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Soft-tissue needle steering, where a deformable needle is inserted into the tissue to guide its tip to a desired position, is a common
minimally invasive surgery (MIS) procedure. The diverse types of needles and complex tissue dynamics limit the use of existing
approaches that utilize models of the needle and the tissue for automating the task. In this work, we employ a data-driven
approach using deep reinforcement learning (DRL) to achieve autonomous needle steering by viewing it as a multi-goal reinforcement
learning problem. Human interventions are incorporated during training to accelerate learning and reduce catastrophic failures.
Generative adversarial imitation learning (GAIL) is combined with regular DRL by utilizing a hindsight relabeling scheme for
human interventions to encourage the agent to imitate human behavior.

To emulate the sim-to-real process, an agent is first trained in a simplistic simulation environment for needle steering and then
transferred to a sophisticated one considered as the real world with fine-tuning (sim-to-sim). Experimental results show that with
human interventions, the proposed method outperforms the other compared DRL approaches and can achieve good performance with
only 2,000 training steps in the complex simulation environment, achieving an average return comparable to that of a 55,000-step

agent trained from scratch.
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1. Introduction

Soft-tissue needle steering is a common minimally invasive
surgery (MIS) procedure for purposes such as biopsy and
brachytherapy. During the process, typically a beveled-tip
needle is inserted in soft tissue and steered such that the
needle tip is guided to a target location [1]. This procedure
usually requires a high level of accuracy to achieve satisfac-
tory surgical outcomes. However, during this process, nee-
dle deformation is caused by the interaction force between
the needle and the tissue, making the guidance of the nee-
dle tip to the desired location challenging. In addition, the
diverse properties of needles and tissues in practice make
the task even more difficult for surgeons.

1.1. Recent Advances in Autonomous Needle
Steering

A number of studies have attempted to automate needle
steering or assist the surgeon during the procedure. One
typical solution is to develop control strategies based on the
modeling of needle-tissue interaction to predict the needle

deflection in soft tissue. Various needle-tissue interaction
models have been developed for designing needle steering
control strategies. One simple yet commonly used approach
is to model the needle tip path inside the tissue as a cur-
vature produced by a unicycle or bicycle [2]. By employing
the unicycle needle path model, Rucker et al. implemented
a sliding mode controller for controlling the needle tip po-
sition [3], and Khadem et al. designed a two-step controller
that first stabilizes the system on an equilibrium manifold
and then on an equilibrium point [4]. Carriere et al. uti-
lized the bicycle model and designed an event-triggered
controller for steering the needle [5].

However, this kinematic modeling approach ignores
tissue deformation caused by needle insertion that can re-
sult in additional force being applied to the needle. As a re-
sult, the needle tip path may deflect from what is predicted
by the model. Some studies aim to address this problem by
using mechanical models or finite-element approaches to
take into account the dynamics of the needle-tissue inter-
action [6-8]. For instance, the local contact force between
the needle and the tissue is modeled as linearly dependent
on the magnitude of local tissue deformation in [6] and [8].

One limitation of the aforementioned methods is that
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the models are usually specific to a fixed set of needle and
tissue properties. Furthermore, tissue non-homogeneity is
not considered in these modeling methods. While some
adaptive modeling approaches such as [9] can adapt to
some variation of the needle and tissue, model-based meth-
ods generally lack the ability to account for diverse needle
and tissue behavior such as tissue anisotropy and needle
buckling. Therefore, an alternative is to use data-driven
approaches in order to achieve better generalizability. For
example, in [10], a dataset with measurements of the nee-
dle behavior is first collected from several insertions and a
Just-in-Time learning method is employed to predict the
needle deflection and contact force during the insertion.

1.2. Deep Reinforcement Learning for
Needle Steering

Deep reinforcement learning (deep RL, DRL) is a data-
driven approach that has recently been extensively studied
and applied in the field of automation and control, largely
due to its high generalizability and low demand for hu-
man knowledge compared to traditional motion planning
and control approaches. Recent works have shown promis-
ing results in automating some surgical tasks using DRL
approaches [11-15]. While these results demonstrate the
potential of applying DRL to soft-tissue needle steering,
the extensive amount of interaction data from the environ-
ment required for training the RL agent is one of the major
disadvantages of this method, due to the fact that interact-
ing with the soft tissue in the real world to collect data is
extremely expensive and impractical.

One common approach to mitigating the aforemen-
tioned sample efficiency problem is simulation-to-reality
(sim-to-real) transfer, where a policy is first trained in a
simulated environment by collecting artificial experiences
in the simulator, and is then transferred to the real envi-
ronment. In [16], a needle steering policy is first trained in
the simulated environment reconstructed from segmented
CT scan images, then transferred to the real world. Sim-
ilarly, authors in [17] utilized MR angiography images to
reconstruct a simulated environment and trained a DRL
policy for flexible needle path generation. While these stud-
ies show the potential of training a policy in the simulator
for direct use in the real world, it is important that the
simulation environment is close to reality to ensure that
the trained policy performs well in the real world. How-
ever, this is not always easy to be guaranteed in practice,
due to the errors introduced by reconstruction, tissue un-
certainty and inhomogeneity, and diverse needle properties.
Therefore, the task of needle steering is particularly prone
to the problem of sim-to-real gap, where the policy does
not perform as well in reality as in simulation.

In general, it is common to further fine-tune the
trained RL agent based on real-world experiences to in-
crease task performance in the real world if the real-world
environment differs from the simulation. For instance, in
[18], an RL agent for robot grasping is first trained us-

ing a visual sim-to-real framework and is then further fine-
tuned by mixing real online data from the real robot with
simulated data. In [19], better performance is achieved af-
ter fine-tuning a robot grasping policy in the real world
by utilizing progressive neural networks, compared with
using other neural networks. However, online fine-tuning
with real-world data, or more generally, exploring in the
real world is traditionally considered impractical in surgi-
cal tasks including needle steering, since it is safety criti-
cal when making explorations in realistic surgical environ-
ments, such as using cadavers, as explorations for training
the agent can cause significant damage to the environment.
Without real-world explorations, bridging the sim-to-real
gap has been more challenging for surgical tasks.

To make exploration possible in the real-world envi-
ronment, one simple yet promising approach is utilizing
real-time interventions from human experts during train-
ing. Prior works have shown that human interventions
can prevent or reduce catastrophic failures during training,
and accelerate the learning speed by providing appropriate
guidance. In [20], a straightforward training mechanism is
proposed where the human monitors the training process
and overwrites agent actions in dangerous circumstances.
In [21], proximal policy optimization (PPO) is modified to
incorporate real-time human interventions and accelerate
training by adding a behavior cloning (BC) loss. With im-
provements, this approach is further extended to off-policy
algorithms in [22] and [23]. Recently, this training scheme
has been applied to surgical robot learning as well [24-26].
In [26], an algorithm is proposed to leverage real-time hu-
man interventions by combining regular RL with generative
adversarial imitation learning (GAIL). All of these works
consider the regular RL situation with a single objective.
However, in the needle steering task, there can be multiple
different desired locations for the needle tip, making it a
multi-goal reinforcement learning task that is more chal-
lenging to solve.

1.3. Objective and Contributions

In this work, we consider the needle steering task as a multi-
goal reinforcement learning problem, where the learned RL
policy is able to guide the needle tip to multiple differ-
ent target locations in the soft tissue. An RL agent is first
trained in a simplistic simulator and then transferred to
a more sophisticated simulation environment considered as
the real world by fine-tuning. A DRL framework that incor-
porates human interventions is utilized by combining reg-
ular RL with GAIL for the multi-goal RL setting. By em-
ploying human interventions, fine-tuning in the real-world
environment is safer and more efficient. The main contri-
butions of this work are: (a) we present a novel DRL train-
ing approach that utilizes human interventions for learn-
ing multi-goal needle steering; (b) we automate soft-tissue
needle steering by training an RL agent first in a simplis-
tic simulator and then safely transfer it to a sophisticated
simulation environment viewed as the real world by utiliz-
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ing the proposed human-guided training approach; (c) we
validate the proposed method can achieve safe and efficient
transfer of a needle steering policy with human interven-
tions.

The remainder of the paper is organized as follows.
Section 2 outlines the mathematical preliminaries. Section 3
discusses the two simulation environments for needle steer-
ing. Section 4 introduces the proposed training methodol-
ogy, followed by Section 5 which presents the experimental
settings and results. Discussions on the proposed method
and the results are provided in Section 6. Section 7 con-
cludes the paper with remarks on potential future work.

2. Background
2.1. Notations in RL

RL typically considers the problem of a Markov decision
process (MDP) described by a five-tuple (S, A, P,r,7). S
is the state space that consists of the state variables s. A
is the action space, with a being the corresponding action
variables. P : § x A x S — [0,1] is the state transition
function that maps a state-action pair (s¢, a;) at time step
t to the next state s;11. 7: S X A — R is the reward func-
tion that maps a state-action pair (s, a;) to a reward value.
v € [0,1] is the discount factor.

2.2. Soft Actor-Critic (SAC)

Soft actor-critic (SAC) [27] is an off-policy actor-critic al-
gorithm and is the primary RL algorithm used in this work.
Actor-critic algorithms exploit the actor-critic structure
where the actor my(as|s;) is the policy parameterized by
¢ that generates actions a; from given states s;, and the
critic is a function approximator Qg (s, a;) parameterized
by 6 for estimating the state-action value function. In off-
policy actor-critic algorithms, the target policy that is opti-
mized through learning is different from the behavior policy
used to collect the experiences during the exploration. In
this case, a dataset R is usually employed for storing and
retrieving previously collected experiences. The process is
called experience replay and the dataset R is the experience
replay buffer.

In SAC, the critic is optimized by minimizing the Bell-
man residual

Tal6) =B, myr |5 @ofsra) 50| (1)

to approximate the soft Q-value, where
G =r(se,ar) + 1B, ~p[Vo(st41)] (2)
is the temporal difference (TD) target, with
Vo(st) = Ea,~r[Qo(st, ar) — alog(m(afse))]  (3)

being the soft state value function. « is a weighting factor.
The actor is then optimized by maximizing the estimated

soft Q-value and the policy entropy:

Jr(¢) = Es,nr [Ea,~r, [~Qo(se,ar) + arlog(m(alsy))]]
(4)

2.3. Multi-Goal RL using Hindsight
Experience

The concept of multi-goal reinforcement learning, also
known as goal-conditioned reinforcement learning (GCRL),
refers to the problem of learning policies that are capable
of achieving multiple objectives. GCRL considers a goal-
augmented MDP (GA-MDP) [28] with an additional tuple
(G,pg, dg), where G is the goal space that consists of the
corresponding goal variables g, pg is the distribution of the
desired goal. ¢4 : S — G maps a state to a goal, and can be
an identity mapping function if S and G are identical. The
reward function r : § x A x G — R in GCRL also takes
into account the desired goal. Compared with the regular
situation where the reward function is fixed for one single
objective, GCRL is particularly useful in multi-objective
learning settings such as navigating a robot to any desired
location in a 2D space.

Regular RL algorithms can be applied directly to
GCRL problems by augmenting the state observation with
the desired goal, and a general policy 7 : S x G x A — [0, 1]
that also considers the desired goal can be learned. How-
ever, learning a goal-conditioned policy is usually more
challenging due to the fact that it is much more difficult
for the agent to encounter successes during the exploration
since the goal is resampled from G in each episode, and
the reward function is usually sparse. One common ap-
proach to addressing the problem is using hindsight ex-
perience replay (HER) [29] to relabel the desired goals
of the unsuccessful trajectories with the goals achieved
by the agent in the same trajectory. Specifically, a tran-
sition (s, at,si+1,8,7+ = 0) can be transformed into
(s¢,ay,8¢41,8 , 7 = 1) where

g' € {dy(s0), Pg(s1), -, bg(s7)} ()

with T being the horizon, and ¢4(so), ¢g(s1), ..., de(sT) are
called the achieved goals. As a result, unsuccessful trajec-
tories under the original desired goal are transformed into
successful ones under another goal, making the training of
a goal-conditioned policy tractable.

3. Simulation Environments for Soft-Tissue
Needle Steering

Soft-tissue needle steering can be considered as a multi-goal
RL task, where the goals are the different target needle tip
locations [16]. The task involves diverse environment dy-
namics, depending on the physical properties of the needle
and the tissue. We build two different simulation environ-
ments for needle steering. The first one is based on the
kinematic bicycle model [2] which is less accurate but fast
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to solve, and the other one is based on a quasi-static can-
tilever beam model [30], which incorporates the mechan-
ical properties of the tissue and the needle such as the
tissue stiffness and needle tip cutting forces, making the
model more accurate and close to reality, but more com-
putationally demanding. To show the effectiveness of the
proposed method, we view the first environment as a sim-
plistic simulator and the second one as a sophisticated one
that simulates the real world, and consider the problem of
transferring a trained model from the simplistic simulation
to the sophisticated one. This process simulates the prob-
lem of sim-to-real transfer, where here a more sophisticated
simulation environment is considered as the real-world en-
vironment. For simplicity, we refer to it as the “real-world
simulation”.

The bicycle model is considered simplistic since it does
not consider the coupled effects caused by needle deflection
and tissue deformation, which is taken into account in the
cantilever beam model to make needle deflection modeling
more accurate. Additionally, the choice of these two mod-
els is related to their computational complexities, as the
bicycle model is very fast to solve, making it suitable for
fast pre-training. On the other hand, solving the cantilever
beam model is time-consuming and is suitable for resem-
bling a real-world environment where the cost of making
explorations in it is high.

The simplistic simulation environment assumes that
the needle tip bends and follows a path of constant curva-
ture similar to the trajectory of a bicycle depending on the
orientation of the needle tip, and models the 2D motion of
the needle tip as

2. =UVCOSQe, Ye=uvSINQ,, Q. =vbk (6)

where v is the velocity of insertion, z. and y. are the po-
sition of the needle tip along the Z and Y axis in the 2D
plane, and «. is the rotational angle of the needle tip. x is
the needle path curvature determined by the physical prop-
erties of the needle and the tissue. b = +1 is dependent on
the two possible orientations of the bevel, i.e. up or down,
as shown in Fig. 1. Rotating the needle for 180° around
the Z axis changes the sign of b and the future path of the
needle tip.

The real-world simulation utilizes a mechanical model
by viewing the needle as a cantilever beam. The deflec-
tion of the needle at the current insertion depth d is de-
fined as the weighted summation of n deflection functions
q; representing the first n modes of vibration v(d,z) =

Illustration of the needle insertion process and the two possible orientations of the bevel.

S0 9i(d)gi(2), where v(d, z) is the deflection of the nee-
dle point whose Z-coordinate is z, g;(d) and ¢;(z) are the
weighting coefficient and eigenfunctions for each of the vi-
bration modes. For each insertion depth, g;(d) can be solved
by n linear equations, each of which is defined as
n
D (BIVji + KQji + K,Tji)g;(d) — K&j = F - (T)
j=1

for i = 1 to n, where

L L
W5 :/ Gi(2)Gj(z)dz, Qi :/ qi(2)q;(z)dz
0 : —d (8)
Lij = qi(2)qj (), @ij = / 9i(d —T1)g;(T)dr
0

Here, L is the total length of the needle, and z; = L—d—c¢;
with ¢; being the distance between the needle template and
the tissue surface, F' is the force applied by the tissue at
the needle tip during the insertion, K is stiffness of the
tissue, £ and I are the Young’s modulus and the second
moment of inertia of the needle, respectively. The position
and orientation of the needle tip can be obtained by
v

Qe = o~ (d,L) (9)

Both simulation environments are formulated in the
reinforcement learning setting, with the state being the nee-
dle tip’s location and orientation in the 2D plane, and the
current orientation of the bevel (i.e. upward or downward):

st = [2e(t), e(t), e (t), b(t)] (10)
where t is the time step. The two actions are the change of
insertion depth at each step Ad(t), and the orientation of
the bevel during the next step:

a, = [Ad(),b(t + 1)] (11)

Similar to [30], we utilize a gradual needle tip force change
when the needle is rotated for 180° while using the can-
tilever beam model to avoid the sudden change of the needle
tip position during rotation. During the action step when
rotation happens, the needle tip force F' gradually decreases
from F to reach —F. However, this can still yield sharp
turns during the rotation due to the change in the beam’s
shape, as shown in Fig. 2b.

The goal of the task is to place the needle tip at a goal
location g = [z4,y,] € G. During each training episode, the
goal position of the needle tip is randomly sampled from

Ze & d,

Ye = ’U(d, L)a



June 5, 2024 18:17 output

Autonomous Soft-Tissue Needle Steering Using Reinforcement Learning Guided by Human Input 5

a rectangular area, resulting in a multi-goal reinforcement
learning problem.

Since both simulation environments use different ap-
proaches to modeling needle deflection, their underlying en-
vironment dynamics are different, making it challenging to
transfer control policies learned from the simplistic envi-
ronment to the real-world simulation directly. To make the
task even more challenging and close to the real-world ap-
plication, we add an obstacle in the real-world simulator
that is not present in the simplistic one, as shown in Fig. 2.
While adding the same obstacle to the simplistic simula-
tor and training with obstacles in the simplistic simulation
could result in learning a better policy as the difference be-
tween both simulators is smaller, we deliberately present
the obstacle only in the real-world simulator to simulate a
larger gap between simulation and the real world. In real-
ity, this corresponds to scenarios where such obstacles in
the real world are unknown in advance and cannot be re-
constructed in the simulation environment. The reward in
the bicycle model environment is

Tf(st, a;,g) =" +wr" (12)

where w; is a weighting factor and

pSuce — Oa
= _1,

with pe = [2¢(t), ye(t)] being the positions of the needle tip,
and

-1
rot __ 9
ot = {07
(14)

This term punishes the action of rotating the needle to
change the orientation of the bevel. Without this punish-
ment term, the learned policy could result in a constant
rotation of the needle, which is not desired and infeasible
in real practice. While it is possible to design a dense re-
ward function based on the distance between the needle tip
and the goal position, this design will require much manip-
ulation of the reward function to work because the insertion
depth along the Z axis is much larger than the needle defor-
mation along the Y axis, and a temporary large deviation
of the needle tip from the goal position along the Y axis
does not necessarily indicate low performance. To avoid a
complex reward function design process, a sparse reward is
used in this work.
The reward function for the real-world simulation is

+ WQTObStaCle (15)

if [[pe —gll < €

13
otherwise (13)

if the orientation of the bevel changes
otherwise

succ rot

ri(s¢,ae,g) = fwir

where

Jobstacle _ {—207 if the needle tip hits obstacle

16
0, otherwise (16)
In practice, the needle tip is considered as hitting the obsta-
cle if its position is inside the obstacle. The two simulation
environments are shown in Fig. 2.
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Fig. 2. Simulation environments. (a) Simplistic environment
based on the bicycle model; (b) Real-world simulator based on
the quasi-static cantilever model. The red region is the obsta-
cle. The goal positions (blue points) are sampled from the region
marked in green.

4. Fine-Tuning an RL Agent with Human
Interventions

4.1. Human Interventions in Multi-Goal RL

While prior works have shown that intermittent human in-
terventions during RL training can be used as guidance for
accelerating training and preventing catastrophic failures,
these studies focus on the usage of human guidance in reg-
ular single-goal settings. However, applying RL algorithms
designed for single-goal situations to the multi-goal case
usually results in unsatisfactory training speed and results,
primarily because of the large goal space [29,31]. In this
work, we implement a novel training scheme with human
interventions for GCRL, where human interventions are in-
corporated into the training of an RL agent by combining
the regular off-policy actor-critic methods with GAIL and
utilizing a relabeling scheme for human actions.

In human-guided RL, a human expert monitors the
training process and provides intermittent guidance by di-
rectly overwriting the agent’s actions, and the actual action
taken during training can be expressed by

a = I(St7 g)ailtq + (1 - I(Shg))a? (17)

where al’ is the action proposed by the human, and aj*
is the action chosen by the agent. Z(s;,g) € {0,1} is a
switching function determined by the human.

Similar to [26], we incorporate the human guidance
by training a discriminator D (s¢,a:) jointly with the RL
training process for discriminating between human and
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agent actions, whose parameters  is trained by minimizing
the loss

JD(@) = E(Smamgt)"’RH [lOg D<P (Stv ag, gt)] +
E(Staahgt)NRA [1Og(1 - Dtp<sta ag, gt))}

where Ry is the experience replay buffer that stores the
trajectories where human intervenes, and R4 is the one
that stores trajectories relating to agent actions. The dis-
criminator is used for predicting whether an action is close
to the human’s behavior and can be used to guide the train-
ing by incorporating the predicted value as an additional
reward when updating the critic:

= (1= By 4 B (19)
GAIL

where 7} = log D,(s¢,as,8¢) — 1 is the GAIL reward
and [ is a weighting factor that can be gradually decreased
during the training process. The critic can be updated us-
ing (1) with the augmented reward.

Furthermore, an additional imitation loss term should
be added to the policy loss (4):

J7T(¢) = E(st,gt)NR I:Eat'\/ﬂ-tb [—QQ(St,augt)
+alog(m(as|st, gt)) (20)
—wlog Dy, (s¢, ar, g¢)]

(18)

where w is a weighting term that can be gradually de-
creased, and R = Ry UR 4 is the replay buffer that stores
all trajectories. The general training framework for multi-
goal RL with human guidance is shown in Fig. 3.

~allect Exvnerienee

Human a;

Operator ° minimize
X° VAN
t Imitation loss =
Actor 7, Actor 7,
1
maximize T
> Q-value

S350, 9T
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Human:s,,a;",g’ /
R Agent:s,.al,g o
minimize Q-value
|

relabel R Discriminator [N S
R, - ¥ TDEmor_)
$,,8,,5,1s :‘ plrain
Replay buffers ™ s @l
Fig. 3. Framework of the human-guided multi-goal RL scheme.

To further enrich the collected experiences, hindsight
relabeling is applied when sampling from R and Rpy. Re-
labeling the goals when sampling from R can be easily re-
alized without modifying the existing HER algorithm by
viewing experiences caused by both the agent and the hu-
man jointly as a whole dataset. Relabeling the goals when
sampling from R is performed when training the discrim-
inator, and is achieved by assuming that the human’s inter-
ventions are optimal not only for the actual desired goal,
but also for all the achieved ones along the intervention.
Consider a rollout trajectory from time step ¢ = 0 to T,

and assume that human intervention happens from t = m
to m + k steps and the desired goal is g. Each transition

(st;at,8¢41,8,7t) (21)
with t = {m,m +1,...,m + k} can be transformed into
(st;ar,8¢41,8,71) (22)

where

gl € {¢g(sm)a ¢g(sm+1)7 ce

ry = 1(s¢, ar, g')

s Gg(Smk)} (23)

In practice, 7} is not required when training the discrim-
inator and can be ignored, and the “future” strategy is
employed where the relabeled goal is only sampled using
states after the current transition. The hindsight relabel-
ing scheme is shown in Fig. 4.

relabe/l\for R

N

.| HEEN
—
relabel for R, relabel for R,

A transition (s,.a,,S,,;,9) caused by human intervention

B A transition (S,,&,,S..,,9) achieved by agent

Fig. 4. Hindsight relabeling during the training process.

4.2. Fine-Tuning with Human Input

As discussed in Section 3, we consider the problem of trans-
ferring a policy trained in a simplistic simulation environ-
ment to the real-world simulation environment considered
as the real world, which simulates the process of sim-to-
real transfer. Since the underlying environment dynamics
and the reward function are different, fine-tuning the policy
online with new explorations in the real-world simulation
is an efficient way for it to adapt to the new environment.
However, while there is no need to ensure safety when train-
ing in a simulator, it is undesirable that dangerous actions
are taken during fine-tuning in the real world as they may
cause damage to the environment. It is also important that
the fine-tuning process is efficient and does not require a
large number of explorations since it is impractical in the
real world, especially in the surgical task setting. For this
purpose, we incorporate human interventions during fine-
tuning, as discussed in Section 4.1. As a result, a regular
agent with 7y and critic Qg is first trained in the simplistic
simulation environment, and further fine-tuned by explor-
ing online in the real-world simulation environment, during
which human guidance is incorporated to enable safer and
faster learning. The overall fine-tuning procedure is sum-
marized in Algorithm 4.1.

Algorithm 4.1. Fine-tuning for multi-goal RL with hu-
man input

1: Load pre-trained actor mg, critic Qg
2: Initialize discriminator D,
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3: Initialize empty replay buffers Ry, R4, R £ Ry URA
4: for each iteration do
5: g~ Uniform(G)
6: for each environment step do
7 ait ~ my(st, g)
8: if human intervenes then
9: I(st,g) =1
10: sample al!
11: else
12: Z(st,g) =0
13: end if
14: a; « Z(s,g)all + (1 —I(ss,g))a
15: St+1 ~ P(Stt1(st, ar)
16: re < r(St, a4, 8)
17: if Z(st,g) = 1 then
18: RH %RHU{(Staatast-i-lagvrt)}
19: else
20: Ra— RaU{(st,ar,8¢41,8,7¢)}
21: end if

22:  end for
23: if train discriminator now then

24: for each discriminator gradient step do
25: Sa'mple {(Sia a; Si+17 gia T%)} ~ RH

26: for each ¢ with probability preiqpe; do
27: j* <« Uniform({m’ +1,...,m" + k})
28: g ¢g4(s;i)

29: end for

30: Update D, using Equation (18)

31: end for

32: end if

33:  for each policy gradient step do

34: Sa‘mple {(Sivaasl@rl?giv"ﬁg)} ~R

35: for each ¢ with probability p,eiqpe; do
36: j' < Uniform({¢',¢' +1,...,T"})

37: gl — ¢g(sjz)

38: Augment 7! using Equation (19)

39: end for

40: Update @y using Equation (1)

41: Update 74 using Equation (20)

42:  end for

43: end for

5. Experiments and Results
5.1. Training settings

The fixed parameters for simulating needle insertion us-
ing the bicycle model and the quasi-static cantilever model
are listed in table 1. These values are either directly taken
or derived from [5] and [30] in order to represent the ac-
tual needle and tissue contact models found in previous
research.

A regular SAC agent is first trained in the simplis-
tic simulation environment that uses the bicycle model for
30,000 steps, and saved for further fine-tuning in the can-
tilever model-based simulator. During fine-tuning, the hu-
man interventions are achieved using a joystick controller.

A total of 2,000 steps are trained during the fine-tuning
phase, where a maximum of 200 steps of human interven-
tions are allowed.

Table 1. Parameters for Simulation
Parameter Value | Parameter Value
I [mm] 200 I'[m? %1071 775
k [m] 1/800 | K [kNm™?] 59.8
E [GPa] 200 Kp [Nm™1] 10°
F [N] 0.5

The implementation of SAC is based on [27], where
two critic networks and two target networks are utilized
to stabilize training. The actor and the critic networks are
two-layer multilayer perceptron (MLP) networks with 256
hidden units at each layer. The learning rate is 3 x 10~*
and the batch size is 256. After pre-training the model in
the simplistic environment, the optimizers for the actor and
critic networks are saved and loaded before fine-tuning. The
discriminator is a two-layer MLP with 100 hidden units at
each layer, and the learning rate is 1073, The discrimina-
tor is trained for 5 epochs every 100 rollout steps with a
batch size of 32. The relabeling ratio prejape; is 0.8. The
GAIL reward weighting factor g8 is 0.1 and decays expo-
nentially. Training is performed on a CPU device equipped
with an Intel(R) Core(TM) i5-12400 processor. GPUs are
not particularly helpful in our case, since the majority of
the training time is spent solving equations for simulation,
which relies heavily on the CPU.

To examine the effectiveness of human guidance in
fine-tuning, we compare the training results with those ob-
tained when fine-tuning the pre-trained agent without hu-
man guidance. For the agent without human guidance, 3
training instances are carried out using 3 different random
seeds during fine-tuning. For the agent with human guid-
ance, the same 3 random seeds are used, and for each ran-
dom seed, 3 instances are trained to take into account the
variance in human behavior. Therefore, a total of 9 training
instances are performed. As a comparison, we also train an
agent from scratch in the real-world simulator for 55,000
steps.

5.2. Results

Fig. 5 shows the learning curve during the pre-training
phase in the original simplistic environment. After training
for 30,000 steps, the model can achieve an average return of
-15.53 in the original environment. The goal-reaching rate
is 98% and the average number of needle rotations is 3.08
(not shown in the figures).
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Fig. 5. Learning curves during pre-training in the simplistic
simulator, evaluated for 100 episodes every 5,000 training steps:
(a) Average return; (b) Rate of reaching the goal position.

Fig. 7 shows the performances of the two RL agents
with and without human guidance throughout the fine-
tuning process in the real-world simulation. The agents are
evaluated every 100 training steps for 20 episodes (i.e. 20
insertions). As shown in the figures, the pre-trained model
can achieve a high rate of reaching the goal in the initial
phase without fine-tuning (100 steps), but the average re-
turn is low due to frequently hitting the obstacle and a large
number of needle rotations, indicating that the pre-trained
model cannot perform well in the new environment directly.
By collecting new experiences in the new environment, both
agents are able to improve their performances within 2,000
training steps. However, the agent with human guidance
achieves a much better performance throughout the pro-
cess, and the learning is generally faster compared with
the one without human guidance. After training for 2,000
steps with human guidance, the agent is able to achieve an
average return of around —18, while the one without hu-
man guidance only achieves around —28. The agent with
human guidance has better performances regarding both
the rate of reaching the goal and the number of needle ro-
tations, and it reaches around 75% rate of reaching the goal
(compared to 53% without human guidance), and an av-
erage of 2.13 needle rotations, compared to 2.75 without
human guidance. One-way analysis of variance (ANOVA)
using all insertion trials (180 for with human guidance and
60 for without human guidance) shows a statistically sig-
nificant difference between the number of needle rotations
performed by the agents trained with and without human
intervention, with the p-value being 2.54 x 1072,
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Fig. 6. (a) Number of interventions and (b) Number of hitting
the obstacle during the fine-tuning. Data are grouped based on
a 400-step interval.

Furthermore, the performance regarding the average
number of hitting the obstacle is much better when human
guidance is incorporated. As shown in Fig. 7c, the average
number of hitting the obstacle is still high after training
for 2,000 steps for the agent without using human guidance
(0.46), while the one with human guidance achieves around
only 0.03. These results show that the training process for
fine-tuning the pre-trained policy can be accelerated and
avoiding significant failures (i.e. hitting the obstacle) can
be learned much faster with human guidance. This aligns
with our previous findings in [26] where a similar training
scheme was used for single-goal regular RL. Fig. 8 shows
an example of needle insertion with one specific goal using
the two RL agents with and without human interventions
trained for different steps. While both agents’ performance
improves throughout training and eventually reaches the
goal with a decreasing number of needle rotations, the per-
formance of the agent with human interventions is rela-
tively better when trained for 1,000 steps, reaching the goal
with only 3 needle rotations. In contrast, the agent trained
for 1,000 steps without human intervention cannot reach
the goal in this example.

The number of human interventions decreases
throughout the training process for fine-tuning, as shown
in Fig. 6a, which is due to the eventual improvement of the
policy and is consistent with the findings of [22]. In addi-
tion, to show the effectiveness of human guidance in reduc-
ing significant failures during the training (i.e. hitting the
obstacle) and increasing safety during exploration, we also
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Performence during the fine-tuning phase, evaluated for 20 episodes every 100 training steps: (a) Average return; (b) Rate

of reaching the goal position; (c) Average number of hitting the obstacle; (d) Average number of needle rotations. The solid lines
are the mean values and the shaded areas represent the standard deviations.

record the numbers of hitting the obstacle throughout the
human-guided training process and the one without human
guidance, as shown in Fig. 6b. Although it is not possible
to avoid hitting the obstacle completely due to the slow re-
action of the human compared to the simulation step time,
this problem can be mitigated by slowing the simulation
down and making the needle move at a lower speed each
step. Therefore, it remains reasonable to conclude that with
human intervention the number of significant failures has
been reduced and the exploration is safer.

Additionally, the agent trained from scratch can
achieve an average return of -19.3. The rate of reaching
the goal is 70%, the average number of hitting the obstacle
is 0, and the average number of needle rotations is 2.5. This
indicates that by utilizing the fine-tuning strategy where an
agent is first trained in a simulator slightly different from
the target environment, and then transferred to the target
environment with only a few online explorations guided by
a human, the agent can reach a comparable (even slightly
better) performance than an agent trained from scratch for
a large number of steps.

6. Discussions

6.1. Performance of Pure Human Operation

It is worth noting that the human who guides the train-
ing process is not an expert in completing this task. The
human’s own performance on this task is evaluated using
20 episodes by directly utilizing the joystick to control the
needle’s movement in the simulator, and the results show
that the human can only achieve an average return of -23.2.
The rate of reaching the desired goal is 10%, the average
number of hitting the obstacle is 0, and the average number
of needle rotations is 2.9. In fact, while the human is good
at avoiding the obstacle and limiting the number of needle
rotations, they are barely capable of guiding the needle to
the desired position. This indicates that even though the
human is not competent for completing the task, an RL
agent can still benefit from their guidance, especially from
their behavior regarding avoiding the obstacle and limit-
ing the number of needle rotations. Furthermore, thanks to
the relabeling scheme for human interventions, imperfect

human interventions can still be transformed into success-
ful ones under the new goals to help training.

6.2. Effectiveness of Relabeling Scheme and

Discriminator

We remove the relabeling scheme for human interventions
when training the discriminator to investigate its effective-
ness and train 2,000 steps for fine-tuning following the same
training settings. Furthermore, a modified version of [21]
and [22] for SAC (IA-SAC), in which behavior cloning (BC)
loss is added to the policy loss in the case of human inter-
ventions to encourage the agent to imitate human behavior
when human intervention occurs, is also used as a com-
parison to the proposed method that uses a discriminator.
In addition, a naive version of [20] where no modification
to the training algorithm is made when human overwrites
the agent actions is also implemented for SAC and com-
pared, which is named HI-SAC. Each agent is evaluated
for 50 episodes (i.e. 50 insertion trials) after training in
the real-world simulation and the results are listed in Ta-
ble 2. It is shown that without relabeling human interven-
tions for training the discriminator, the performance signif-
icantly degrades compared to the originally proposed ap-
proach. Additionally, the proposed method achieves better
performance compared to IA-SAC and HI-SAC due to the
fact that human interventions are conditioned on different
goals, and that the human is not competent enough to pro-
vide interventions as perfect demonstrations.

6.3. Connections with Imitation Learning

Apart from preventing significant failures and dangerous
situations in the exploration phase of RL such as hitting
an obstacle in this work, human interventions can be fur-
ther considered as intermittent human demonstrations [23].
The proposed training scheme with human guidance can be
viewed as a variation of goal-conditioned imitation learn-
ing [31] with an adaptation for intermittent human inter-
ventions. While in imitation learning, the human demon-
strates the completion of the task before training begins
so that the agent can imitate the human, in human-guided
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Fig. 8. Insertion examples using the RL agent after training for different steps. (a) without and (b) with human interventions.
Table 2. Agent Performances After Fine-Tuning Using Different Approaches (Each Agent is Evaluated for 50 Trials)
Method Return Rate of reaching goal = No. of hitting obstacle No. of needle rotations

Proposed —18.25 +£1.06 0.78 + 0.08 0.04 +0.03 2.38+0.14
Proposed (w/o human relabeling)  —22.21+1.84 0.58 £0.20 0.14£0.08 2.66 +0.31
TA-SAC —21.89 +£2.30 0.57£0.25 0.12 £+ 0.07 2.52+0.10
HI-SAC —21.46 + 2.90 0.70 £ 0.12 0.14 +0.13 2.63 £0.45

RL, the human supervises the training process and provides
intermittent guidance, without necessarily completing the
task, as discussed in the Section 6.1.

6.4. Limitations

One major limitation of this work is that both the bicy-
cle model and the cantilever beam model are still far from
the real-world environment. Both simulation environments
are simplified, ignoring factors such as inhomogeneous tis-
sue properties. The cantilever beam model yields unreal-
istic sharp turns during frequent needle rotations. There-
fore, there can be a larger gap between the simulation and
the real world in reality, requiring longer training time and
more human interventions. Additionally, the observation
space may be redesigned to better accommodate the real-
world scenario, as observing only the needle tip position
and orientation may not be sufficient or be very inaccurate
in reality.

Furthermore, as only 2D needle insertion is considered
in this work for the sake of simplicity, the environments in-
cluding how human intervenes should be redesigned when
extending the approach to 3D needle insertion. Visualiza-
tion of the needle insertion procedure in the 3D space and a
teleoperation device can be utilized for straightforward hu-
man intervention. The action space should incorporate the
continuous rotation of the needle from 0 to 360°. The pro-
posed algorithm may not require modification since it can
already handle continuous action spaces. However, longer

training time and more human interventions may again be
the major challenge.

7. Conclusion

In this work, we propose a training framework for learn-
ing autonomous soft-tissue needle steering with multiple
target positions, by considering a multi-goal RL problem.
An RL agent is first trained in a simplistic simulator and
transferred to a sophisticated simulation environment that
resembles the real world by incorporating human interven-
tions in the fine-tuning phase. It is shown that the pro-
posed method can achieve safer and more efficient learn-
ing during the fine-tuning phase, and the learning process
requires fewer explorations. By leveraging human interven-
tions, online explorations for fine-tuning are made possible
although it is typically considered impractical to conduct
explorations in the real world. While this work considers
a sophisticated simulation environment as the real world,
these results show the potential of applying the approach
to real-world experiments. Despite the fact that this work
considers 2D needle steering as a proof of concept, the ap-
proach can easily be extended to 3D as well. It is therefore
possible in the future to conduct real-world experiments of
needle steering in the 3D space.
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