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In many types of percutaneous needle insertion surgeries, tissue deformation and needle deflection can create significant difficulties
for accurate needle placement. In this paper, we present a method for automatic needle tracking in 2D ultrasound images, which
is used in a needle-tissue interaction model to estimate current and future needle tip deflection. This is demonstrated using a
semi-automatic needle steering system. The ultrasound probe can be controlled to follow the needle tip or it can be stopped
at an appropriate position to avoid tissue deformation of the target area. Ultrasound images are used to fully parameterize the
needle-tissue model. Once the needle deflection reaches a pre-determined threshold, the robot rotates the needle to correct the tip’s
trajectory. Experimental results show that the final needle tip deflection can be estimated with average accuracies between 0.7 mm
to 1.0 mm for insertions with and without rotation. The proposed method provides surgeons with improved ultrasound feedback of
the needle tip deflection and minimizes the motion of the ultrasound probe to reduce tissue deformation of the target area.
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1. Introduction

With the rise of minimally invasive surgery and biomed-
ical imaging in the past decades, percutaneous needle in-
sertions have found use in a wide variety of medical ap-
plications: anesthesiology,1 biopsy,2 brachytherapy,3 and
drainage4 are just a few examples. Permanent prostate
brachytherapy (PPB), the main focus of this paper, is a nee-
dle insertion surgery developed in the 1980’s as a method
to treat early stage prostate cancer.5 The procedure has
shown to have progression-free and cause-specific survival
rates of greater than 96% for men with low to intermediate-
risk prostate cancer.6

A depiction of PPB is shown in Fig. 1. In this proce-
dure, hollow, flexible needles containing radioactive seeds
are inserted into the prostate. The needle is monitored us-
ing ultrasound (US) imaging to verify placement accuracy.
Once the needle is properly positioned, the seeds are per-
manently deposited within the prostate gland to apply a lo-
calized dose of radiation to the area. Therefore, the success
of prostate brachytherapy critically depends on accurate
placement of the seeds.7

Fig. 1. Depiction of permanent prostate brachytherapy. Nee-
dles filled with radioactive seeds are inserted into the prostate
gland through a template grid. The seeds are permanently de-
posited to destroy cancerous tissue. Image courtesy of Cancer
Research UK / Wikimedia Commons.

Prostate brachytherapy needles are typically 200 mm
in length, and are often bevel-tipped so that the needle can
slice through soft-tissue while still allowing the brachyther-
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apy seeds to be easily ejected. The bevel causes an imbal-
ance of forces applied to the needle tip as it cuts through
tissue, causing the needle to deflect during insertion. These
factors, when combined with the effects of tissue deforma-
tion, can lead to significant errors in needle placement if
corrective steering is not performed.8

Typically, during manual PPB surgery, the surgeon
monitors a transverse US slice near the maximum insertion
depth of the needle. Once the needle has been inserted, a
cross-sectional view of the needle appears in the transverse
image as shown in the left-hand panel of Fig. 2. If the needle
is too far from the pre-planned target position as observed
in the US image, the needle is withdrawn and inserted again
until the placement error is within the surgeon’s tolerance
range. The surgeon’s ability to steer the needle under lim-
ited feedback is critical for minimizing the number of re-
insertions required and to deliver the prescribed dose dis-
tribution. However, there are no well-defined guidelines for
needle steering for these type of procedures, with steering
strategies normally developed through empirical observa-
tion, experience, and trial-and-error.

Fig. 2. Example of transverse (left) vs. sagittal (right) US
imaging. In transverse images, a cross-section of the needle per-
pendicular to its neutral axis is observed. In sagittal images, the
needle’s neutral axis is observed.

US-based needle tracking and needle segmentation
strategies have been researched by several different groups.
Many have studied segmentation in 3D images or sagittal
images, where the images show a portion of the needle’s
neutral axis as shown in the right-hand panel of Fig. 2.
For example, needle segmentation using the Radon/Hough
transform has been studied in [9–11]. Another widely used
technique for needle or surgical tool segmentation in US
is random sample consensus, as shown in [12–14]. Other
techniques include Gabor filtering in [15, 16], shape-based
level set methods in [17] and the use of a specific feature
set as described in [18]. However, in PPB for example, the
transrectal probe’s movement is limited by the rectum, pre-
venting reliable use of sagittal images. The needle may de-
flect in a plane that is impossible to observe using sagittal
imaging, given the restrictions imposed by the rectum. An-
other limitation of sagittal imaging is that it is difficult to
use during needle insertion due to the unpredictable path

the needle may follow. With respect to 3D US, the images
and videos generated result in very large data sets which
can cause difficulties for real-time needle steering. As well,
the majority of clinical 3D US machines are sweep-based,
which is generally slow and again, undesirable for real-time
systems.

Transverse US imaging can be used regardless of the
needle’s deflection plane, unlike sagittal images. As well,
clinical PPB equipment and software are well-suited for
transverse US imaging. Needle segmentation in transverse
US has been studied by a few groups, such as [19], where a
voice coil actuator and Doppler US is used, and [20] where
morphological image processing and Hough transform-
based feature extraction algorithm is employed. Both of
these techniques rely on a comet tail artifact being observ-
able in the US image, which is a form of reverberation arti-
fact in US images caused by highly reflective surfaces, like
the needle. In biological tissue, the needle’s comet tail arti-
fact is not always visible using B-mode US, and extraneous
objects such as calcifications and air pockets can appear
very similar to the needle.

Several US-guided needle steering robots have been
developed, including those that apply external forces to
the needle base for steering correction,21–23 and rotation-
based needle steering devices.20,24 Additionally, a similar
Doppler US segmentation method as in [19] has been used
for rotation-based needle steering.25

All of these methods require the position of the US
probe to be adjusted such that the needle tip is always lo-
cated within the field of view of the US images. This is
particularly problematic for prostate brachytherapy, where
movement of the US probe can deform the prostate and
shift the target location. Therefore, limiting the movement
of the US probe is desirable.

In this paper, we present a method to assist surgeons
during needle insertion procedures by providing reliable
needle tracking in US images and reducing movement of
the US probe. This is demonstrated using a semi-automatic
needle steering system. The needle insertion procedure is
divided into two consecutive phases. In the first phase, the
US probe and the needle move in tandem, such that the
needle tip is constantly in the field of view of the US im-
ages. In order to track the needle in the US images, we de-
veloped a threshold-based image processing algorithm com-
bined with Kalman filtering. Once the needle is located in
the US images, the information is used to parameterize a
needle-tissue interaction model that is used to estimate fu-
ture needle tip deflection. The needle is rotated once the
current tip deflection reaches a user-specified threshold. In
the second phase of the insertion, the US probe stops while
the needle continues to be inserted. This is to prevent the
US probe from applying force to tissue and critical struc-
tures found at or near the target area. It is assumed that
needle rotation occurs before the probe stops moving, and
that a single rotation at an appropriate depth is used to
correct the trajectory of the needle.

The contributions of this paper include the develop-
ment of a robust needle tracking method based on image
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processing, Kalman filtering and a needle-tissue interaction
model that relies solely on 2D US feedback for parametriza-
tion without the need for tissue characterization. In addi-
tion, our method allows the US probe to be stopped at a
desired depth in order to avoid tissue deformation caused
by US probe contact. The method is demonstrated using
biological tissue experiments and a basic threshold-based
needle steering system. The rest of the paper is as follows.
In Section 2, the needle-tracking algorithm is defined. The
model for needle tip trajectory prediction is outlined in
Section 3. In Section 4, the biological experiments and the
experimental setup is described. Results are shown in Sec-
tion 5 and are discussed in Section 6. Conclusions are sum-
marized in Section 7.

2. Real-time Needle Tracking in US Images

In this section, the method for real-time needle tracking is
described. Our setup continuously receives transverse US
images of the needle. In transverse images, a cross-section
of the needle is shown, such that the needle appears as a
bright, elliptical object, as shown in Fig. 3.

Fig. 3. An image of the needle embedded within biological tis-
sue. The needle and extraneous background objects are shown.
Underneath, the image processing steps are shown.

Before the needle insertion begins, the insertion loca-
tion is manually identified. This is used to define an initial
region of interest (ROI). In our study, this ROI is set to
a 2.5 mm x 2.5 mm window centered around the needle’s
insertion location. The ROI is shown in Fig. 3.

2.1. Image Processing

After initializing the ROI, as shown in the panel of Fig. 3
labelled ROI, we apply contrast stretching in order to im-
prove contrast between the bright needle pixels and the
dark background tissue. The image processing method is
an extension of our past work.26 The contrast stretching
equation is given by:

T (r) =

(
I − 0.1Imax

Imax − 0.1Imax

)γ
(1)

where I represents the normalized ROI image with pixel
intensities ranging from [0, 1]. The pixel intensity zero rep-
resents the color black and one represents the color white.
The values Imax corresponds to the normalized maximum
intensity values present within the original ROI. The value
of γ is used to define the shape the exponential curve map-
ping the intensity values from the original ROI to the trans-
formed ROI.27 We set γ = 2, which weights darker pixels
more heavily. The result of (1) is a one-sided saturation of
the lower-intensity background pixels followed by an expo-
nential contrast enhancement. An example of the enhanced
ROI is shown in Fig. 3 in the panel labelled Enhanced.

After enhancing the ROI, its cumulative histogram is
used to determine an appropriate intensity threshold. The
intensity threshold is chosen based on the number of pix-
els n within the ROI expected to correspond to the needle,
which is obtained from 2:

n =
βAImax
IdxIdy

(2)

where A is the area of the needle’s cross section in mm2,
Idx and Idy represent the height and width dimensions of
a single pixel in the ROI in mm, respectively, and β is a
manually selected parameter used to account for needle dis-
tortion caused by attenuation, diffraction and diffusion of
the US beam. In our work, β was set to 0.75 based on em-
pirical tests. The intensity threshold selected for the ROI is
that in which at least n pixels lie above the threshold. Imax
is also used to modify the expected number of needle pix-
els. When Imax is low, the needle is less visible, and so the
expected number of needle pixels is decreased to compen-
sate. After the threshold is applied, the result is a binary
image, as shown in Fig. 3 in the panel labelled Binary.

After thresholding is completed, any cluster of needle
point candidates with fewer than 20% of n connected com-
ponents are removed. After all image processing steps have
been performed, we obtain a set of needle point candidates
as shown in Fig 3 in the panel labelled Final. A Kalman
filtering algorithm is used to filter outliers from the set of
candidate points, as well as deal with other issues described
in the next section.

2.2. Kalman Filtering

The Kalman filter has been successfully used for needle
tracking in [13,14,20,28]. In this paper, we use it not only
to help improve the needle estimation, but to help remove
outliers from the ROI, such as air bubbles, or tissue in-
homogeneities, which can often be mistaken for the needle
when performing insertions into biological tissue. As well,
sometimes whether due to loose contact between the probe
and the tissue, or due to extreme attenuation of the nee-
dle, the needle appears with very poor visibility within the
ROI such that it can not be found with the traditional im-
age processing steps described above. The Kalman filter is
used to predict where the needle should be within the ROI



December 3, 2015 11:33 waine˙jmrr˙revision

4 Author’s Name

given the needle’s historical trajectory. After Kalman filter-
ing, the ROI for the next iteration is updated by centering
the ROI around the updated needle position estimate.

It is assumed that the change in needle tip position is
constant between successive frames. The state prediction
x̂k|k−1 is the prediction of the needle tip position x and y
and the change in tip position x′ and y′ at sample k given
the state results from the previous iteration where the state
x is:

xk =

xkykx′k
y′k

 (3)

The state prediction at sample k given the sample at k− 1
is calculated as follows:

x̂k|k−1 = F x̂k−1 (4)

where F is the state transition model used to calculate the
state prediction. The state transition model is given by:

F =

 1 0 ∆d 0
0 1 0 ∆d
0 0 1 0
0 0 0 1

 (5)

where ∆d represents the change in depth between succes-
sive US frames.

During cases where there are multiple objects present
within the ROI, the state prediction x̂k|k−1 is used to de-
tect outliers. The needle location is estimated using (4).
Any needle point candidates within a window of 110% of
the outer needle diameter are considered inliers, and points
outside of this window are ignored.

If the needle can be located within the ROI, the mea-
sured needle location zk is obtained using (6).

zk =


med(xin)
med(xin)

∆xN

∆dN
∆yN
∆dN

 (6)

where xin and yin are the inlying needle point candidates,
med(·) is the median operator, dN is the change in depth
over the past N frames, and xN and yN are the change in
tip positions along the x and y axes, respectively, over the
past N frames. The median is used rather than the mean
as another method to protect against outliers.

After obtaining the measurements zk from the US im-
ages, the needle location is updated using the Kalman filter
to obtain the updated state estimation x̂k|k, based on the
state vector results obtained from the previous iteration
using the following equation:

x̂k|k = x̂k|k−1 +Kkzk (7)

where Kk is the Kalman gain, which is related to the de-
gree of correction caused by the incoming measurements
zk. The Kalman gain is calculated using:

Kk = Pk|k−1H
T
k S
−1
k (8)

where P̂ k|k−1 is the co-variance error of the state predic-
tion x̂k|k−1, H is the measurement model used to define
the states that are being measured at each sample k, and
Sk is the covariance of the residuals, which is related to the
variability in zk. The equation for P̂ k|k−1 is given by:

P̂ k|k−1 = F P̂ k−1F
T +Q (9)

where Q is the process noise covariance matrix. The resid-
ual covariance Sk and the measurement model H are given
by the following equations:

Sk = HkPk|k−1H
T
k +R (10)

Hk = [ I4×4 ] (11)

where R is the measurement noise covariance.
The end result of the Kalman filtering procedure is

an improved estimation of the needle location based on
the past observations of needle trajectory. The ROI for the
next iteration of the needle tracking procedure is centered
around this improved estimation of the needle tip position.
In the event that the needle cannot be located within the
ROI for brief periods of time, the state prediction x̂k|k−1

is used to predict the needle location and update the ROI
so that the needle can continue to be tracked once it reap-
pears. In this case, the updated state estimation x̂k|k is
carried over from the previous iteration. In the event that
multiple objects are present in the ROI, the state predic-
tion x̂k|k−1 is used to determine where the needle should
be found within the ROI. Objects lying outside a radius
of 110% of the needle’s outer radius are considered to be
outliers and are removed from the image.

3. Needle Modelling and Needle Tip
Deflection Prediction

In addition to needle tracking, we require the ability to es-
timate the future needle tip deflection. As well, as discussed
previously, in the second phase of our needle insertion pro-
cedure the probe is stopped while the needle continues to be
inserted. In this situation, we need a model for estimating
the current needle tip deflection along with the future tip
deflection. Needle modeling, insertion and steering within
soft-tissue is a popular research topic.29 Mechanics-based
elastic beam models with virtual springs have been widely
used for needle steering in [22, 24, 30, 31]. As well, a finite-
element method with potential force-fields for needle steer-
ing and motion planning has been developed in [32,33].

These models require accurate characterization of tis-
sue, which is difficult to obtain during in-vivo procedures.
Here, we propose a simple needle-tissue interaction model
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that can be completely parameterized using the US-based
needle deflection feedback described in the previous sec-
tion. Euler-Bernoulli beam theory is used in this paper to
identify forces applied to an elastic beam, from which the
beam’s shape can be identified.

The brachytherapy needle can be modelled as a hollow,
cylindrical cantilever beam. The needle’s deflection can be
modelled as a beam with a point load applied to the tip to
represent the cutting force applied to the bevel, and sec-
ond point load applied to the middle of the length inserted
into tissue to represent the force exerted by the tissue. An
example is shown in Fig. 4.
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Fig. 4. Needle shape modeling based on point loads applied
to a cantilever beam. a) Needle shape before rotation. b) Nee-
dle shape after rotation. Ptip represents the force applied to the
needle tip. Pmid represents the force applied to the middle of
the inserted needle length.

The beam’s shape can be derived from the bending
moment M(z) applied at a distance z from the base of the
beam. The bending moment equation is given by:

M(z) = EI
d2δ

dz2
(12)

where E is the modulus of elasticity of the beam, I is the
area moment of inertia of the beam, and δ is the deflection
of the beam at a distance z. For a beam with the point
loads applied as in Fig. 4, M(z) is equal to:

M(z) = Ptip(L− z) + Pmid 〈α− z〉 (13)

where

α = L− dins
2

(14)

Ptip and Pmid represent the forces applied to the needle
tip and the centre of the inserted needle depth dins re-
spectively, L is the needle length, and the function < · >
represents the singularity function:

< A−B >=

{
0, ifA ≤ B
A−B, ifA > B

(15)

The integral of (13) is the slope θ(z) of the beam at a
distance z:

θ(z) =
1

2EI
[Ptipz(2L−z)]+

1

2EI
Pmid[α

2−〈α− z〉2] (16)

Integrating (16) allows us to solve for the deflection of
the beam:

y(z) =
1

6EI
[Ptipz

2(3L− z) + Pmid(3α
2z − α3 + 〈α− z〉3)]

(17)
Assume that the beam deflection yd and the slope θd

at a distance z = d along the beam is known from the US
image processing algorithm described in the previous sec-
tion and d > dmax

2 , where dmax is the maximum insertion
depth. Then using (16) and (17), we can solve for Ptip and
Pmid:

Ptip = 2EI
3yd + aθd − 3dθd

d (2Lα− 3Ld− αd+ 2d2)
(18)

Pmid =
Ptipd

2 − 2LPtipd+ 2θdEI

α2
(19)

Using (17)-(19) we can solve for the needle’s deflec-
tion along the beam. In our case, for the first phase of the
insertion, when the US probe follows the needle tip, the de-
flection and slope at the needle tip is known. In the second
phase of the insertion, when the US probe stops moving
while the needle continues to be inserted, the deflection is
known, and the slope at the observed depth is assumed
to remain constant relative to the last measured slope ob-
tained from the first phase.

In order to predict the tip trajectory at the maximum
depth dmax, the beam is extrapolated by a length of a,
where a is the difference between the maximum depth and
the current depth of the needle. Before the needle is rotated
(or in the case where no rotation occurs), the extrapolated
segment of the beam is represented with a first-order poly-
nomial with a slope equal to the slope of the needle tip.
After rotation, due to the added flexion of the beam, the
extrapolated segment of the beam is represented with a
curve of constant radius, which is fitted to the portion of
the beam found after the rotation depth.

The end result is a needle-tissue interaction model
based on Euler-Bernoulli beam theory, which can be used
for prediction of the needle tip position at the maximum
depth. The model itself is parameterized solely using US
image feedback, which is beneficial for in-vivo procedures,
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since there is no need to obtain tissue characteristics for
each new patient.

4. Experimental Setup

We used a version of the the needle insertion device demon-
strated in [34] for our needle insertion experiments. An im-
age of the device is shown in Fig. 5. The needle is mounted
on a two degree-of-freedom system consisting of a pris-
matic joint allowing for needle insertion along the z-axis
and a revolute joint allowing for needle rotation about
the z-axis. The prismatic joint is controlled with a Maxon
RE40 DC motor and the revolute joint is controlled with a
Maxon RE25 1:14 geared motor (Maxon Motor AG, Sach-
seln, Switzerland). The revolute joint is directly coupled
to the motor, while the prismatic joint consists of a ball
bearing-mounted carriage system attached to a motorized
belt, which allows for control of the needle’s insertion ve-
locity. The motors are controlled with a Humusoft MF624
DAQ card which interfaces to a PC via PCI.

Fig. 5. Needle insertion setup. The needle and probe are at-
tached to separate motorized carriages. The probe moves with
the same velocity as the needle up to a specified depth. After-
wards, the needle continues while the probe remains stationary.

A separate prismatic joint is attached to a translat-
ing stage, which is used to mount the US probe. The joint
is controlled through a separate motor, which allows the
US probe to move independently of needle. The insertion
procedure can be separated into two consecutive phases.
In the first phase, the needle can be inserted either man-
ually or with a constant velocity. The velocity of the US
probe is matched to the needle’s velocity so that the needle
tip is constantly observed in the US images. In the second
phase, the velocity of the US probe carriage is set to zero
while the needle continues to be inserted. This is to allow
for monitoring of the needle without affecting movement of
critical targets caused by force applied by the US probe.
Fig. 6 shows how the velocity of the US probe is controlled
during the different phases of the needle insertion proce-
dure. The position of the needle carriage and the US probe
are measured, and the velocities are controlled using a PID

controller. During the first phase, the desired velocity of
the US probe carriage is equal to the measured velocity of
the needle carriage. During the second phase, the velocity
of the US probe carriage is set to zero. If the needle is in-
stead inserted manually, the PID controller is only used to
control the US probe carriage.

US images are collected using a SonixTouch Ul-
trasound System (Analogic Ultrasound, Richmond, BC,
Canada) and a linear US transducer model 4DL14-5/38
(Analogic Ultrasound, Richmond, BC, Canada). A DVI-
to-USB 3.0 frame grabber (Epiphan, Palo Alto, CA, USA)
transfers the images from the US machine to a PC for pro-
cessing at a frame rate of 20 Hz.

The needle used for the experiments is an 18 gauge,
bevel-tipped brachytherapy needle, model PSS1820EZ
(Worldwide Medical Technologies, Oxford, CT, USA).
Fresh, ex-vivo beef tissue was used for the offline experi-
ments described in Section 5.1. For the online experiments
described in Section 5.2, a beef tissue phantom with an ini-
tial 20 mm layer of gelatin to simulate the effects of multi-
ple tissue layers and internal tissue interfaces was used. Af-
ter consulting with brachytherapy surgeons, beef tissue was
identified as being most similar from a surgeon’s perspec-
tive to the tissue encountered before reaching the prostate.
However, the development of a more anatomically correct
tissue phantom for simulation of the tissue layers encoun-
tered in prostate brachytherapy and similar surgical proce-
dures is a topic that we will further explore in future work.

Fig. 6. Block diagram showing how the US probe is controlled
through phases 1 (where the probe follows the needle tip) and 2
(where the probe stops while the needle continues) of the needle
insertion procedure.

During the first phase of the insertion, the US probe
follows the needle tip. The deflection of the needle tip is
monitored via the US images. The needle rotates once the
resultant magnitude of deflection in the x and y planes (δx
and δy respectively) reaches a threshold ε. At this point,
the needle rotates by an amount φ defined by (20):

φ = 180◦ + arctan

(
δy
|δx|

)
(20)

where φ = 0◦ represents the angle where the needle bevel is
aligned with the x plane such that needle deflection occurs
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in the +x direction under ideal conditions. Before insertion
begins, the needle is always aligned to the φ = 0◦ posi-
tion. Eqn. (20) allows us to counteract some of the minor
out-of-plane deflection caused by tissue motion or insertion
angle.

5. Experimental Results

First, we validated the needle tip prediction model using
offline experiments, where the needle insertion velocity is
controlled by the robot. Then, we performed online ex-
periments where the needle is manually inserted, and a
threshold-based controller is used to compensate for nee-
dle deflection once it reaches the specified threshold.

5.1. Prediction of Needle Deflection

Offline experiments are performed with the probe posi-
tioned at the needle tip throughout the entire trial. Inser-
tion trials without rotation are performed at constant ve-
locities of 5, 10, 20, and 30 mm/s and insertion trials with
rotation are performed at a constant velocity of 5 mm/s,
with the needle being rotated after an insertion depth of 40
mm or 80 mm, for a total of 48 insertion trials all together.
In all trials, the needles are inserted to a depth of 140 mm.
The needle tip is tracked for each trial offline using the pro-
cedure outlined in Section 2 and the needle’s trajectory is
predicted using the equations developed in Section 3.
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Fig. 7. Comparison of the predicted needle tip deflection error
relative to the actual final tip deflection as a function of the
maximum depth observed by the US probe. The (a) mean and
(b) standard deviation of the prediction error are shown.

In the next section, we will use a threshold-based con-
troller to compensate for needle deflection in real-time.

5.2. Online Needle Tip Prediction and
Steering

Preliminary experiments are shown in Fig. 8. As can be
seen, the depth of rotation is a strong determinant of the
final needle deflection. If the needle is rotated early dur-
ing the needle insertion process such as at 40 mm, when
the needle has not yet deflected a significant amount, the
final tip deflection results in a 60% decrease in deflection
compared to the case with no rotation. When the needle is
rotated relatively late during insertion such as at 80 mm,
the final needle tip deflection does not result in a significant
difference compared to the case with no rotation. The nee-
dle must rotate relatively early during the insertion in order
to have a noticeable impact on tip deflection. Therefore, the
value for the deflection threshold ε must be relatively small
in order to influence the tip deflection by a useful margin.
We selected a deflection threshold of ε = 2 mm to demon-
strate how our needle deflection prediction method could
be integrated with a needle steering system. This thresh-
old was chosen based on empirical results observed in test
trials by our group, as well as the results obtained in [35].
Future work will focus on developing more robust control
algorithms for use with the deflection algorithm presented
here.
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Fig. 8. Comparison of needle tip deflection for cases with ro-
tation at a depth of 40 mm (R40), 80 mm (R80) and without
rotation (None). The needles were inserted at a velocity of 5
mm/s to a depth of 140 mm. The error bars show the standard
deviation calculated for each case.

Fifteen needle insertion trials are performed with steer-
ing and fifteen are performed without steering for a total
of 30 trials in total. The tip deflection prediction results
for each are compared. The needle is inserted manually to
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a depth of 140 mm. The US probe moved in tandem with
the needle tip up to a depth of 90 mm, which was selected
based on the results of the offline deflection experiments.
For cases with needle steering, the needle rotates after a
deflection threshold of ε = 2 mm. Boxplot comparisons of
the final tip deflection for the cases with and without needle
steering are shown in Fig. 9. The use of steering decreased
the final tip deflection from an average of 10 mm to an
average of 3.7 mm.
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Fig. 9. Comparison of the final tip deflection with respect to
cases with no needle steering (No Rotation) and the cases with
needle steering (Rotation).
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Fig. 10. Comparison of the prediction error with respect to
cases with no needle steering (No Rotation) and the cases with
needle steering (Rotation). The prediction error represents the
absolute difference between the final predicted needle tip deflec-
tion and the true tip deflection.

Boxplot comparisons of the prediction error between
the predicted needle tip deflection at the end of the inser-
tion and the actual needle tip deflection at the end of the
insertion are shown in Fig. 10. For cases without rotation,

the needle can be predicted with a median accuracy of 1.0
mm, with accuracies ranging from 0.1 mm to 2.6 mm. For
cases with rotation, the needle can be predicted with a me-
dian accuracy of 0.7 mm, with accuracies ranging from 0.1
mm to 2.4 mm.

6. Discussion

Fig. 7 shows the error between the final predicted tip de-
flection and the actual tip deflection as a function of the
US probe’s final observed depth. V5, V10, V20 and V30
represent insertions performed at constant velocities of 5
mm/s, 10 mm/s, 20 mm/s, and 30 mm/s respectively. V5
R40 and V5 R80 represent insertions performed at a veloc-
ity of 5 mm/s with rotations performed at a depth of 40
mm and 80 mm respectively.

As observed in Fig. 7, both the mean and standard
deviation of the prediction error generally decreases the
longer that the needle tip is observed over the course of the
insertion. When the needle tip is observed to a depth of
70 mm onwards, the needle tip deflection can be predicted
with an accuracy of 1.8 ± 1.6 mm for all cases except the
V5 R40 case. From depths of 90 mm onwards, the needle tip
deflection can be predicted with an accuracy of 1.3 ± 1.0
mm for all cases. For cases with rotation, the needle must
be observed at depths greater than the rotation depth in
order to predict the tip deflection with an accuracy of less
than 2 mm.

The online experiments show that the needle tip de-
flection can be predicted with an average error of less than
1.0 mm when the probe is stopped at a depth of 90 mm
or 64% of the maximum insertion depth. These errors are
smaller than the 5 mm placement accuracy of experienced
physicians.36

In current PPB practices, the probe is typically posi-
tioned at or near the desired insertion depth. The needle
must be fully inserted before needle placement can be as-
sessed. If the needle is placed too far from the target loca-
tion, the needle must be withdrawn and re-inserted. This
process of performing multiple re-insertions to obtain satis-
factory needle placement can cause increased tissue trauma
and swelling. By moving the US probe in tandem with the
needle at the beginning of the insertion, the surgeon can
accurately monitor the needle’s deflection well before the
maximum insertion depth. This allows them to decide well
in advance of the maximum insertion depth whether a re-
insertion would be necessary. In addition, through the use
of an appropriate needle steering algorithm, the needle can
be automatically rotated to consistently reduce needle tip
deflection, preventing the need for re-insertions in the first
place.

In addition, stopping the US probe before the desired
insertion depth at the second phase of the insertion pro-
cedure is highly beneficial, as tissue motion of the target
area caused by force applied by the US probe is reduced.
For transrectal US-guided procedures, the probe does not
need to be inserted far in the patient quite so often using
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the proposed method, which should help simplify the pro-
cedure by minimizing movement of the probe. This system
holds great potential for US-guided percutaneous needle
insertion procedures where the needle must travel a signif-
icant length into the body, such as prostate brachytherapy
or biopsy of deep tissues.

Since the needle-tissue interaction model is parameter-
ized solely based on US image feedback, the needle must be
rotated before the probe stops moving, such that the nee-
dle tip’s new trajectory can be properly estimated. This
limitation is not overly restrictive, however, since based on
Fig. 8, the needle must rotate early during the insertion
process in order to have a significant impact on needle de-
flection. Another limitation is that the model currently ac-
counts for single rotations, not multiple rotations. As well,
the threshold-based needle steering control algorithm was a
simple control algorithm used to demonstrate how our nee-
dle tracking and needle prediction methods can be used in
practice. Further study on rotation-based control for needle
steering is a topic for future investigation. Finally, the beef
tissue phantoms used in this study simulated only the tis-
sue encountered before reaching the prostate. Future work
will explore the development of more anatomically correct
tissue phantoms.

7. Conclusion

In this paper, a method for automatic needle tracking in
US images and needle tip deflection prediction is presented
and is demonstrated with a semi-automatic needle steering
system. A threshold-based image processing algorithm is
combined with Kalman filtering to develop a robust nee-
dle tracking procedure for use with transverse US images.
The needle tracking results are used to fully parameterize
a needle-tissue interaction model. The model is then used
to predict future tip deflection. The semi-automatic needle
steering procedure is divided into two consecutive phases.
In the first phase, the US probe is moved in tandem with
the needle such that the needle tip is constantly in the field
of view of the US images. In the second phase of the pro-
cedure, the US probe stops while the needle continues to
be inserted in order to prevent the probe from applying
unnecessary forces to deeper tissue and structures.

Results showed that for cases without rotation, the
needle tip deflection can be predicted with an average ac-
curacy of 1.0 mm, ranging from 0.1 mm to 2.6 mm. For
cases with rotation, the needle can also be predicted with
an average accuracy of 0.7 mm, ranging from 0.1 mm to
2.4 mm.

This system can be of great aid to surgeons perform-
ing deep percutaneous needle insertion procedures such as
prostate brachytherapy. In the first phase of the procedure,
the US feedback can provide information for the surgeon
about future tip deflection so that they can determine the
accuracy of the needle placement. In the second phase of
the procedure, the US probe can stop to prevent applying
tissue forces to the target area while providing the surgeon

with an accurate estimation of the current and future nee-
dle tip deflection.
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