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Abstract—While through the literature different objective
metrics, such as kinematics and muscle activity, have been used
for the evaluation of exoskeletons performance, there is less
research on how these metrics represent users’ perceptions. This
study aimed to find the relationships between muscle activity and
joint kinematics with user perception. Muscle activity was
measured using electromyography sensors, focusing on the
Latissimus and Thoracolumbar muscles. Body joint kinematics
measurements were taken for the knee and trunk joints. The
study also investigated how users’ overall selections of
exoskeletons, considering all aspects, align with their choices based
on comfort and biomechanical support. A similarity index and
point biserial correlation coefficient were used for finding the
relationships. Four individuals performed trunk bending and
weight lifting while wearing different exoskeleton configurations.
Both perceived comfort (similarity index: 57%) and
biomechanical support (similarity index: 62.5%) played a role in
users’ overall preferences, and users prioritized one of them
depending on the exoskeleton setting. Comparing the objective
and subjective results revealed that muscle activity represented
human perception of support to some extent (average similarity
index and correlation coefficient of 49% and 0.27 across static and
dynamic tasks), while trunk range of motion had a high similarity
and correlation with users’ perceived comfort (similarity index:
74.2% and correlation coefficient: 0.53). In summary, this study
contributed to understanding the rationale behind users’
perception across different aspects. The results highlight the
necessity of future research on finding more sensitive objective
metrics, leading us toward obtaining the objective function
underlying users’ preferences.

Keywords— Exoskeleton, Comfort, Biomechanical Support,
Muscle activity, Range of motion, User perception

I. INTRODUCTION

Despite significant automation in many industries, the
manual workforce is still one of the main parts of the industry
[1]. Due to the physically demanding nature of their tasks,
manual material handling workers face musculoskeletal
disorders, leading to high rates of injuries among them and
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consequently increasing healthcare costs [2], [3]. Lower back
disorders continue as the leading cause of work-related
disability, accounting for the majority of work-related
musculoskeletal disorders and lost workday cases [4]. Earlier
research has explored diverse interventions to prevent
occupational lower back disorders, including workspace
redesign and the use of mechanical aids [5], [6], [7], [8].
However, evidence of their efficacy, sustainability, and usability
remains limited in practice [9]. Industrial back-support
exoskeletons, designed to augment the back and hip muscles,
have been introduced as an alternative intervention to reduce the
physical demands on the back muscles and consequently
mitigate the risk of lower back pain [10], [11].

Through the literature, a variety of back-support
exoskeletons have been proposed, each with different design and
setting levels. To evaluate the effectiveness of them, various
objective metrics have been analyzed in previous studies [12].
Energy expenditure [13], [14], metabolic rate [13], [15], muscle
activity [14], [16], and posture-based metrics [16], [17] are the
most prevalent ones. For example, Alemi et al. [14] showed that
a passive back-support exoskeleton could reduce energy
expenditure by 4%-13% during repetitive lifting tasks. Previous
studies showed that metabolic rate can be minimized by using
an exoskeleton and through human-in-the-loop optimization
[18], [19]. Numerous studies also evaluated back-support
exoskeletons based on their impact on muscle activity measured
by electromyography (EMG) sensors [16], [17]. Kermavnar et
al. [12] showed that back-support exoskeletons could reduce
back muscle activity by up to 60%. Posture-based or kinematic
metrics, such as range of motion (ROM) [20], [21], have also
been used to evaluate the movement restriction imposed by
exoskeletons and the consequent discomfort it creates.

While these objective metrics provide valuable insights
about exoskeleton evaluation, for an exoskeleton to be seen as
valuable by its users, it must deliver an experience that clearly
demonstrates its worth [22], [23]. Without an intuitive and easily
perceivable grasp of its benefits, potential users may hesitate to



adopt exoskeletons. Therefore, it is important to know how
measurable metrics, such as changes in muscle activity and
ROM, represent the actual biomechanical support and comfort
level perceived by users. This can then be used as guidelines in
the design of exoskeletons to ensure they provide perceivable
support to the users and therefore increasing their chances of
successful adoption.

While the relationship between users’ perceptions and
objective biomechanical metrics has been investigated for
lower-limb exoskeleton, there is limited research on this
relationship for back-support exoskeleton. Medrano et al. [15]
showed that users could not reliably perceive a reduction in
metabolic rate provided by an active ankle-support exoskeleton,
while the mean reduction in metabolic rate over the past decade
is 9.6% =+ 4.5%. Knowing these rationales behind users’
perception helps in the design and adoption process of
exoskeletons. Through literature, muscle activity and ROM are
among the most prevalent kinetic and kinematic metrics used for
the evaluation of back-support exoskeletons [24]. Therefore, it
is important to know how changes in these metrics are related to
users’ perception in different aspects, e.g., biomechanical
support and comfort. To this end, understanding how humans
perceive changes between different sets of exoskeletons and
subsequently how this perception relates to measurable
biomechanical metrics is required. At the same time, the users’
perceptions are not always reliable as sometimes the change in
biomechanical support and comfort might not be noticeable by
the users. Therefore, it is crucial to investigate a minimum
amount of change that users perceive. Previous studies [15],
[25], [26] have used the just noticeable difference (JND) method
to find the minimum detectable change in different
physiological and non-physiological measurements. For
example, the JND for the perceived trunk posture was found to
be 2°-7° [27].

This study aimed to investigate to what extent changes in
lower back muscle activity and ROM represent users’
perceptions when wearing a back-support exoskeleton. For this
purpose, a passive back-support exoskeleton with different
configuration options was used. The results obtained from
pairwise comparisons of different exoskeleton configurations,
done by wusers, have been compared with objective
measurements collected by wearable sensors. This examination
aimed to determine how accurately users select the exoskeleton
that offers a greater reduction in muscle activity as the one that
provides more biomechanical support and to determine how
users’ comfort selection is related to the changes in ROM.

II. METHODS

A. Participants

Four healthy individuals (two females and two males, age:
28 + 4 years, weight: 80 + 18 kg, and height: 170 + 7 cm)
without any previous back injuries were recruited to participate

in the experiments. The study was approved by the research
ethics board of the University of Alberta, ID: Pro00109264.

B. Exoskeleton

The Apex exoskeleton (HeroWear, Nashville, USA) was
used in this study (Fig. 1). This exoskeleton weighs 1.5 kg and
uses soft elastic bands to generate assistive torque about the
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Fig. 1. Apex exoskeleton. There are eight configurations of the elastic bands
as a combination of four sizes (1-4) and two strength levels (low and high).

lumbar spine. The two elastic bands connected the upper-body
section (a backpack with shoulder and chest straps) to the thigh
sleeves.

C. Experimental Procedure

The experimental procedure consisted of both subjective and
objective assessments, each with two tasks: static trunk bending
and weight lifting. During the static trunk bending, participants
maintained a 40° angle posture of trunk while holding a 5 1b
object in their hand for 20 seconds. The 40° angle was monitored
both visually and with the aid of a custom-made goniometer
placed beside the participants. During the lifting task,
participants lifted a 5 Ib object from a height of 30 cm above the
ground to the waist level. The 5 1b load was selected to ensure
participant safety and minimize fatigue during repeated trials.
The 30 cm lift height represents a common starting height for
objects placed on the floor in various occupational settings,
allowing for consistency in lower back activation without
excessive joint strain. Eight different configurations, combining
four sizes and two strength levels of support bands (high and
low), were tested. During the subjective assessment, participants
tried these eight different exoskeleton configurations to
familiarize themselves with the level of support and comfort
each provided, ensuring they could make informed
comparisons. They made 28 pairwise comparisons, 8 choose 2,
with the eight exoskeleton configurations to compare all
possible pairs (see Fig. 2). After each pair of trials (with two
different configurations), participants were asked to make a
forced comparison, selecting the configuration that provided
greater biomechanical support, or lower back relief, and
comfort, assessed separately. Also, they were asked to make a
forced comparison between the pair to select the preferred one
overall, considering biomechanical support and comfort,
altogether. It should be noted that the trial and task order were
randomized to prevent any fatigue or bias. Participants were
asked to rest

For the objective assessment, participants were equipped
with EMG sensors (Tringo Avanti EMG sensor, Delsys, USA)
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Fig. 2. An example of similarity index calculation between Matrices A and
B that show pairwise comparisons among all settings. These matrices can
be results obtained from users’ subjective preferences for comfort,
biomechanical support, and overall or objective measurements for muscle
activity and ROM.

attached to their lower back muscles (Latissimus and
Thoracolumbar) as well as inertial measurement unit (IMU)
sensors (MTws, Xsens Technologies, NL) on the left and right
upper and lower leg, chest, and pelvis. They repeated the same
tasks performed during the subjective part, static trunk bending
and weight lifting, each four times to ensure reliability and
consistency in the data by reducing variability and potential
outliers in the measurements.

During both tests, muscle activity data, with a sampling
frequency of 2,148 Hz, and IMU data, with a sampling
frequency of 80 Hz, were collected. To normalize the muscle
activity, maximum voluntary contraction tests were performed
for all back muscles at the beginning of the experiments [28].

D. Data analysis

First, all EMG data were filtered with a 4th order bandpass
Butterworth filter with cut-off frequencies of 10 Hz and 500 Hz.
Then, EMG data were normalized to its corresponding
maximum voluntary contraction measurements. The mean,
median, 90" percentile, and root mean squared (RMS) values of
normalized muscle activity were calculated to compare different
exoskeleton settings. In a separate study, the minimum
detectable change in mean, median, and 90 percentile of lower-

back muscle activity was found using the JND method. The
average JND values found for the mean, median, and 90™
percentile of EMG amplitude are 27.9%, 29.4%, and 20.1%,
respectively. Thus, an EMG analysis was performed considering
the JND values. For each pairwise comparison, if the change in
each measure was lower than their corresponding JND values,
that pair was discarded. This is because such differences are
unlikely to be perceived accurately by users, making their
responses for those pairs unreliable.

To determine the joint angles using IMUs, a functional
calibration method, as described in [29], was used to align the
IMUs’ inertial frames with the body’s anatomical frames. For
this purpose, after attaching the IMUs, participants were
instructed to stand still for 5 seconds, followed by performing
10 flexion and extension movements of the legs and arms while
keeping their knee and elbow joints locked. Subsequently,
segment orientations were estimated using the sensor fusion
algorithm suggested by [30], [31]. Using segment orientations,
knee and trunk joint angles, and subsequently their ROMs, were
calculated. JND value for joint angles was considered to be 4°
[27].

Different comparisons between subjective outcomes were
done to obtain the similarity between them. Also, the
comparison between the 28 pairwise assessments from the
subjective evaluations and their corresponding objective
measurements was conducted to evaluate the accuracy of
participants’ perceptions.

E. Similarity Analysis of Subjective and Objective Metrics

Matrices A and B (Fig. 2) were derived from users’
subjective preferences and objective measurements related to
comfort, biomechanical support, muscle activity, and joints
ROM. For subjective preferences, matrix A was constructed
based on user feedback regarding comfort and support. For
ROM, matrix B was constructed by comparing each pair of
configurations and selecting the exoskeleton configuration that
allowed for a greater ROM. Similarly, for muscle activity,
matrix B was constructed by choosing the setting that resulted
in a greater reduction of muscle activity mean, median, and 90™
percentile, each separately, between each pair.

In this analysis, if A;; = B;;, the output matrix was assigned
“17 (8;; = 1); conversely, if A;; # B;j, 0 was assigned to the
corresponding cell of the output matrix (S;; = 0). To obtain the
similarity index, the proportion of pairs assigned a score of ‘1’
out of the 28 pairs was calculated as the "similarity index" (see
Fig. 2 and Equation (1)).

t=1 X =15
28
if A(i,j) and B(i,j) are the same

Similarity Index,g (%) = X 100
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For obtaining the similarity index between objective and
subjective outcomes, matrix A was constructed based on
subjective feedback (biomechanical support or comfort
perceptions) and matrix B was constructed based on objective
measurements (muscle activity or ROM). To obtain the
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similarity index between different subjective feedback, both
matrices were constructed based on subjective feedback.

The second method to find the correlation between objective
and subjective metrics was using the Point-Biserial (PB)
correlation coefficient, a special case of the Pearson’s
correlation coefficient. PB correlation finds the correlation
between a continuous variable and a binary variable (Equation
(2)). In this study, continuous variables were joint ROM as well
as mean, median, and 90" percentile of EMG recordings, and
the binary variable was subjective feedback.

(% - X0) Momy )

s n?

where, X 1 and X 0 are the mean of the continuous variable
for the group where the binary variable is 1 and 0, respectively,
s is the standard deviation of the continuous variable, n; and n,
are the number of observations where the binary variable is 1
and 0, and n is the total number of observations, which was 28
in this study.

Prp =

III. RESULTS

A. Subjective Feedback

The results indicate that users’ overall preferences were
similar to their comfort and biomechanical support preferences
with the median similarity index of 57.0 [37.5 73.2]% and 62.5
[48.2 71.4]%, respectively (Fig. 3). There was no significant
difference between comfort and biomechanical support
similarity indexes. These results suggest that neither comfort nor
biomechanical support was a predominant factor in determining
users’ final preferences. In other words, depending on the
exoskeleton’s configuration users may prioritize one of these
factors.

Among 28 comparisons, four were between elastic bands of
the same size but different strength levels (low and high). On
average, users selected the high-strength elastic bands for
comfort, biomechanical support, and overall preferences in
6.3%, 75%, and 18.75% of comparisons (Fig. 4). Users selected
the high-strength elastic bands for biomechanical support
significantly more than for comfort and overall preferences.
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Fig. 3: Similarity index calculated between users’ preferences for comfort
and biomechanical support with their overall preferences

100

I High Strength
IlLow Strength

80

Elastic bands Preference (%)

Comfort Bio. Support Overall
Factors
Fig. 4: The average users’ preferences: percentages of selections of high and
low strength elastic band with the same size

B. Similarity between objective measurements and subjective
feedbacks
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Fig. 5: Similarity index and PB correlation coefficient calculated between
users’ preferences for biomechanical support and different EMG metrics

Results showed that both similarity index and PB
correlations between EMG measures (mean, median, and 90%



percentile) with subjective perceived biomechanical support
were higher in the static task compared to dynamic task (Fig. 5).
For example, the average similarity index between mean value
of EMG amplitude and users perceived biomechanical support
was 56+ 33 and 41 + 11 for static and dynamic tasks,
respectively. Additionally, the average PB correlation between
mean value of EMG amplitude and wusers perceived
biomechanical support was 0.43 + 0.16 and 0.23 £+ 0.17 for
static and dynamic tasks, respectively.

The correlation between trunk ROM and users’ perceived
comfort was higher than the correlation between knee ROM and
users’ perceived comfort (Fig. 6). In other words, trunk ROM
was prioritized over knee ROM when comparing the comfort
across different settings of the exoskeleton.

IV. DISCUSSION

Previous research has shown that back-support exoskeletons
can provide assistance to users in physically demanding tasks
such as trunk bending and weight lifting. While various metrics
have been used to evaluate the efficacy of exoskeletons, user
feedback was found to be a crucial part of the adoption process
[22], [32]. Therefore, knowing which factors (such as comfort
and biomechanical support) are important to users when
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Fig. 6: Similarity index and PB correlation coefficient calculated between
users’ preferences for comfort and biomechanical support with their overall
preferences.

selecting their preferred exoskeletons is important. It is also
essential to understand the relationship between subjective
feedback and objective metrics to develop guidelines that helps
for designing exoskeletons that provide maximum benefits to
the users. In this study, we explored both the relationships
among subjective factors and between subjective feedback and
objective biomechanical metrics.

This study assumed that biomechanical support and comfort
are the primary factors in user preference for exoskeleton users,
based on our preliminary findings. These results showed that
user preferences for other factors, such as mobility and pain,
closely aligned with their preferences for either biomechanical
support or comfort. Building on this assumption, the study
investigated how closely users’ overall exoskeleton preferences
align with their comfort and biomechanical support preferences.
It was found that none of these two factors were predominant
when a wide range of exoskeleton options, in terms of their
support and movement restriction, were compared together (Fig.
3). While the logic behind users’ overall exoskeleton
configuration selection remains unknown, this study
investigated how comfort and biomechanical support correlate
with biomechanical measurements.

While EMG analysis has been used for a long time as an
indicator of load on muscles, our results indicate that the EMG
metrics represent human perception of biomechanical support
only to a limited extent (Fig. 3) . In other words, EMG metrics
did not fully capture the load perception on the lower back
muscles. It appears that, similar to comfort, humans use a more
complex internal model than what central nervous system
employs to interpret the perception of load. Other biomechanical
indicators, such as joint load and forces, might better represent
the users’ perceptual support. In other words, indicators that
have more linear and direct relations with muscle loading might
be better perceived by users than muscle activity obtained by
surface EMG sensors. This is partly because muscle activity
obtained by EMG sensors can be affected by many other factors,
such as sensor placement and movement artifacts.

Generally, what users consider as comfort is complex and
might be individual-specific. However, the first step toward
finding this complex function is to see how comfort is correlated
with biomechanical measurements. In this study, we examined
the correlation between comfort with trunk and knee joint
ROMs. In other words, we hypothesized that movement
restriction was a part of discomfort. This has been seen in
previous research as well, where it is found that users reported
discomfort with exoskeletons because it reduced movement
flexibility [17]. Fig. 6 showed high similarity index and PB
correlation coefficients between users’ comfort and trunk ROM,
unlike those observed for the knee. In other words, users
preferred the exoskeleton setting that allowed a larger trunk
ROM as the one that was more comfortable in 74.4% of cases.

As Fig. 4 indicates, while high-strength elastic bands are
favored, compared to low-strength ones, for their higher
biomechanical support, users perceive them as less comfortable.
Average trunk ROM data showed that exoskeleton settings with
high-strength elastic bands restrict users’ movement more than



those with low-strength elastic bands. This difference explains
the low comfort level that users was perceived from high-
strength elastic bands, considering that a high correlation exists
between users’ perceived comfort and trunk ROM (Fig. 6). As
such, the body joints ROM can be used in the future as an
indicator of users’ comfort, or can be integrated with other
objective functions to maximize users’ satisfaction.

This study has limitations that should be considered when
interpreting the results. First, the results were for two common
dynamic (weight lifting) and static (trunk bending) tasks. The
results may differ for other tasks, especially when they are not
bilaterally symmetrical [33]. Second, the average JND values of
muscle activity and joint ROM were used for all participants.
However, it is recommended to have individual-specific JND
values as individuals’ perceptions are different. Finally, As a
preliminary study, the current work is limited by a small sample
size. Future experiments will be conducted with more
participants and incorporate additional factors, e.g., pain,
mobility, and stability, to enhance the depth and applicability of
the results.

CONCLUSION

This study explored the relationship between objective
metrics, back muscle activity (measured through EMG) and
ROM of knee and trunk joints, and subjective user feedback,
perceived comfort and biomechanical support, in the evaluation
of back-support exoskeletons. The findings indicated that while
EMG metrics can partially reflect users’ perception of
biomechanical support, they do not fully capture the complex
nature of users’ perception of load. Conversely, trunk ROM
shows a strong correlation with perceived comfort, suggesting
that reduced movement restriction is associated with greater
discomfort. Users’ preferences for exoskeletons were influenced
by a balance of comfort and support, with no single factor being
dominant across all scenarios. This research laid the groundwork
for understanding how different biomechanical indicators align
with user perceptions of the exoskeleton efficiency and
highlighted that users consider a broader range of factors when
selecting their preferred exoskeleton setting. The study also
emphasized the need for further research to identify more
sensitive objective metrics that align with users’ perceptions.
Such insights could help develop a more comprehensive
objective function that better represents the complex factors
influencing user preference and satisfaction when wearing an
exoskeleton that can contribute to the optimized design and
adoption of user-friendly exoskeletons.
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