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Abstract— This paper introduces a novel hybrid torque allo-
cation method for improving wearability and mobility in inte-
grated functional electrical stimulation (FES) of the quadriceps
muscles and powered exoskeleton systems. Our proposed ap-
proach leverages a hierarchical closed-loop controller for knee
joint position tracking while addressing limitations of powered
exoskeletons and FES systems by reducing power consumption
and battery size and by mitigating FES-induced muscle fatigue,
respectively. The core component is a model-free optimization
algorithm that dynamically distributes torque between FES and
the exoskeleton by considering tracking error, effort, and the
prediction of muscle fatigue in the cost function, computing
allocation gain in an online manner. The online optimization
approach interactively changes the optimal allocation gain by
taking into account the instantaneous value of error and effort
and also penalizing FES-induced fatigue, a common challenge
in long-duration experiments. The results demonstrate that this
dynamic allocation significantly improves system wearability by
reducing power consumption without increasing muscle fatigue
during the extension phase of walking. This hybrid control
approach contributes to improving exoskeleton wearability and
rehabilitation outcomes for individuals with SCI and mobility
impairments, enhancing assistive technology and quality of life.

I. INTRODUCTION

A. Background on Hybrid FES-Exoskeleton

Spinal cord injury (SCI), stroke, and other neurologi-
cal conditions collectively affect millions of people world-
wide, causing significant mobility impairments and impeding
standing and walking activities [1]. Functional electrical
stimulation (FES), a potential technology for restoring walk-
ing and standing after paralysis, has long held a recognized
and indispensable role within the domain of physical ther-
apy [2]. Characterized as a neurorehabilitative strategy that
directly elicits and activates muscle function, FES offers not
only functional training but also therapeutic advantages for
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people living with paralysis-related challenge [3]. Neverthe-
less, despite advancements in the application of FES, the
rapid onset of muscle fatigue induced by FES remains a sig-
nificant technical challenge due to the subsequent reduction
in muscle force, which constrains the duration of walking
activities [4].

Powered exoskeletons, wearable robotic devices serving as
an alternative rehabilitation technologies, have traditionally
been developed to provide mechanical support and assistance
to individuals dealing with conditions such as SCI, aiding
them in regaining lower limb functions. These rehabilitative
and assistive exoskeletons not only help users maintain
independence but also improve their physical fitness. Notable
examples of powered exoskeletons, including Indego [5],
Exo H3 [6], ReWalk [7], HAL [8], and Ekso GT [9], have
emerged in recent years, designed to assist and rehabilitate
users. Nonetheless, although active exoskeletons are increas-
ingly used in rehabilitation, their high energy consumption
during walking necessitates considerable battery power and
large motors, which limits their portability and wearability
within the community [10].

Hybrid exoskeletons, combining a powered exoskeleton
with an FES system, present a promising alternative that in-
corporates the advantages of both approaches and addresses
their respective shortcomings [16]–[21]. The integration of
FES and exoskeletons into hybrid rehabilitation systems
can provide both functional and physiological benefits to
patients, thereby enhancing the effectiveness and efficiency
of rehabilitation [3]. In a typical FES system, muscle stim-
ulation and contraction often lead to muscle fatigue and
reduced precision of control [22]–[24]. Hybrid systems, in
which the exoskeleton provides support and power while
FES contributes additional torque, effectively address these
limitations [25]. This collaborative approach creates a syn-
ergistic effect that enhances overall rehabilitation outcomes.
Recent research highlights the potential of hybrid actuation,
leveraging FES-induced muscle contractions and exoskeleton
motors, to reduce muscle fatigue (in comparison to FES-
only actuation) and motor weight (compared to powered
exoskeletons) [26].

B. Cooperative and Shared Control

Despite the advantages of the hybrid exoskeleton, the
combined use of FES and the electrical motor renders the
exoskeleton actuator redundant [14]. Furthermore, the pres-
ence of two actuators with distinct dynamics complicates the
synchronization process. Addressing actuation redundancy,
differences in actuator dynamics, and managing the fatigue
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TABLE I
RECENT STUDIES USED OPTIMAL CONTROL FOR HYBRID TORQUE ALLOCATION

Author Application Optimal Control Strategy Cost Function Terms

Singh, et al (2024) [11] Lower limb - Walking & knee extension Model predictive control allocation Error & torque
Dunkelberger, et al. (2024) [12] Upper limb - Gripping & arm

manipulation
Model predictive control Error & torque

Iyer, et al. (2022) [13] Lower limb - Knee extension Online actor-critic identifier (RL) FES current, motor
torque, & error

Molazadeh, et al. (2021) [14] Lower limb - Sit-to-stand Predictive allocation strategy FES & motor torque
Bao, et al. (2020) [15] Lower limb - Sit-to-stand Model predictive control FES & motor torque &

estimated fatigue
Kirsch, et al. (2018) [4] Lower limb - Knee extension Nonlinear model predictive control Error & torque
Current study Lower limb - Knee extension Model-free optimization-based

allocation
Error, energy, &
accumulated fatigue

dynamics of FES presents complex control challenges that
require a more structured control design to optimize the
concurrent operation between FES and the electrical motor
[27]. Cooperative and shared control have been employed
in numerous studies to coordinate hybrid FES and motor
actuation, utilizing various approaches, including nonlinear
adaptive control families and optimal control methods [4],
[11]–[15], as well as in references [18] and [10], [28]–[31].
Ha et al [18] and Quintero et al [31], utilized an adaptive
controller for the hybrid integration of FES and electric
motors for walking and knee regulation. In Ha et al. [18],
joint torque profiles from earlier steps were used by the
muscle control loop to adjust the muscle stimulation profiles
for subsequent steps, while Quintero et al. [31] employed
a PD controller to regulate the electric motors. Simultane-
ously, a proportional gain modulated the stimulation, with its
adaptation depending on the current supplied to the electric
motor [31].

Optimal control has garnered considerable attention in
the literature as a viable approach for coordinating the
cooperative control of FES and an electric motor in hybrid
exoskeleton systems [4], [10]–[15]. A range of variations of
optimal control methods have been employed to optimally
distribute torque between FES and an electric motor for
different applications, ranging from upper body exoskeletons
[12] to lower limb exoskeletons for knee extension [4], [13],
walking [11], and sit-to-stand tasks [14], [15]. Except for
Reinforcement Learning (RL)-based optimal torque control
approaches [13], most other studies employed model-based
linear or nonlinear optimization programming to solve this
problem. The cost functions in these optimal control methods
were quadratic and consisted of different terms, including
tracking or regulation error, FES, motor, or both torques,
and sometimes an estimated value for muscle fatigue. A
similar structure and terms were used in the RL approach for
the reward function. A summary of the most recent optimal
torque allocation approaches is provided in Table I. Despite
their success in optimally distributing torque between FES
and electrical motors, there are two drawbacks to these
approaches. First, all optimizations are model-based. Even
in the case of RL-based approaches (e.g., [13]), a simulator
(a model of the hybrid exoskeleton) was used for training the

algorithm. Secondly, none of these studies considered energy
consumption in their cost function.

FES requires less energy compared to an electrical motor,
while its trajectory tracking error is higher than in the
motor-only case [4]. Therefore, there is a clear compromise
between FES and motor contributions to minimizing required
energy or tracking error. These optimization-based methods
focus on minimizing FES torque; however, the magnitude
of FES torque is not necessarily an accurate indicator of
energy consumption or fatigue. If the design objective is
to minimize the weight and size of the exoskeleton, energy
minimization must be prioritized over torque minimization.
This argument is grounded in the fact that FES-induced
torque does not consume the same portion of energy as a
motor does. While FES-induced torque is proportional to
the stimulation current, this current is solely used to trigger
muscle movement. In other words, FES is more energy-
efficient than electrical motors since it uses human muscle
energy to move the body. This is the reason why FES energy
must be used in the optimization cost function instead of FES
torque.

C. Contribution

To address the aforementioned drawbacks and exploit the
strengths of both actuation types, we propose a model-
free optimization-based torque allocation between FES and
electrical motor, incorporating tracking error, energy con-
sumption, and FES-induced muscle fatigue terms in the
cost function. The online implementation of this optimiza-
tion accounts for instantaneous changes in the cost due to
variations in error, energy consumption, and, in particular,
fatigue terms. This capability enables interactive changes in
allocation gain in response to the dynamic behavior of the
system and penalizes fatigue induced by FES. The proposed
method enhances the wearability of the hybrid exoskeleton,
makes it more personalized, and minimizes muscle fatigue
in continuous and long-duration experiments. The main
contributions of this paper are threefold:

• Inclusion of total energy consumption by both actuators
in the optimization cost function.

• Online implementation of a model-free optimization
for torque allocation, resulting in a dynamic allocation
algorithm.



• Designing a personalized cost function by tuning
person-specific weights in the cost function.

II. METHODS

The primary goal of the hybrid closed-loop control frame-
work was to distribute torque between actuators to reduce
total energy consumption and minimize tracking error (Fig-
ure 1). A proportional–integral–derivative (PID) controller
calculated control torque based on tracking error in a position
control loop. This torque was then allocated between two
actuators using an online-computed allocation gain to mini-
mize the combined error, energy, and muscle fatigue index.
Additionally, an inverse model of the FES as an actuator
was employed to convert the output torque of the low-level
controller into electrical stimulation current.

Fig. 1. Schematic of the proposed hybrid dynamic torque allocation control

A. PID Feedback Control

A position control loop, utilizing a PID controller (PID
Controller block in Figure 1), ensured that the knee joint in
the hybrid exoskeleton system followed the desired reference
trajectory. The control torque (τc) calculated by the PID
controller was determined by the formula:

τc = Kp · e+Ki ·
∫

edt +Kd ·
de
dt

(1)

Kp, Ki, and Kd denote the proportional, integral, and deriva-
tive gains of the controller, selected empirically to minimize
tracking errors and mitigate jerky movements from over-
shoots. The calculated τc was forwarded to the subsequent
torque allocator block, serving as a low-level controller for
torque distribution among actuators.

B. Optimization-based Torque Allocation

Following the control part, an optimization-based torque
allocation approach was developed to enhance real-time
torque distribution in the control framework. This strategy
considered tracking error, total energy consumed by both ac-
tuators, and estimated muscle fatigue, computing the instan-
taneous optimal allocation gain x at each time-step, which
served as the contribution of each actuator. Thereby, the
allocation was defined as a quadratic programming problem
as shown below:

J(xk) =
k

∑
i=1

Ei(x)2 + p ·Ui(x)2 + γ ·Fi(t,x)2

s.t. 0 ≤ xk ≤ 1 (2)

where J(xk) is the instantaneous cost at time-step k, and
Ei(x), Ui(x), Fi(t,x) represent tracking error, total energy
consumed by both actuators, and the accumulative index for
muscle fatigue, respectively. p and γ are unknown weights
in the cost function which determine the contribution of
each component of the cost function (error, energy, and
fatigue) in the cost value. The optimization variable, x,
was constrained to be between 0 and 1, determining none
and full FES contribution in total torque respectively. This
optimization must be solved online based on a stream of
information (error, energy, and fatigue estimation) so that
the computed optimal allocation gain can interactively adjust
each actuator’s contribution in total control torque.

In cost function design, the weights p and γ are unknown
and vary depending on system dynamics. In a hybrid ex-
oskeleton, individual human dynamics, including physical
properties and muscle responses, make the system unique to
each person. Thus, weight determination in the cost function
must be personalized. The p weight emphasizes total energy
compared to other factors and has lower variance than the γ

weight. The latter reflects the fatigue index’s contribution and
is not only person-specific but also time-dependent, making
it challenging to determine accurately due to limited ground-
truth data of fatigue and the simplicity of the fatigue index
prediction model. Therefore, the γ weight was empirically
adjusted during experiments, while the p weight was tuned
using offline optimization.

Therefore, in summary, the optimization-based torque al-
location involved two steps:

• An offline optimization determines the p weight in the
cost function using data from fixed allocation experi-
ments.

• An online step dynamically determines allocation gain
through an online optimization over a data stream and
applies the designed cost function from step 1.

Step.1: Offline Optimization. The offline optimization
aimed to determine the p weight in the cost function,
ensuring convexity and achieving a minimum at the desired
allocation value (xd). To exclude the fatigue effect (the
γ ·Fi(t,x)2 term in the cost function), this step was conducted
using the results of a short-term experiment where the muscle
fatigue effect is negligible, and the cost function includes
only the error and energy terms. Thus, the cost function for
the offline optimization was defined as:

J(x) =
m

∑
i=1

Ei(x)2 + p ·Ui(x)2

s.t. 0 ≤ x ≤ 1 (3)

Here, J(x) represents the total (final) cost of a batch dataset
as opposed to the instantaneous cost in online optimization.
In these experiments, the allocation gains were fixed at
different values between 0 and 1. After conducting experi-
ments with various fixed allocation gains, the desired energy
reduction was chosen, taking into account exoskeleton design
constraints. A convex cost function was then designed based
on the desired allocation gain xd , ensuring that the mini-



mum of the cost function corresponds to xd . A combined
search and optimization method, detailed in Algorithm 1,
determined the optimal value for the weight p in the cost
function. Once convergence was achieved, the computed
weight (p∗) was used in online optimization for dynamic
torque allocation.

Algorithm 1: Combined offline optimization and search
for computing weight p∗ in the cost function

Data: Results of fixed allocation tracking
experiments

for k = 1,2, ... do
Jk(x) = ∑

k
j=1 E j(x)2 + p ·U j(x)2

s.t. 0 ≤ xk ≤ 1
Convexity check of Jk(x)
x∗k = argminJk(x);
δk = x∗k − xd;
pk+1 = pk −α ·δk;
if |pk+1 − pk|< ε then

break
end

end

Step.2: Online Optimization. In this step, the dynamic
allocation gain computed at each time step determines each
actuator’s contribution to control torque based on the instan-
taneous cost, which was a sum of costs from the begin-
ning until that time step. Because the online optimization
algorithm utilizes instantaneous cost, any changes in error,
energy, and fatigue index can influence the optimal allocation
gain, meaning that the allocation gain changes interactively
based on the instantaneous compromise between different
factors. This interactive response in optimal gain resulted in a
dynamic allocation approach that took into account dynamic
changes in various aspects of the system, including error,
energy, and specifically the accumulated fatigue index. The
accumulated muscle fatigue index, Fi(t,x), based on a simple
prediction strategy calculated as follows:

Fi(t,x) =
n

∑
i=1

x · (1− e−k f (t−tonset)) (4)

Here, t represents time, tonset is the onset time when fatigue
initiates in the muscles, and k f is the exponential decay gain
fitted to the reduced joint motion due to muscle fatigue (θ f =
θ · e−k f (t−tonset)). The multiplication by x (allocation gain)
emphasizes the correlation between FES contribution and
muscle fatigue. The computed optimal x(t) at each time t was
used to distribute torque between the electrical motor and
FES. Since only the quadriceps muscle group was stimulated
using FES, FES torque only existed in the knee extension
direction, i.e., hybrid torque allocation only occurred during
knee extension, while knee flexion was executed using the
electrical motor. Therefore, torque distribution was based on
a simple state machine, and the allocation gain was computed

using the optimization program as shown below:
τFES(k) = x(k) · τc(k)

τMot(k) = (1− x(k)) · τc(k)
if extension

τMot(k) = τc(k) else

(5)

Here, τc(k) represents the total torque required to move
the hybrid system to the desired position at time step k.
τMot(k) and τFES(k) denote the allocated torque to the motor
and FES, respectively. Subsequently, the FES torque were
forwarded to the inverse model to calculate the muscle
stimulation current (See Optimal Allocator block in Figure
1).

C. FES Inverse Model

The torque allocation block generated two torque values
for each actuator, including FES. However, the torque-current
relationship in FES is not linear as is the case with an electri-
cal motor. In the literature, various modeling approaches have
been employed to describe the torque-current relationship in
FES, including muscle activation, biomechanics, and non-
parametric model learning [4], [32]. To reduce computational
burden, a simple nonlinear regression model described the
current-torque relationship in FES (Inverse FES Model block
in Figure 1):

IFES = I0 + I1 · τFES + I2 · τ2
FES (6)

Here, I0, I1, and I2 are constant parameters to be experimen-
tally estimated, and τFES and IFES represent FES torque and
current, respectively. For FES-induced torque measurement,
a gravity model for the human shank and exoskeleton was
employed. This gravity torque model, based on joint angle
measurement in a steady-state holding test (at different
angles), is described as:

τgravity = G · sin(θ) (7)

Here, θ is the joint angle measurement, and G is a lumped
constant parameter identified through experimentation.

III. EXPERIMENT

The experimental set-up depicted in Figure 2 was em-
ployed to assess the efficacy of our proposed dynamic torque
allocation method. The Indego exoskeleton (Parker Hannifin
Corporation, USA), equipped with a built-in FES system,
was used in these experiments. One neurologically intact
person (30 years old, male, height 1.81m, weight 78kg)
tested the control strategy while seated with the knees at
a 90° angle. The tester was instructed to relax their shanks,
avoiding intentional movement. Two FES electrodes were
placed on the quadriceps muscle group of one leg, and
straps ensured stability during electrical stimulation. In this
experiment, all online and real-time simulation and control
computations were executed using the Simulink Real-time
toolbox of MATLAB® software (MathWorks, Natick, MA,
USA), version 2023, and sent to the exoskeleton in real-time
through the CAN communication protocol (CAN bus).



Fig. 2. Experimental set-up of hybrid FES-Exoskeleton

A. Parameter Estimation

To implement hybrid control and dynamic allocation, it
was essential to identify parameters for the FES inverse
model, gravity torque model, and muscle fatigue estimation
model.

For gravity model identification, steady-state experiments
were conducted, holding the human shank in the exoskeleton
at specific angles within the knee motion range (from 5 to 40
degrees). A nonlinear curve fitting of known motor torque
and corresponding gravity torque yielded the G parameter.
Similar experiments were conducted for the FES inverse
model, where FES acted as the actuator for holding the
system at a specific angle. FES torque was considered
equivalent to the gravity torque estimated using (8). Muscle
fatigue parameters were estimated through experiments in-
volving square-wave biphasic stimulation (40 mA amplitude,
16 Hz, and 400 µs pulse width) applied to the quadriceps
muscle during a 5-minute test with a frequency of 0.5 Hz.
A significant reduction in joint angle amplitude, starting
at 50 seconds (coinciding with tester muscle fatigue), was
observed. An exponential decay model was fitted to the
knee joint angle decay, yielding the k f parameter. Estimated
parameters are listed in Table II.

TABLE II
PARAMETER ESTIMATION OF FES FATIGUE AND INVERSE MODEL

G[kg.m/sec2] 4.01 I0[mA] 21.224
k f 0.0018 I1[mA/N.m] 9.215

tonset[sec] 50 I2[mA/N2.m2] 0.2684

B. Fixed Allocation Results

To determine the optimal value of the parameter p in
the cost function, multiple sinusoidal trajectory tracking
experiments were conducted, each lasting 200 seconds. In
these experiments, the shank was not held at a constant angle
but oscillated around 20 degrees with an amplitude of 10 de-
grees. The sinusoidal trajectory is based on the principles of
Central Pattern Generators (CPGs), which produce rhythmic,
oscillatory patterns that control cyclic movements, such as
walking or running, in a smooth and stable manner [3]. By
selecting a sinusoidal trajectory, the reference input mimics

the natural oscillatory behavior generated by CPGs, ensuring
that the knee joint’s movement aligns with the rhythmic
patterns typically required in locomotion tasks. Since fatigue
in this experiment begins around the 50th second (tonset = 50
sec), selecting a 200-second duration provided a significant
joint motion reduction of approximately 24% (see equation
(4)), while also ensuring a tolerable length of electrical
stimulation for the neurologically intact tester. Specifically,
choosing a 100-second duration would result in only a 9%
motion reduction, which is insufficient, while extending the
experiment to 300 seconds would increase the reduction to
36%, making the experiment difficult to tolerate. Therefore,
a 200-second duration was chosen as a suitable length for
the experiment.

Torque allocation gain, denoted as x, varied from 0 to 1
across experiments, was held at fixed values within each.
This variation aimed to observe how allocation gain influ-
ences root mean square error (RMSE) of tracking and total
energy consumption by FES and motor. Table III displays
the results, including RMSE and total consumed energy over
a fixed 50-second window. Based on the dataset in Table

TABLE III
FIXED ALLOCATION SIN TRACKING RESULTS

Allocation Gain x RMSE of Sin
Tracking [deg]

Total Consumed
Energy [J]

0.0 2.96 30.1
0.2 2.79 24.3
0.35 2.89 22.7
0.45 3.15 23.5
0.70 3.69 22.7
0.85 4.27 24.3
1.0 5.11 25.8

III, a desired energy reduction of approximately 20 to 30%
compared to the motor-only case guided the selection of the
derived allocation value, set as xd = 0.35, which based on
fixed allocation tests can meet both energy reduction require-
ment while results in good tracking accuracy. Subsequently,
by executing Algorithm 1, the optimal value for the cost
weight was determined as p∗ = 99.7, and this value was
utilized in the dynamic allocation process. Figure 3 shows
cost function plot for different p∗ values.

Fig. 3. Offline cost function is plotted for different p∗ values. As it is
shown the best cost function in terms of convexity and having a global
minimum point at xd = 0.35 is the one with p∗ = 99.7



C. Dynamic Allocation Results

Similar to the experiment described in III-B the same
sinusoidal trajectory was selected for the trajectory tracking
experiment, which lasted 200 seconds and was conducted
using dynamic torque allocation calculated by running the
online optimization in (3). The weight term γ in the dynamic
cost function was empirically set to 1.5. The results of the
online computed allocation gain and sinusoidal trajectory
tracking are shown in Figures 4 and 5, respectively.

Fig. 4. Dynamic allocation gain computed using the online optimization

Fig. 5. Sin trajectory tracking using dynamic torque allocation

The RMSE of dynamic trajectory tracking and the total
energy consumed over a 50-second window are 2.59 degrees
and 23.5 joules, respectively.

IV. DISCUSSION

The optimization-based dynamic torque allocation method
successfully tracked the sinusoidal trajectory in knee joint
motion while optimally distributing control between the FES
and the electric motor.

In offline optimization experiments, it was evident that
the total energy consumption in hybrid cases was lower
than in the motor-only case, highlighting the significance
of employing a hybrid FES-motor control for energy re-
duction, ultimately leading to a smaller size and lighter
battery. Specifically, a higher FES contribution corresponded
to increased energy efficiency. However, in the FES-only
case, where the sole motor operates in the flexion direction
(due to the unidirectional force from FES) and FES is used
for extension, lower tracking accuracy resulted in increased
fluctuation. As a consequence, motor motion in the opposite
direction also increased. Consequently, in pure FES mode,
not only was the RMSE higher, but energy consumption was
also higher compared to most other allocation gains (e.g.,
x = 0.70 or 0.45). Another noteworthy trend observed in
the fixed allocation tracking data was the increasing RMSE
of trajectory tracking with the rise in allocation gain. This
increase was attributed to the growing FES contribution.

The FES actuator model used in the algorithm exhibited
more uncertainty than the motor model, and the time-varying
nature of muscle behavior introduced additional inaccuracies
in trajectory tracking when using FES. Consequently, a
higher FES contribution led to more errors in tracking.

In dynamic allocation mode, an online torque allocation
algorithm was employed to compute a dynamically changing
allocation gain. This gain varied in response to changes
in cumulative error and energy at each time-step. These
variations were primarily due to the sinusoidal reference
trajectory, causing differences in the position control loop
error, and the time-varying nature of muscle behavior. Im-
portantly, the online optimization cost function included a
term for the cumulative fatigue index. Therefore, after 50
seconds (the onset time of muscle fatigue), the value of the
instantaneous cost gradually increased, and the gain gradu-
ally decreased. This led to a reduction in muscle contribution.
The RMSE of trajectory tracking results indicated that this
reduction in FES contribution had a positive impact on error
reduction compared to a fixed allocation gain. However,
due to increased motor contribution, the total amount of
consumed energy also increased in comparison to the fixed
value of x. This demonstrates the effectiveness of dynamic
allocation, which not only considers instances of changes in
energy consumption and error but also, by gradually reducing
muscle contribution, helps mitigate muscle fatigue in long
experiments.

This novel dynamic torque allocation method not only
optimizes the balance between FES and motor torque but also
represents a significant advancement in the development of
more energy-efficient, lightweight, and portable exoskeleton
systems. By employing this allocation method to design the
system optimally, the need for large batteries and bulky
components is reduced, thereby enhancing the wearability
and practicality of exoskeletons for everyday use. The im-
plications of these findings extend to the design of next-
generation wearable technologies, where reducing battery
size and improving portability are crucial for practical, real-
world applications.

V. CONCLUSION AND FUTURE WORKS

This study addressed the torque sharing challenge between
FES-induced muscle contraction and an electrical motor for
precise knee joint trajectory tracking. The proposed method
employed an online optimization-based approach to dynam-
ically allocate torque between FES and the motor using PID
feedback control. By incorporating total energy consumption,
tracking error, and an accumulative fatigue index into a
quadratic cost function, the approach optimally determined
the contribution of each actuator, minimizing combined
energy consumption and closed-loop error while considering
muscle fatigue. Results demonstrate the method’s effective-
ness in reducing energy consumption and mitigating muscle
fatigue. However, a limitation exists as the relationship
between error and allocation gain is estimated linearly during
optimization. Another limitation is empirically adjusting the
γ weight during online optimization experiments, which can



be done in a more systematic manner (e.g., using an adaptive
rule). Improvement through online and data-driven learning
is anticipated. A future direction could involve replacing
the PID controller with an adaptive model-free control for
enhanced adaptability to changing system dynamics while
remaining model-free in both control and allocation.
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