force on
the robot EE when they are in contact, while the green line
represents the resulting disturbance torque in joint 2 which
is obtained by projecting the Cartesian contact force into the
robot joint space. Note that the disturbance torques in joint 1
and joint 3 are approximately zero due to the specific task
setting and thus ignored.

By comparing Fig. 7a and Fig. 7b, we can see that the
contact force in Fig. 7a is extremely large due to the fact that
the NDOB escalated the adverse effect of the obstacle VF.
Note that if Condition 1 happens in a physical experiment,
the robot and/or the obstacle will be badly destroyed once
the robot starts to be in contact with the obstacle, thus
Condition 1 should be avoided in physical experiments.
In Condition 2 as shown in Fig. 7b, the robot is much
more compliant with a smaller contact force than that in
Condition 1. This is because the fNN in Condition 2, as it
was trained in the training process, only estimates the internal
uncertainties excluding the external ones caused by the VF.
This verified the effectiveness of the trained fNN model.

F. Limitations

Compared to prior work [8], [9], an advantage of the
proposed learning framework is that, the fNN model is not
restricted to learning only friction model or only model error
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Fig. 7: Simulation result of an application scenario on an
obstacle of the virtual fixture. Condition 1, NDOB only;
Condition 2, fNN only.

which makes it more robust. In fact, it can learn all the
uncertainties that exist in the training data, thus separating
the later-coming uncertainties in the testing/application sce-
nario. For example, if the fNN model is trained to learn
uncertainties from source-1,2,3, then it is able to separate
the uncertainties of source-4 when all four sources of uncer-
tainties exist in the application scenario.

A limitation is that the trained fNN in this paper works
in trajectory tracking tasks but not set-point regulation tasks.
This is because the fNN is trained by data collected from
exciting trajectory tracking tasks. Therefore, the fNN model
will be capable of working for both trajectory tracking tasks
(i.e., tasks with non-zero velocity) and setpoint regulation
tasks (i.e., tasks with zero velocity) if it is trained by data
from both. This will be evaluated in future work.

IV. CONCLUSIONS

In this paper, a framework for learning robot dynamic
model uncertainties and separating external disturbances by
integrating impedance controller, NDOB observer, and feed-
forward neural network (fNN) model was presented. By
accurately controlling each of the four uncertainty sources in
the simulations, the results show that the fNN can accurately
learn the internal disturbances (source-1,2) thus separating
the external disturbances (source-3,4). A further simulation
on an application scenario, where an external obstacle of
virtual fixture (VF) is involved, demonstrated the effective-
ness of the presented learning framework. The fNN model
in the framework is robust to learn all uncertainties that exist
in the training process, then estimate all other newly added
uncertainties in the testing process or application scenarios.

In the present work, the fNN model was only validated in
scenarios of robots in free motion and obstructive motion. In
future work, we will expand it to set-point regulation tasks
which will enable human-robot interaction by separating
the interaction force. Also, physical experiments will be
conducted to evaluate the effectiveness of the proposed
framework in real application scenarios.
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