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Children with physical impairments may have challenges in play due to limitations in reaching and handling objects. Telerobotic
systems that provide guidance towards toys may help provide access to play, but intuitive methods to control the guidance is
required. As a first step towards this, adults without physical impairment tested two eye gaze interfaces. One was an attentive user
interface that predicts the target toy that users want to reach using a neural network, trained to recognize the movements performed
on the user-side robot and the user’s point of gaze. The other interface was an explicit eye input interface that detects the toy that a
user fixates on for at least 500ms. This study compared the performance and advantages of each interface in a whack-a-mole game.
The purpose was to test the feasibility of activating haptic guidance towards toys with an attentive interface and to assure the
safety of the system before children use it. The prediction accuracy of the attentive interface was 86.4% on average, compared to
100% with the explicit interface, thus, seven participants preferred using the explicit interface over the attentive interface. However,
using the attentive user interface was significantly faster, and it was less tiring on the eyes. Ways to improve the accuracy of the
attentive eye gaze interface are suggested.
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1. Introduction

Children with physical impairments face significant chal-
lenges to play because of their physical limitations, for ex-
ample in reaching and handling objects [1]. Children with
physical impairments may have less access to opportuni-
ties to play, thus leading to negative impacts on their so-
cial, emotional, or psychological development [2]. Assistive
technologies such as assistive robots can be a tool to help
children with physical impairments to play, giving children
the opportunity to manipulate objects and interact with
their surroundings. For example, robotic arms and car-like
robots can be teleoperated by switches, allowing children
to interact with objects in the environment at a distance
(e.g., from their wheelchairs) [3], [4]. Playing using robots
can contribute to a child’s independence, cognitive, social
and linguistic skills [5]. Current robots for play do not in-
clude physical feedback to inform the user about the prop-
erties of the objects that the robot is touching [6]. Haptic
interfaces can exert forces to provide haptic feedback (the

sense of touch) to the user [7]. Haptic feedback can benefit
the user’s understanding and exploration of the environ-
ment, making it possible to perceive object properties such
as shape and size [8].

Haptic interfaces can also exert forces with the pur-
pose of helping and guiding the user to complete and in-
crease their performance in manual tasks [9]. With guidance
children with physical impairments might be able to use a
joystick-like interface to control a robot, rather than just
switches, which are limiting in function. Haptic-enabled
robots could provide this guidance. A pen-like haptic inter-
face was used to help children with cerebral palsy to write
Chinese characters [10]. The haptic guidance consisted of
forces that attracted and kept the children’s hand on the
trajectory of the character. Haptic guidance can also be
implemented as forbidden region virtual fixtures (FRVF)
which constrain the robot to stay inside or outside a pre-
defined region. For example, FRVF can be used for support-
ing colouring where forces are applied on the haptic user
interface whenever the user tries to colour outside the pre-
define shape template [11]. Also, FRVF can define the space
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of a trajectory for transport of objects from one location
to another, for example, to support sorting [12]. However,
these types of haptic guidance are commonly implemented
for a specific task, and they do not necessarily correspond
to the user’s movement intentions [9].

Eye gaze systems could be used to orient the hap-
tic guidance towards the target toys that children intend
to reach. The state-of-the-art of eye gaze-controlled robots
mainly involves explicit eye input interfaces. This type of
interface consists of voluntarily and consciously controlling
one’s eye movements, or gaze direction [13]. Explicit in-
terfaces relate the user’s eye movements and point of gaze
(POG), i.e. the location where the user’s gaze is focused, to
robot commands. For example, voluntary blinking and clos-
ing the eyes has been used as the ‘stop’ command for mobile
robots such as electric powered wheelchairs [14]. Gaze ges-
tures or patterns are another form of explicit eye inputs. For
example, electric wheelchairs can be commanded to move
forward if the user looks upwards and downwards [15].

A user’s eye gaze can also be used as a pointer. A
mobile robot was controlled by selecting buttons on a com-
puter screen that commanded the robot to stop and move
forward, left, right and backwards [16]. The user had to fix-
ate on the buttons for a period, known as dwell time, to ac-
tivate the button’s action. Dwell times are a form of solving,
to some extent, the Midas Touch problem. This problem
relates to discriminating between intended and unintended
activation of commands on the screen whenever the POG
goes over them [17]. Fixating during the dwell time is a way
of confirming that the user has the intention of activating
the command. Electric wheelchairs have been controlled by
fixating at a computer screen that displays arrow-buttons
for direction commands [18]. The eye gaze can be combined
with other types of devices to control robots. For instance,
users preferred to control the robot’s motion with the joy-
stick and use their eye gaze to control the rotation of the
robot’s mounted camera [19]. In the case of a drone, it was
easier and more reliable to control the rotation and speed
with the gaze, and translation and altitude with buttons
[20]. The eye gaze has also been employed to point out or
indicate which object the user wants to reach with a robot,
for instance, using a robotic arm and an exoskeleton [21],
[22]. Using an explicit interface requires making predefined
eye gaze patterns, or fixating for a dwell time at a location
to trigger an action, which can be uncomfortable and tiring
to the eyes [13].

Encarnação et al. [23] tested an explicit eye input in-
terface with three children with cerebral palsy, two of them
were three years old and the other child was six years old.
Children controlled the movement of a Lego robot by look-
ing at a computer screen that displayed buttons to move
forward, backwards, turn left and right. Children had trou-
ble operating the robot because they had to fixate on the
screen to make a selection and then look back at the robot
to observe its action. The three-year olds were not able to
complete the activities due to the complexity to control the
robot.

Unlike explicit interfaces, attentive user interfaces do

not require the user to change his/her eye behaviour. In-
stead of taking explicit commands, attentive interfaces in-
terpret and process the user’s natural eye movements, and
respond according to them [13]. An example of an atten-
tive interface is the recognition of activities (e.g., evaluating
statistical graphs or completing a quiz) by interpreting the
user’s eye gaze while the user is interacting with a computer
[24]. A laparoscopic system for minimally invasive surgery
interpreted the surgeon’s eye-gaze patterns and determine
the viewing target where the laparoscope should focus [25].
Predicting targets during the interaction with computer ap-
plications was also possible by analyzing the user’s eye gaze
[26], [27].

The aim of this study was to develop an attentive in-
terface to interpret the user’s eye movements and select
the target toy to reach with the robot. This study is the
continuation of a previous preliminary study [28], where a
multilayer perceptron neural network was trained to pre-
dict the target that adults were supposed to move a robot
towards. The current paper describes the development and
testing of a telerobotic haptic system, which integrates a
neural network into an attentive user interface to activate
haptic guidance, with the purpose of guiding the robot in-
terface towards target toys. The goal is for children with
physical impairments, who are seated in their wheelchair, to
use a joystick-like interface positioned on their wheelchair
to control a robot situated in the play environment. The
robot will give guidance through the interface towards the
toys of their choice, determined from their eye gaze. At
this stage, the robotic system was tested by adults without
impairments and not with children or adults with physical
impairments, in order to test the feasibility of applying hap-
tic guidance with an attentive interface, to test its perfor-
mance, identify possible improvements, and to ensure the
safety of the system before children use it. The objectives
of this study were: 1) To create and test the performance
of an attentive eye gaze interface for activating the haptic
guidance towards the correct target toy during a game. 2)
To compare the performance of the attentive interface with
an explicit eye gaze interface that employed dwell times.

2. Methods

The study consisted of two sessions. The first session was
carried out to collect data for developing the attentive in-
terface. The second session was carried out to address the
objectives of this study. Each session took between 30 and
60 minutes and were scheduled one month apart.

2.1. Participants

Ten adults without physical or cognitive impairments par-
ticipated in this study. Two of them were females. The par-
ticipants’ ages ranged from 18 to 36 years old (Mean=25.4,
SD=5.34, mean and standard deviation). Four participants
had normal and six had corrected-to-normal vision. Ethi-
cal approval was obtained from the Health Research Ethics
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Board at the University of Alberta.

2.2. Materials

The telerobotic haptic system included two 3-DoF PHAN-
ToM Premium 1.5A haptic robots (3D Systems, Inc., Rock
Hill, SC, USA). One of the robots was placed in the envi-
ronment as the environment-side robot (slave robot) where
it interacted with the target objects in the game. The
other haptic robot was placed at the user side as the user-
side robot (master robot), for participants to control. The
robots were controlled in position-error-based bilateral tele-
operation mode, thus the environment-side robot mimicked
the movements performed by the user on the user-side
robot. In a second computer, the Tobii EyeX (Tobii Tech-
nology, Stockholm, Sweden) stationary eye tracking system
was interfaced to acquire the POG signal. The eye tracker’s
operating distance is between 54 and 80 cm. The POG x
and y coordinates for the left and right eyes of the user
were recorded at a sampling frequency of 40Hz. Addition-
ally, the robots’ PC and the eye tracker’s PC communicated
via Ethernet and used the user datagram protocol (UDP).

Fig. 1 shows a participant controlling the robotic sys-
tem, the main components and the setup of the system and
the activity. More details about the system are described
in [28].

The chosen activity for testing the robotic system was
a Whack-A-Mole Arcade Game by Fischer-Price. The game
was customized to light up and turn off the lights of the five
moles, and detect the pressing of the moles, using a Arduino
Leonardo microcontroller.

A stand was set up as illustrated in Fig. 1 so that par-
ticipants had to sit behind it and look through the hole.
This way, the participants’ eyes were within the operating
distance of the eye tracker (i.e., 45 to 80 cm), and avoided
losing the calibration of the eye tracker with respect to the
location of the moles due to head movements. The distance
between the eye tracker and the hole was approximately
65cm, and from the rear moles to the hole, it was about
90cm.

2.3. Haptic guidance

FRVF with the shape of a cone was chosen as the guidance
method for this study. The cone allowed the user to move
the robot end-effector closer to the target and prevented the
user from moving away from it. The design takes into ac-
count the findings of a previous study [12], where an adult
with cerebral palsy tested FRVF in a sorting task. The
shape of the FRVF was a cylinder that went from the place
where she had to pick up the objects to a bin where she
was supposed to drop them. The findings of that study in-
dicated that the cylindrical shape of the FRVF opposed the
natural and preferred motion of the user, which was an arc-
like movement. The cone shape gives users more freedom
to move the way they want.

Fig. 1. A participant controlling the robotic system, and illus-
tration of the setup of the system and the activity. Participants
sat behind the stand and looked through the hole, to maintain
the eyes within the operating distance of the eye tracker. They
manipulated the user-side robot with their non-dominant hand
(left in the figure) to make the environment-side robot ”whack”
the moles when they lit up.

The design of the FRVF is illustrated in Fig. 2A. The
3D cone was aligned along the line that crosses the target
mole’s and the robot’s end-effector coordinates, the origin
of the cone was at 1cm behind the robot’s end-effector,
and the cone angle was 30 degrees. The 1 cm distance was
set so that the user did not feel like he/she was always
up against the cone. The orientation and the origin of the
cone were updated as the user moved closer to the tar-
get. If the user attempted to go outside the cone, forces
were applied perpendicularly to the cone surface. The force
was proportional to the distance between the robot end-
effector’s position and the cone surface, F = K∗|distance|2
(N/m). K was the constant that regulated the haptic guid-
ance force. The K constant was set to 50 (N/m) for this
study for both eye gaze interfaces. As pressing the moles
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was somewhat difficult, a potential field was implemented
to attract the robot end-effector towards a virtual vertical
line over top of the mole, as illustrated in Fig. 2B. The po-
tential field helped the user to keep the robot end-effector
over top of the mole so that the user just had to push
down. This form of haptic guidance activated only when
the environment-side robot end-effector was within 1.5cm
from the virtual line extending vertically through the mole
(the mole’s x and y coordinates). Once the potential field
was activated, the cone-shaped guidance was deactivated.
The cone-shaped guidance was activated again, and the po-
tential field deactivated when the target changed. The force
of the potential field was proportional to the distance be-
tween the robot end-effector’s position and the virtual line.
For the attentive interface, the K constant was 10 (N/m).
In contrast, the constant was set to 50 (N/m) for the ex-
plicit interface. The reason for the different constants is
discussed later.

Fig. 2. Illustration of the haptic guidance projected from 3D
to a 2D plane: A) 3D cone-shaped FRVF with origin 1cm be-
hind the environment-side robot’s end-effector and projected to-
wards the mole. The origin’s location was updated when the
end-effector moved closer to the mole. The cone-shaped guid-
ance helped a user move towards a mole and prevented them
from moving away from it; B) 3D artificial potential field helped
to keep the end-effector over the virtual line on top of the mole,
thus making it easier to whack it. The artificial potential field
was activated, and the cone-shaped guidance deactivated, when
the end-effector was 1.5cm away from the virtual line.

2.4. Eye gaze interfaces

2.4.1. Attentive user interface

This interface consisted of implementing an artificial neu-
ral network for predicting the target mole that the user
wanted to reach. The neural network analyzed the user’s
eye gaze and the movements performed at the environment-
side robot. The output of the neural network activated the
haptic guidance to guide the user towards the predicted
mole.

The performance of training three multilayer percep-
tron (MLP) neural networks with combinations of input
variables was compared to decide which structure to use in
session 2: 1) the POG’s x, and y coordinates, 2) the POG’s
x and y coordinates, and the environment-side robot’s x,
y, z positions, and 3) the POG’s x and y coordinates, the
environment-side robot’s x, y, z position’s, velocity and di-
rection. The input layer had 80, 200, and 360 nodes, re-
spectively. For the hidden layer, the number of nodes was
explored from 0 to the size of the input layer. The neural
networks were implemented as classifiers, therefore all of
them had five nodes in the output layer, one for each mole
in the game. A 5-fold cross-validation was performed, thus
the neural networks were trained on 80% of the dataset and
tested on the remaining 20%. The training was done using
the scaled conjugate gradient method, having σ = 5.0e− 5
and λ = 5.0e− 7.

The accuracies of the neural networks with the three
variable combinations were 84.91 ± 5.02%, 90.06 ± 2.44%,
and 90.13± 2.27% (mean and standard deviation), respec-
tively. Input variable combination number three was chosen
due to the accuracy and because the neural network did not
required nodes in the hidden layer, which makes it simpler
and computationally less expensive. Fig. 3 illustrates this
neural network. The neural network was trained one more
time using the complete dataset and was integrated it in the
Simulink code for activating the haptic guidance in session
2.

Fig. 3. Illustration of the neural network that was chosen to
implement in session 2.
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2.4.2. Explicit eye input interface

This interface was designed using dwell times, and worked
in a two-step process to activate the haptic guidance to-
wards the moles. First, the user was required to fixate at
the middle light of the eye tracker (herein called change-
selection-spot) for at least 500ms. The computer produced
a beep sound when the user fixated successfully at the
change-selection-spot. Second, the user had to fixate at the
desired mole for 500ms. The computer spoke out loud the
mole ID number (i.e., 1-5) to let the user know which mole
he/she had selected. The user could repeat the two-step
process in case he/she wanted to go to a different mole.

2.5. Procedure

2.5.1. Session 1

The first session was carried out with the purpose of col-
lecting the data needed to train the MLP neural network of
the attentive interface. Participants were asked to use the
robot interface with their non-dominant hand to whack 60
moles without haptic guidance. Three moles were lit up at a
time and after whacking them the next three moles were lit
up after 1 second. Each mole corresponded to one episode,
which consisted of the time interval that the user took to
whack the mole. The moles were lit up randomly. To simu-
late involuntary movements on the users, the y and z axes
of the teleoperation were mirrored, i.e. when the user-side
robot moved to the left or upwards the environment-side
robot moved in the opposite direction, right and down-
wards, respectively. The purpose of the mirroring was to
encourage the participants to move the robot interface in
wrong directions such that the haptic guidance that would
be applied in the second session would be engaged. Partic-
ipants had the chance to get familiarized with the system
by whacking each mole twice.

2.5.2. Session 2

The second session consisted of three parts with the pur-
pose of evaluating the system. There was a five-minute
break between each part of the session. In the three parts,
the participants did the activity by looking through the
hole of a stand, as illustrated in Fig. 1. Participants did
the activity by looking through the hole to ensure that
the participants’ eyes were within the operating distance
of the eye tracker, and to avoid losing the calibration of
the eye tracker. The distance between the eye tracker and
the hole was approximately 65cm, and from the rear moles
to the hole, it was about 90cm. Before starting the activ-
ity, the eye tracker was calibrated with respect to the five
moles. Then, participants had the chance to get familiar-
ized with the system before starting each part of the session
by whacking each mole twice.

In the first part, participants did the activity using
the system in normal teleoperation (“normal teleoperation”

condition), i.e. the robot axes were not mirrored as in ses-
sion 1 and haptic guidance was not applied. They whacked
a total of 60 moles.

The second part was focused on evaluating the atten-
tive eye gaze interface and its neural network. The evalu-
ation was carried out using an experimental crossover de-
sign. For this part, participants whacked 120 moles. As in
session 1, the teleoperation was mirrored. To control for
learning effects, the starting condition was randomized and
counterbalanced, i.e. half of the participants started with
the haptic guidance (“with guidance” condition) and the
other half without haptic guidance (“without guidance”
condition). Additionally, the condition was changed mul-
tiple times in order to have more reliable responses from
the participants. The 120 moles were divided into 10 sets
of 12 moles, in which the condition, “with guidance” or
“without guidance”, was randomly assigned, with a max-
imum of two consecutive sets with the same condition. A
short break was given between sets to ask the participants
whether it was easier than the previous set, but they were
not told if guidance was on or off. Participants did five sets
in the “with guidance” condition and five in the “without
guidance” condition. At the end of the trial, participants
were asked if their eyes felt tired and their responses were
recorded by the researcher into the research notes.

The third part had the purpose of testing the explicit
eye input interface. Participants were asked to whack 60
moles having the axis mirrored as in session 1, with hap-
tic guidance. At the end of the trial, the participants were
asked if their eyes felt tired. Also, they were asked to com-
ment on which interface they preferred to use, the explicit
interface or the attentive interface, and the reason why.
Participant’s responses were also recorded into the research
notes.

2.6. Data collection and analysis

In session 1, the user’s POG and the environment-side
robot’s x, y, z positions were collected. The user’s POG x
and y coordinates for the left and right eyes were averaged.
The velocity and direction of the environment-side robot
were derived from its x, y, z positions. As each participant
whacked 60 moles, a dataset of 600 episodes was created.
Seven were excluded because the eye gaze data was lost.
Additionally, 49 episodes were also excluded because they
were shorter than 1s, which is the window size that was
chosen for creating the training dataset for the neural net-
work. Those episodes that were shorter than 1s occurred
because the user was already close to the mole that was
lit up. Thus, 544 episodes were considered for training the
neural network of the attentive user interface. From the
dataset, a training set of 57128 examples was constructed
by having the moving window of one second (40 samples).
In a previous study [28], the performance of MLPs trained
with windows of 0.25, 0.5, 0.75 and 1 second were com-
pared. Training the MLP with input data framed in a win-
dow of 1s had the best performance, thus, it was used in
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this study. In the present study, the training dataset con-
tained nine input variables: x, y coordinates of eye gaze;
the environment-side robot’s position (x, y, z coordinates
in space), velocity, and direction (α -angle respect to the
x-axis, β -angle respect to the y-axis, and γ -angle respect
to the z-axis).

In part 1 in session 2, only the environment-side
robot’s position was recorded since the eye gaze interfaces
were not employed for part 1. Two episodes were excluded
because of a malfunction with the whack-a-mole game.
From, each episode the average time the user took to whack
each mole, the distance travelled, and the jerkiness of the
movements, were obtained. Jerkiness was measured by us-
ing the Dimensionless Jerk formula and taking the negative
logarithm to improve the sensitivity (LDLJ) [29], [30]:

LDLJ = −ln

(
(t2 − t1)

3

vpeak
2 ∗

∫ t2

t1

|d
2v(t)

dt2
|
2

dt

)
(1)

where V is the velocity at which the environment-side
robot was moving. LDLJ is a valid measure for measuring
jerkiness of movements [30]. The lower the value of LDLJ
the jerkier the movements.

From part 2 in session 2, the eye gaze and the
environment-side robot’s position were recorded. Episodes
for the “with guidance” or “without guidance” conditions
were analyzed separately. There was one episode excluded
during the “without guidance” condition because of a mal-
function with the whack-a-mole game. During the “with
guidance” condition there were six excluded for this rea-
son. Additionally, there were 32 episodes excluded because
the user’s eye gaze was lost due to head movements.

For the “with guidance” condition, the average time
the user took to whack each mole, the distance travelled,
and the jerkiness of the movements were measured. To an-
alyze the neural network performance, the accuracy of the
neural network to predict which mole the user was going to
reach throughout each episode was measured. The analysis
was performed after 300ms at the start of each episode, as
humans do not react instantly to light. Kiselev, Espy, and
Sheffield [31] reported that the reaction to light for adults
was 270ms on average with a standard deviation of 31ms.
For the “without guidance” condition, the same measures
were obtained except for accuracy.

In part 3 in session 2, the average time the user took to
whack each mole, the distance travelled, and the jerkiness
of the movements were measured. Additionally, the num-
ber of mis-selections when the users selected other moles
before selecting the intended one during each episode, was
recorded. Two episodes were excluded due to a malfunction
with the whack-a-mole game.

The results of time, distance, and jerkiness were com-
pared between the robot conditions (“normal teleopera-
tion”, “with guidance”, and “without guidance”), and be-
tween the eye gaze interfaces using linear mixed-effects
models [32]. Linear mixed-effects models are an extension
of linear regression models, but they account for differences
or effects of each participant within each condition. As a

linear model, if the slope between two datasets is zero then
there is no statistical difference. For instance, the model for
time was:

Time = β0 + β1 ∗ condition+ β2 ∗ (1|participant) + ε (2)

where condition refers to the conditions of interest
for comparing, for example, “without guidance” and “with
guidance”. β0 is the intercept of the linear model, β1 is
the coefficient of the slope for the fixed effects (conditions),
and β2 is the coefficient for the random effects accounted for
each participant, and ε is the error. The hypothesis tested
was Ho : β1 = 0. If the hypothesis is rejected with a con-
fidence level of 0.05, then there is a significant difference
between the two conditions.

3. Results

Table 1 lists the means and standard deviations for time,
distance, and jerkiness, for the trials with normal teleoper-
ation (from session 2 part 1 where there was no mirroring
and no guidance) and when the y and z axis were mir-
rored (from session 2 part 2 with the attentive interface
in the “without guidance” condition). Additionally, it lists
the results of the linear mixed-effects model obtained from
comparing each measure between the two conditions.

Table 1. Linear mixed-effects models for compar-
ing the results of normal and mirrored teleopera-
tion without guidance (mean and standard deviation)

Normal
teleoperation

Mirrored
teleoperation p-value

Time (s) 1.25 ± 0.75 2.26 ± 1.72 0.000
Distance (m) 0.232 ± 0.11 0.32 ± 0.22 0.000
Jerkiness −20.34 ± 2.39 −22.44 ± 2.75 0.000

Table 2 lists the means and standard deviations of
time, distance, and jerkiness, when the participants did the
activity “without guidance” and ”with guidance” with the
attentive interface during session 2 part 2. It also lists the
results of the linear mixed-effects model for comparing the
results of the two conditions. All participants responded
that the activity was easier to do without the haptic guid-
ance activated by the attentive interface. All participants
also commented that they felt the haptic guidance was
sometimes against their movements, making the activity
somewhat more difficult.

Table 2. Linear mixed-effects models for comparing the
results of “without guidance” and “with guidance” of
the attentive interface (mean and standard deviation).
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Without
guidance

With
guidance p-value

Time (s) 2.26 ± 1.72 2.46 ± 1.69 0.039
Distance (m) 0.32 ± 0.22 0.34 ± 0.23 0.183
Jerkiness −22.44 ± 2.75 −22.81 ± 2.59 0.010

Table 3 lists the performance of the participants when
using the attentive and explicit interfaces. It shows the re-
sults of the linear mixed-effects model for the comparisons
of time, distance, and jerkiness. The neural network of the
attentive interface had an accuracy of 86.43 ± 15.58 %
(mean and standard deviation). The explicit interface had
an accuracy of 100 ± 0 % and the number of mis-selections
the participants did was 11, performed by five out of the
ten participants. None of the participants felt that their
eyes were tired after using the attentive interface. In con-
trast, six out of the 10 participants felt that their eyes were
tired after using the explicit interface. Seven out of the 10
participants preferred the explicit interface over the atten-
tive interface. Regarding the participants’ comments, five
of them thought that it was bothersome or tedious to fix-
ate and transition their gaze between the change-selection-
spot and the moles. Three of out those five participants
felt that their eyes were tired after using the explicit in-
terface. The three participants that preferred the atten-
tive interface commented that the attentive interface was
faster. The other seven participants preferred the explicit
interface because the haptic guidance was not against their
movements.

4. Discussion

Mirroring of the axes of the teleoperation did encourage
users to move the robot in wrong directions. According to
Table 1, participants spent significantly more time, trav-
elled longer distances, and had jerkier movements with mir-
rored axes. These results imply that mirroring of the axes
indeed induced confusion or involuntary movements in the
participants, making them move the robot in wrong di-
rections, increasing the time and the distance travelled to
whack each mole. More relevant, the participants’ move-
ments were jerkier and could be, to some extent, a simula-
tion of the movements performed by a person with physical
impairments who experiences involuntary movements.

Table 3. Linear mixed-effects models and results for
the comparison of the attentive and explicit inter-
faces with guidance (mean and standard deviation).

Attentive Explicit p-value

Time (s) 2.46 ± 1.69 4.04 ± 1.84 0.000
Distance (m) 0.34 ± 0.23 0.29 ± 0.15 0.000
Jerkiness −22.81 ± 2.59 −21.61 ± 2.24 0.000

According to Table 2, when the attentive interface ap-
plied the haptic guidance, participants spent more time and
had more jerky movements than when haptic guidance was
not applied. The main reason for the longer time was that
the accuracy of the predictions made by the neural net-
work was not 100%. Therefore, there were periods of time
where the guidance was oriented towards the wrong mole,
making the participants stop along the way until the neu-
ral network made the right prediction. The guidance never
forced the participants to whack wrong moles, this is why
the distance travelled to whack the moles was not signifi-
cantly different between having the guidance on or off. A
possible reason for not achieving 100% accuracy is that the
movements to go from one mole to another could be some-
how similar, leading to difficulties for discriminating the
movement patterns for each class. For example, going from
the bottom-left mole to the upper-right mole has, to some
extent, a similar movement trajectory (e.g. the direction)
as going to the mole in the middle.

There were many differences found between the at-
tentive and explicit interfaces, as seen in Table 3. Regard-
ing time, the participants spent significantly more time to
whack each mole with the explicit interface than when us-
ing the attentive interface. Theoretically, the control of the
explicit interface takes one second (two dwell times) longer
than the attentive interface but it was about 1.5 seconds on
average, because of the time the participants took to hear
the mole ID spoken by the computer. The dwell-time could
be decreased as participants gain more experience with the
system and the explicit interface.

There was a significant difference between the distance
travelled to whack each mole when using the attentive
and the explicit interface. Participants travelled longer dis-
tances to whack each mole when using the attentive inter-
face. One reason is that the force of the potential field (Fig.
2B) was higher for the explicit interface, therefore, provid-
ing more help to whack the moles. The movements to reach
and whack the moles were significantly jerkier using the at-
tentive interface than the explicit interface, because of the
inaccuracy of the neural network. This was why partici-
pants commented that the haptic guidance was sometimes
against their movement, and a reason why seven out of ten
preferred the explicit interface over the attentive interface.

The accuracy of using the explicit interface was 100%
because the participants could repeat their selection if they
had selected the wrong target, but at the cost of spending
more time to whack each mole. The 11 mis-selections by five
of the ten participants represents less than the 2% of the
total number of episodes. The low number of mis-selections
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implies that the adults did not experience difficulties using
the explicit interface, contributing to seven out of ten pre-
ferring this interface. In addition, the interface allowed the
participants to point out where they wanted to go. Thus,
the haptic guidance did not oppose their movements. In
the case of children, we hypothesize the number of mis-
selections will be higher. Furthermore, as five adult partic-
ipants thought it was bothersome or tedious to transition
their gaze, it is possible that children may not use the ex-
plicit interface. Research is lacking on how children perform
with explicit interfaces, especially children under five years
old who lack some of the cognitive skills required to control
robots [33].

An advantage of the attentive interface is that the
users did not have to change their eye behavior, which
makes the interface more intuitive and faster to user than
the explicit interface. Also, user’s eyes did not get as tired as
with the explicit interface. None of the participants experi-
enced tiredness in their eyes after completing the task with
the attentive interface. In contrast, six participants out of
ten felt their eyes were tired from having to fixate for 0.5s
at the moles and the change-selection-spot. This tireness is
also reported in other studies with explicit interfaces [13].

Testing with adults without impairments showed that
it was feasible and safe to apply haptic guidance based on
input from an attentive eye gaze interface, and the inter-
face had advantages such as faster time and less eye-strain
than the explicit interface. Also, it avoids problems with ex-
plicit interfaces for robot control identified in Encarnação
et al. [23] about children having to switch their attention
between the screen and the robot. However, its accuracy
performance was low enough that it caused the adults to
prefer the explicit interface instead. It is possible that chil-
dren will be less tolerant than adults of the steps required
for the explicit eye gaze interface. However, children may
also be less tolerant than adults of prediction errors of the
attentive interface. Improvements to increase accuracy and
guidance will have to be made before trying the attentive
interface system with children with physical impairments.

Different input variables would improve the prediction
accuracy. The haptic guidance affected the movements per-
formed by the user, i.e., position, velocity and direction,
which were input variables of the neural network. Thus,
the haptic guidance influenced both the input and output
of the neural network. Therefore, different and additional
input variables should be considered, e.g., the force exerted
by the user on the haptic interface, as well as different ma-
chine learning algorithms such as Support Vector Machines.

Making the K constant of the potential field higher
would help to make the haptic guidance more effective. The
K constant of the potential field (Fig. 2B) needed to be
lower for the attentive interface than the explicit interface
(10 N/m compared to 50 N/m). Having a value of 50 for
the K constant was helpful to whack the moles, but also
prevented the users from moving towards other moles. The
potential field affected the movements of the participants,
and at the same time affected the position, velocity and di-
rection of the environment-side robot, which were inputs of

the neural network. Despite having the POG coordinates
as inputs too, the neural network was unable to change
its output unless it observed similar movement patterns as
in the training. The K constant had to be decreased to a
value (10N/m) so the neural network could respond appro-
priately, allowing the user to move towards other moles but
still be supported to whack the moles. In contrast, issues
were not found with the explicit interface because the par-
ticipants explicitly told the system where they wanted to
go. This allowed the system to have a higher K constant to
provide more support for whacking the moles. Regarding
the cone-shaped guidance, the K constant was the same
for both eye gaze interfaces, because this type of guidance
allowed the user to move with more freedom towards the
moles, allowing the neural network to be responsive.

There were some limitations of this study. Only adults
without physical impairments tested the system, and not
children with physical impairments, who are the target pop-
ulation. However, the results of this study were helpful to
understand improvements needed to develop an attentive
user interface for children. The results of the comparisons
between the two eye gaze interfaces may be biased because
all participants tested the attentive interface first and then
the explicit interface, with only five minutes for resting. A
longer resting time would have been required to washout
any learning effects. Also, counterbalancing the order in
which participants tested the interfaces would have helped
to control for learning effects. The eye tracker used in this
study was stationary and required the user to be within its
operating distance to obtain a reliable measure of the POG.
In this study, operating distance was maintained by requir-
ing the users to look through a hole, which is not a natural
method of interaction. However, this eye tracker could be
a good choice for children with mobility impairments who
use a wheelchair. The eye tracker could be attached to the
frame or lap tray of the wheelchair, which will ensure that
their eyes are always within the operating distance. Wear-
able eye trackers could be another option to explore, since
they do not have the limitation of the operating distance of
the eye tracker. Nevertheless, it is possible that users would
dislike wearing it.

5. Conclusion

The attentive interface offered some advantages over the
explicit interface in this haptic guidance task, including
lower times to complete the activity and the user’s eyes
did not get as tired as with the explicit interface. Using
the attentive user interface could be more intuitive to use
than the explicit interface, as it is intended to predict where
the user wants to go without the user having to point out
with his/her gaze explicitly. However, the accuracy for these
predictions were not 100%, and for this reason, all the par-
ticipants felt like the guidance activated by the output of
the neural network was sometimes against their movement.
This was one of the reasons why seven out of the ten par-
ticipants preferred the explicit interface.
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If prediction accuracy and the haptic guidance could
be improved, attentive interfaces should be easier and more
intuitive to use than explicit interfaces, which can con-
tribute to a more natural interaction between the user, the
robot, and the environment. Next stages of the project will
be directed to improve the attentive interface and then test
it with children with physical impairments.
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