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Long flexible needles used in percutaneous procedures such as biopsy and brachytherapy deflect during insertion, thus reducing
needle-tip placement accuracy. This paper presents a surgeon-in-the-loop system to automatically steer the needle during manual
insertion and compensate for needle deflection using an event-triggered controller. A reduced-order kinematic bicycle model incor-
porating needle-tip measurement data from ultrasound images is used to determine steering actions required to minimize needle
deflection. To this end, an analytic solution to the reduced-order bicycle model, which is shown to be more computationally efficient
than a discrete-step implementation of the same model, is derived and utilized for needle-tip trajectory prediction. These needle-tip
trajectory predictions are used online to optimize the insertion depths (event-trigger points) for steering actions such that needle
deflection is minimized. The use of the analytic model and the event-triggered controller also allows for limiting the number and
extent of needle rotations (to reduce tissue trauma) in a constrained optimization framework. The system was tested experimentally
in three different ex-vivo tissue phantoms with a surgeon-in-the-loop needle insertion device. The proposed needle steering controller
was shown to keep the average needle deflection within 0.47 ± 0.21 mm at the final insertion depth of 120 mm.
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1. Introduction

Percutaneous procedures have a wide range of clinical ap-
plications, including biopsy and brachytherapy. In these
procedures, a needle is inserted into tissue and is guided
by a clinician towards a desired target location. In the case
of biopsy, the goal is to gather tissue samples for diagnostic
analysis, and for brachytherapy, the objective is to deposit
radioactive seeds for the treatment of cancerous tissues.
The diagnostic and therapeutic efficacy of both depends
upon the accuracy with which the needle tip is positioned
with respect to the target point. This requirement of needle-
tip placement accuracy lends itself to the use of robotic as-
sistants that can steer the needle towards the desired target
location with high precision.

The therapeutic procedure focused on in this paper
is prostate brachytherapy; a procedure whereby long flexi-
ble needles, preloaded with radioactive seeds, are inserted
through the perineum into the prostate to treat prostate

cancer. During the therapy, using both ultrasound-image
guidance and a guide template (consisting of a grid of
holes), the clinician attempts to steer the needle toward tar-
get locations within the prostate where the seeds are then
permanently implanted; see Fig. 1 and Fig. 3. This proce-
dure is an attractive treatment option used in early-stage
locally-confined prostate cancers [1, 2]. One of the compli-
cations in the current clinical practice is that the asym-
metric needle-tip bevel causes the needle to deflect during
insertion and thus deviate away from the target location,
for a recent survey see [3]. This deflection, if uncorrected,
both reduces the efficacy of the therapy and increases the
side effect profile [4]. With the clinician manually steering
the needle, seeds are placed with an average accuracy of
5 mm [5]. This 5 mm error is significant given the 50 mm
diameter of the average prostate. Increasing the efficacy of
this procedure is of growing practical importance; with a
projected prostate cancer diagnosis for one in eight Cana-
dian men in their lifetime [6].
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Fig. 1. Standard clinical brachytherapy setup with Transrec-
tal Ultrasound (TRUS) probe, axial imaging plane, hand-held
steering device, needle base, and guide template.

This paper presents a semi-autonomous (surgeon-in-
the-loop) ultrasound-image-guided system, which can steer
the needle during insertion to increase targeting accuracy.
The system is designed such that the clinician directly con-
trols the insertion velocity and depth, in this case by insert-
ing the needle attached to a hand-held device (shown in Fig.
1) originally presented in [7]. Real-time ultrasound-image
based needle tracking is used to estimate the parameters
of a reduced-order nonholonomic kinematic bicycle model.
The needle deflection is minimized through the use of an
event-triggered control system which optimizes needle rota-
tion during insertion, thus steering the needle. The control
system is designed such that, with the addition of the hand-
held steering device, it can be incorporated into a standard
clinical setup used during prostate brachytherapy without
requiring additional sensors or changes to the clinical setup.

The main contribution of this paper is an analytic so-
lution to the reduced-order bicycle model which allows for
calculation of the needle-tip trajectory, for the entire nee-
dle insertion, without requiring numerical integration. This
analytic solution is shown to be more computationally ef-
ficient than traditional discrete-step numerical integration
methods for needle-tip trajectory calculation and allows the
proposed event-triggered control system to reduce needle
deflection in real-time.

An overview of related work on
ultrasound-image-based needle tracking and control will
be given in Sec. 2. A brief overview of the reduced-order

bicycle model will be covered in Sec. 3. The
event-triggered controller utilizing the analytic solution to
the reduced-order kinematic bicycle model along with a
detailed comparison of the computational speed of the

solution will be shown in Sec. 4. In Sec. 5 the setup used
to validate the controller, including the hand-held device,

along with results of needle insertion trials in three
different tissue phantoms will be presented. Within this

section, Sec. 6 covers the algorithm for needle tracking in
axial ultrasound images along with the model parameter
fitting. The last Sec. 7 gives a discussion of the results

obtained along with future challenges to be solved.
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Fig. 2. Comparison of the regulation and weak regulation con-
trol paradigms seen in needle steering control, as described in [3].

2. Background

Several different control paradigms have been devised
within the context of needle steering for percutaneous pro-
cedures, with a thorough review of the control paradigms
and their applications given in [3]. One such control
paradigm is referred to in the literature as regulation.
For regulation, the controller is designed to eliminate
needle-tip deflection away from a target axis throughout
the entire insertion and is ideal for procedures such as
prostate brachytherapy. Another control paradigm is weak-
regulation, whereby the needle-tip is only controlled to pass
through a desired target point, allowing for larger needle-tip
deflection away from the target axis during insertion. Weak
regulation is primarily used for procedures such as biopsy
but also applicable to brachytherapy. For brachytherapy,
weak regulating controllers can be designed to reduce the
required number of total needle rotations, and therefore tis-
sue trauma, while maintaining acceptable needle deflection
around the target axis. Figure 2 illustrates the difference in
deflection minimization between weak-regulation and reg-
ulation.

One model used in the literature for the control of long-
flexible needles, such as those used in prostate brachyther-
apy, is known as the kinematic bicycle model. In the con-
text of needle steering, the bicycle model was first pre-
sented by [8] and [9] who showed that the 3D trajectory
of a beveled needle-tip, during insertion into tissue, is anal-
ogous to the trajectory of a bicycle with its front wheel
locked at a single angle. This “locked wheel” models the
needle trajectory as following a 3D path with a constant
radius of curvature (i.e., moving along the edge of a 3D
circle) with the direction of curvature related to the an-
gle of the needle-tip bevel. The initial work of [9] used the
bicycle model to steer a needle towards a target in a 2D
plane. This paper will use a reduced-order bicycle model,
originally presented in [10], that will be described in Sec. 3
for control of a needle in 3D.

The kinematic bicycle model, and the underlying con-
stant curvature assumption, has been used in the litera-
ture for needle trajectory control in both 2D and 3D sce-

2



March 15, 2018 15:19 EventTrigger˙Final

narios. The work of [11] presented an ultrasound-image-
guided needle controller in 2D which merged a mechanical
model of needle deflection with the constant curvature con-
straint for trajectory planning. Through using a local 2D
in-plane version of the bicycle model, the researchers [12]
and [13] implemented controllers to steer a needle in 3D
in the presence of tissue motion. A stochastic controller,
modeling tissue through Markov motion uncertainty, was
presented by [14] and used the bicycle model and image
feedback for needle-tip path planning and steering while
allowing for tissue motion. The constant curvature model
has also been used in 3D with [15] and [16] fitting param-
eters of the bicycle model to estimate mechanical needle
properties. One minor limitation present in this literature
is that the needle path-planning and control requires the
kinematic bicycle model to solved through numerical in-
tegration, which may require the planning be done in an
offline manner. The analytic solution, to be presented in
this paper, for a reduced-order version bicycle model is
shown to be more computationally efficient than numerical-
integration and allows for both path-planning and control
to be done in real-time.

Event-triggering is a modern control technique, ini-
tially used for distributed control systems, that uses dis-
crete events as a trigger to initiate a control action for both
continuous-time and discrete-time systems [17]. Event-
triggered control theory presents a cohesive framework to
design, and analyze the performance of, aperiodic con-
trollers, where stability of a distributed system can be
proven using only knowledge of previous control actions
and an estimate of the system state [18]. Using the ideas
presented in event-triggered control theory, we will derive
an analytic solution to a reduced order bicycle model in-
corporating discrete changes to the needle rotation veloc-
ity (the control output) that are triggered based on in-
serted needle length (during manual needle insertion by a
clinician). One contribution of the controller presented in
this paper is that deflection minimization performance can
be tuned, through increasing or decreasing the number of
event-trigger points, between the weak-regulation and reg-
ulation paradigms. The number of event-trigger points is
directly related to the total number of needle rotations
performed by the controller. Thus, by tuning the num-
ber of event-trigger points, tissue trauma can be reduced
while keeping the needle-tip deflection during insertion at
an acceptable level. The event-triggered presented in this
paper can be tuned between regulation type performance,
for a procedure such as prostate brachytherapy, or weak-
regulation performance, for biopsy procedures.

To minimize the needle-tip deflection during insertion,
the event-triggered controller requires an estimate of the
initial state of the reduced-order bicycle model. This state
estimate will be found by tracking the needle-tip path in
ultrasound images. Needle tracking, or segmentation, has
been performed in the literature on 3D ultrasound volumes
but this paper focuses strictly on needle tracking in 2D im-
ages to be more representative of a current clinical setup.
In 2D ultrasound images, the needle is typically imaged ei-

ther in the axial plane, a plane orthogonal to the direction
of needle insertion (see Fig. 3), or the sagittal plane, a plane
containing the needle and parallel to the direction of needle
insertion. In sagittal plane ultrasound images, the needle
appears as a distinct white blob or thick curved line, and
segmentation can be performed through the use of Gabor
Filtering [19] along with the Hough Transform for straight
needles [20] and curved needles [21].

In axial plane ultrasound images, (see Fig. 1), it is dif-
ficult to distinguish the needle from background noise due
to the axial ultrasound image only showing a small cross-
section of the needle. Segmentation of the needle in ax-
ial plane ultrasound images is, therefore, more challenging
than in sagittal plane images. To compensate, axial image
segmentation typically combines a needle shape model and
a tracking framework, to use information across a series of
axial image slices, and measure the needle tip path or po-
sition [12,14,22]. These tracking algorithms have also been
implemented to provide needle tip position feedback for
semi-autonomous [23] and fully autonomous needle steer-
ing systems [24]. Our work, in [25], used template matching
to track the location of the needle tip and used a particle
filter to estimate the parameters of a 2D kinematic bicycle
model for real-time deflection prediction. This work will use
that same image processing technique but will use a genetic
algorithm for real-time parameter estimation.

3. Reduced-order kinematic bicycle model

The 5-DoF reduced-order non-holonomic bicycle model
used for needle deflection control in this paper was derived
in [10] for needle steering based on feedback-linearization
using a Frenet-Serret frame. This reduced-order model is
similar to the 6-DoF bicycle model commonly seen in the
literature [8, 9], but reformulates the system’s nonholo-
nomic constraints such that only five states are required
fully describe the 3D motion of the needle. At the begin-
ning of needle insertion, a frame attached to the needle tip,
{T} is coincident with a base frame {0}. The frame {0} is
fixed at the point of insertion into tissue; see Fig. 3, with
the axes of this frame defined as [ 0x′, 0y′, 0z′]. By conven-
tion the position and orientation of the tip-attached frame
{T}, and thus the needle tip, are measured relative to the
frame {0}. The axes of the tip-attached frame {T} are la-
beled [ Tx′, T y′, T z′]. The rotation of frame {T}, about the
T z′ − T y′ − Tx′ axes is denoted by the angles ψ, θ, φ.

The insertion velocity, v ∈ R, applied to the base of
the needle during insertion translates the tip-attached

frame forward along its local Tx′-axis, with the inserted
length of the needle defined to be `. The needle tip-path

curvature, modeled by a constant κ, forces the
tip-attached frame to rotate slowly about its T y′-axis

during insertion, slowly increasing the rotation angle θ,
where {θ ∈ R : 0 ≤ θ < π}. The constant κ is defined as

the inverse of the radius of curvature of the needle, R, i.e.
κ = 1

R , where {R ∈ R : 0 < R}.
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Fig. 3. Coordinate system used for kinematic bicycle model,
showing TRUS probe, axial imaging plane, control input and
needle base, and guide template.

The needle is modeled as being torsionally stiff; for a
given rotational velocity applied to the needle base, w ∈ R,
an equal rotation velocity at the needle tip will be pro-
duced about the Tx′-axis. The angle of the needle bevel is
then equivalent to φ, the orientation of the T y′-axis, where
{φ ∈ R : π ≤ φ < π}. It can be shown that there is no
input, or combination of inputs, which can cause rotation
about the T z′-axis and so the angle ψ can be removed from
the system. The states within the system are then defined
as

.
X = [x, y, z, θ, φ]. Readers are urged to look at [10] for

further details and proofs of accessibility and controllability
of this model.

The original reduced-order model was defined such
that the state-space was a differential equation with respect
to time and v was explicitly an input. Motivated by [26],
the model can be transformed by noting that v = d`

dt and
thus dividing out the control variable v, resulting in

.
X =


.
x.
y.
z.
θ.
φ

 =


cos(θ)

sin(θ) cos(φ)
sin(θ) sin(φ)

κ
0

+


0
0
0
0
1

w (1)

where we will now use dot notation to indicate a
derivative with respect to needle insertion length `,.

X = dX
d` . Of note, the control input w is now a rotation

velocity with respect to insertion length, w = dφ
d` , with

units of rad/mm. In this paper, the reduced-order model
will be used for control, covered in Sec. 4, with the model
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Fig. 4. Control diagram showing semi-autonomous insertion,
needle tip tracking in ultrasound images, model fitting, and
event-triggered controller.

parameters found in real-time through ultrasound image
processing, discussed in Sec. 6.

4. Event-triggered Control

Needle steering in a surgeon-in-the-loop context requires
a control algorithm that is both real-time and robust to
changes in the needle insertion velocity. This section will
present an analytic solution to the 5-DoF reduced order
model and the implementation of an event-triggered con-
troller for needle steering. The control loop for the system
is diagrammed in Fig. 4. The derived analytic solution of
the 5-DoF reduced-order model allows for fast simulation
of needle insertion and is ideal in the sense that it does not
require a trade-off between numerical accuracy and compu-
tational time, as PDE solvers or discrete time-step variants
of the kinematic bicycle model typically do.

To implement the 5-DoF bicycle model in a practical
control system, while attempting to limit tissue damage,
the controller will be designed to reduce needle deflection
through slowly varying the needle bevel angle φ. Here, in a
manner analogous to the clinical practice, the target loca-
tion is defined to lie at a specified depth on the 0x′-axis, in
line with the direction of insertion. Thus the needle model
gives the needle-tip deflection in both the 0y′ and 0z′ axes.
To solve the closed-loop system equations, based on event-
trigger theory, we constrain the output of the controller, ω,
such that it only changes once the insertion length of the
needle passes the event-trigger point. The method to opti-
mize the locations of the event-trigger points, with respect
to insertion length, is given in Sec. 4. For this controller,
the number of event-trigger points can be chosen empiri-
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cally to provide the desired controller performance. Using
a small number of event-trigger points will minimize needle
rotation velocity at the cost of greater needle-tip deflection
away from the 0x′-axis during insertion. Using more event-
trigger points will minimize needle-tip deflection during in-
sertion but will require larger needle rotation velocities.

From the state-space representation of the model, in
(1), we start by evaluating the differential state equation

.
θ

to derive θ(`), noting that this state is independent of the

control input
.
φ = ω. The needle insertion depth is denoted

by `, with the needle being inserted through the guide tem-
plate along the 0x′-axis. The initial insertion length is then
given as ` = 0 with a desired final insertion length defined
as ` = `f , where `f > 0. From (1) we can see that

.
κ = 0,

thus the solution to this first-order differential equation is

θ(`) =

∫ `

0

.
θ(`) d` =

∫ `

0

κ = κ`
∣∣∣`
0

+ θ0 (2)

where θ0 is the initial value of θ(`) at the point of inser-
tion, i.e. θ0 = θ(0). With the use of the ultrasound image
processing the value of θ0 can be found. Thus, using this,
we can find the state of the system θ(`) to be

θ(`) = κ`+ θ0 (3)

where {` ∈ R : 0 ≤ ` ≤ `f}. With the solution to θ(`)
known, the system state x(`) can then be found, such that

x(`) =

∫ `

0

cos(θ) d` =

∫ `

0

cos(κ`) d`

x(`) =
sin(κ`+ θ0)

κ

∣∣∣`
0

+ x0

(4)

where, in an identical manner to (3), the limit of integra-
tion is the current insertion depth `. From the definition
of the base frame {0}, such that it is located at the initial
point of insertion, we have x(0) ≡ 0, thus x0 = 0 and x(`)
is then given as

x(`) =
sin(κ`+ θ0)

κ
− sin(θ0)

κ
(5)

throughout the insertion interval 0 ≤ ` ≤ `f .
With solutions to both θ(`) and x(`) derived, the next

step is to solve for y(`) and z(`). Unlike θ(`) and x(`), our

control input
.
φ(`) clearly effects the response of y(`) and

z(`). To formulate the response of the system using event-
trigger control points we consider the total insertion length
to be divided into n sections of arbitrary length where,
through controller design,

.
φ(`) is constant in each section

(i.e. use of zero-order hold). Using subscript notation, we
will define the space of l = {`0 : `1, `1 : `2, ..., `n−1 : `n}.
Here `0 = 0, and `n is our target insertion length `f . We

will allow the value of
.
φi to change by some finite amount at

the event points `i between each segment. This then defines
our event-triggers as these insertion depth points `i with a
corresponding control output after the trigger as ω =

.
φi;

see Fig. 5.
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Fig. 5. Event-trigger points partitioning space into sections
and zero-order hold on control signal between adjacent points.

The notation used here and throughout the following
sections assigns particular meaning to the subscripts used,
when used in a function such as x(`) it is implied that `
can be any value, such that ` ∈ R : 0 ≤ ` ≤ `f . In contrast,
when a subscript is used, such as φ(`i), this indicates the
value of φ() at the specific depth `i, with corresponding

event-trigger point i. The subscript notion
.
φi is used to

indicate a control signal value that remains constant after
the event point i up until the next event point i+ 1.

With these definitions, we can evaluate the value of
φ(`) for the entire insertion through summation of piece-
wise integrals over section, such that

φ(`) =

n−1∑
i=0

f iφ(`i, `) + φ0 (6)

where

f iφ(`i, `) =


∫ `
`i

.
φ(`i) d` if `i 6 ` < `i+1∫ `i+1

`i

.
φ(`i) d` if `i+1 6 `

0 if ` < `i

=


.
φ(`i) · (`− `i) if `i 6 l < `i+1

.
φ(`i) · (`i+1 − `i) if `i+1 6 `

0 if ` < `i

(7)

given the initial needle bevel angle of φ(0) ≡ φ0.
The solution to y(`) is given by

y(`) =
n−1∑
i=0

f iy(`i, φ(`), `) (8)

where the piece-wise solution for the needle deflection dur-
ing each interval, f iy(`i, φ(`), `), is solved using equation (7)
for φ(`) in (10). From the initial placement of frame {T}
the deflection of the needle at ` = 0 is defined to be zero,
such that y(0) = 0.

Similarly the corresponding solution to z(`) is then

z(`) =
n−1∑
i=0

f iz(`i, φ(`), `) (9)
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where the piece-wise solution for the needle deflection dur-
ing each interval, f iz(`i, φ(`), `), is given in (11) where
z(0) = 0. Thus, we now have analytic solutions for y(`)
and z(`) giving the deflection of the needle tip over the en-
tire insertion without any need for numerical integration.
Using these equations to calculate the needle deflection, the
controller will be implemented by optimizing the location
of the event-trigger points, i.e. their respective depths, and
the value of the zero-order hold rotation velocity after each
trigger.

Note in (10) and (11) if
.

φ(`i) = ±κ, from the defini-
tion in (7), it indicates that φ(`) = κ`+ φ(`i) in the region
`i 6 ` < `i+1 such that one of the terms κ`+ θ0± φ(`) will
reduce to θ0 ± φ(`i). Thus the corresponding sin() or cos()

function will be a constant over that interval. Being as
.
φi

is the control output the optimization routine can also be
constrained such that

.
φ(`i) 6= ±κ.

4.1. Insertion simulation computational
performance

As stated, one of the advantages of the analytic solution
is its reduced computational complexity when compared
to the discrete step simulation of the reduced-order kine-
matic bicycle model. Due to the nonholonomic constraints
in the system and the single control input ω, the needle-
tip cannot move in an arbitrary direction. If given a set

f iy(`i, φ(`), `) =


∫ `
`i

sin(θ(`)) cos(φ(`)) d` if `i 6 ` < `i+1∫ `i+1

`i
sin(θ(`)) cos(φ(`)) d` if `i+1 6 `

0 if ` < `i

=



∫ `

`i

sin(θ(`) + φ(`)) + sin(θ(`)− φ(`))

2
d` if `i 6 ` < `i+1∫ `i+1

`i

sin(θ(`) + φ(`)) + sin(θ(`)− φ(`))

2
d` if `i+1 6 `

0 if ` < `i

=



−1

2

(
cos(κ`+ θ0 + φ(`))

κ+
.
φ(`i)

+
cos(κ`+ θ0 − φ(`))

κ−
.
φ(`i)

)∣∣∣∣∣
`

`i

if `i 6 ` < `i+1

−1

2

(
cos(κ`+ θ0 + φ(`))

κ+
.
φ(`i)

+
cos(κ`+ θ0 − φ(`))

κ−
.
φ(`i)

)∣∣∣∣∣
`i+1

`i

if `i+1 6 `

0 if ` < `i

(10)

f iz(`i, φ(`), `) =


∫ `
`i

sin(θ(`)) sin(φ(`)) d` if `i 6 ` < `i+1∫ `i+1

`i
sin(θ(`)) sin(φ(`)) d` if `i+1 6 `

0 if ` < `i

=



∫ `

`i

cos(θ(`) + φ(`))− cos(θ(`)− φ(`))

2
d` if `i 6 ` < `i+1∫ `i+1

`i

cos(θ(`) + φ(`))− cos(θ(`)− φ(`))

2
d` if `i+1 6 `

0 if ` < `i

=



1

2

(
sin(κ`+ θ0 + φ(`))

κ+
.
φ(`i)

− sin(κ`+ θ0 − φ(`))

κ−
.
φ(`i)

)∣∣∣∣∣
`

`i

if `i 6 ` < `i+1

1

2

(
sin(κ`+ θ0 − φ(`))

κ+
.
φ(`i)

− sin(κ`+ θ0 − φ(`))

κ−
.
φ(`i)

)∣∣∣∣∣
`i+1

`i

if `i+1 6 `

0 if ` < `i

(11)
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of control actions, for instance, the event-triggering points
and rotation values, then the needle-tip position through-
out insertion can be found through simulation. The inverse
operation, finding the control actions that will lead to the
needle-tip passing through a desired point or set of points,
is not straightforward and requires the use of an optimiza-
tion routine, like the one covered in Sec. 4.2. In general,
these optimization routines simulate the insertion process
many times while modifying the control actions taken dur-
ing insertion to find a set of control actions which result in
a needle-tip path that passes through the target point(s).
In the context of needle steering, where the target location
is located at the final insertion depth, then the entire inser-
tion must then be simulated which can have a significant
computational cost. This section will give a brief overview
of how the reduced-order model can be simulated versus
the event-triggered model. For both of these methods, the
number of computational steps will be shown and a theo-
retical performance comparison will be made.

Normally, to simulate a needle insertion using the
reduced-order formulation of the needle model, given in (1),
the Euler method is used to solve the state-space differen-
tial equation at each time step via the discrete-step form of
the equation XK+1 = XK + ∂

∂xf(XK)∆`+ ωK . Here K is
the discrete-step depth during the simulation and wK is the
control action per step, where ωK = ω∆`. This expansion
results in the following discrete system

XK+1 =


xK
yK
zK
θK
φK

+


cos(θK)

sin(θK) cos(φK)
sin(θK) sin(φK)

κ
0

∆`+


0
0
0
0
1

wK (12)

where the state within the system XK consists of the val-
ues of XK = [xK , yK , zK , θK , φK ] at the discrete insertion
depth K. To evaluate the computational cost of both the
discrete-time reduced-order model and the analytic solution
used for the event-triggered model the cost of each simula-
tion step will be found. For both algorithms, the step-wise
computational cost is defined to be the number of math-
ematical operations required, defined as ncalc. These algo-
rithms will calculate the needle tip deflection at a desired
final insertion depth. Here, we define mathematical opera-
tions to be the functions cos(), sin(), add(), sub(), mul(),
div() and will ignore any computations with respect to the
loop counters. As an example, in line 4 of Alg. 4.1, the cal-
culation yK+1 ← sin(θK) ·cos(φK) ·∆`+yK would be com-
puted as yK+1 = add(yK ,mul(∆`,mul(sin(θK), cos(φK))))
requiring 5 calculations, thus ncalc = 5 as indicated.

For the discrete-step reduced-order model, each step
updates the states of the system model using the Eu-
ler method above (12). Starting at the initial simulation
step, K = 0, the initial state of the system is defined as
X0 = [x0, y0, z0, θ0, φ0]. The simulation proceeds until the
desired final insertion step calculated, defining the last time
simulation step to be Kend. The algorithm for simulating
the discrete-time needle can then be described as follows,
with the symbols ‘ · ’ and ‘ / ’ used to indicate multiplica-

tion and division respectively.

Algorithm 4.1. Discrete-time step simulation

Require: X0,∆`, ωk, κ
1: K = 0
2: while K < Kend do
3: xK+1 ← cos(θK) ·∆`+ xK . ncalc = 3
4: yK+1 ← sin(θK) · cos(φK) ·∆`+ yK . ncalc = 5
5: zK+1 ← sin(θK) · sin(φK) ·∆`+ zK . ncalc = 5
6: θK+1 ← κ ·∆`+ θK . ncalc = 2
7: φK+1 ← φK + ωK . ncalc = 2
8: K ← K + 1

From inspection, the computation cost of each simulation
step K is ncalc = 17. Assuming the simulation consists of
d simulation steps discretized along the insertion depth a
total computational complexity of ncalc = 17d will result,
which grows linearly with the number of insertion steps to
be simulated.

The analytic solution for the event-triggered needle
model allows for a computational speed increase for inser-
tion simulation. Using the results of equations (10) and
(11) we can simulate the entire needle insertion in a more
efficient manner. The model can be evaluated by calculat-
ing the changes to the needle state at the insertion depths
corresponding to the chosen number of event points, n in-
cluding the initial and final insertion depths, defined above
as l0 and ln. As above, our control signal ω is held constant
between event-trigger points giving a zero-order hold for.
φ(`i).

For brevity, we will define the state of the needle to
be Xi = [xi, yi, zi, θi, φi] at a depth `i corresponding to the
event-trigger point i. At the depth of each event-trigger
point, `i, the rotation speed and direction of the needle
are changed; here we indicate the velocity after the event
point as

.
φi. Again we used subscript notation from Sec 4,

where we defined our space ` to be broken into sections,
such that ` = {`0 : `1, `1 : `2, ..., `n−1 : `n}. The initial
state of the needle, at the point of insertion, is then de-
fined as X0 = [x0, y0, z0, θ0, φ0]. The final insertion state
of the needle is denoted as Xn = [xn, yn, zn, θn, φn]. The
algorithm for simulating the needle is then the following.

7
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Algorithm 4.2. Event-triggered needle simulation

Require: X0,
.
φi, κ

1: i = 0
2: while i < n do
3: θi+1 ← κ · `i+1 + θi . ncalc = 2

4: φi+1 ← φi +
.
φi · (li+1 − li) . ncalc = 3

5: xi+1 ← (sin(θi+1)− sin(θ0))/κ . ncalc = 4

Steps to calculate y`i+1

6: yp1 ← cos(θi + φi)/(κ+
.
φi) . ncalc = 4

7: yp2 ← cos(θi − φi)/(κ−
.
φi) . ncalc = 4

8: yp3 ← cos(θi+1 + φi+1)/(κ+
.
φi+1) . ncalc = 4

9: yp4 ← cos(θi+1 − φi+1)/(κ−
.
φi+1) . ncalc = 4

10: yi+1 ← (−yp3 − yp4 + yp1 + yp2)/2 . ncalc = 4

Steps to calculate z`i+1

11: zp1 ← sin(θi + φi)/(κ+
.
φi) . ncalc = 4

12: zp2 ← sin(θi − φi)/(κ−
.
φi) . ncalc = 4

13: zp3 ← sin(θi+1 + φi+1)/(κ+
.
φi+1) . ncalc = 4

14: zp4 ← sin(θi+1 − φi+1)/(κ−
.
φi+1) . ncalc = 4

15: zi+1 ← (zp3 + zp4 − zp1 − zp2)/2 . ncalc = 4
16: `← `+ 1

For each event point, we then have a computational cost
of ncalc = 49 for calculating the deflection in both the y
and z axis. For an insertion to a length `n, where there
are n − 1 control actions taken, there will be a total of
n steps to calculate, thus the computational complexity is
then ncalc = 49(n) which also grows linearly, but with re-
spect to the number of rotations only. Even though the
per-event computation cost is higher, simulating a small
number of rotations during the insertion will be at least an
order of magnitude smaller that than the cost of simulating
the discrete-time system.

One of the primary disadvantages is that the discrete-
time simulation accuracy is dependent on the number of
steps used, with accuracy increasing with the number of
steps. Empirically, the insertion depth must be discredited
into steps of 0.5 mm or smaller to result in a reasonable
simulation accuracy at the final insertion depth, such that
the 120 mm insertion depth used in this paper requires
241 or more simulation steps. For the implementation of
the controller used in Sec. 6.2, for 3 event-triggered ro-
tations, the analytic solution has an absolute cost of 196
operations whereas the discrete-time step solution would
require 4097 math operations to fully simulate each inser-
tion. The analytic event-mode algorithm allows a full 17
simulations to be run in the same amount of time as a
single insertion simulation through the discrete-time step
method. This computational speed up implies that the con-
trol algorithms built on this analytic solution can be imple-
mented in real-time even in low-end hardware. In addition,
the analytic solution does not use any approximation of
the underlying differential equations and therefore, offers
optimal accuracy without requiring additional simulation
points, providing one of the contributions of this paper.

4.2. Event-triggered control optimization

The analytic solution of the reduced-order kinematic model
facilitates the development of an online optimization rou-
tine for the event-triggered controller. This routine will be
designed to achieve the stated goal of both minimizing nee-
dle deflection and total number of needle rotations. Mini-
mizing needle deflection will be achieved through optimiz-
ing the location of event-trigger points, along

.
φ(`), and as-

sociated changes in needle rotation velocity at those points.
With the target location defined to be on the 0x′-axis, par-
allel to the direction of needle insertion, needle deflection
will be defined as the Euclidean distance

e(`) =
√
y(`)2 + z(`)2 (13)

for a particular insertion depth `. With this definition of
needle deflection, a cost function used for minimizing nee-
dle deflection can be given as

L = min
(
α
√
y(`f )2 + z(`f )2 + β max

(√
y(`)2 + z(`)2

))
(14)

where α and β are weighting constants and
max(

√
y(`)2 + z(`)2) represents the maximum deflection

during insertion, ` ∈ {0 : `f}. This allows the controller to
be tuned from weak regulation, where α > 0 and β = 0,
towards the deflection minimization performance of a regu-
lating controller when α = 0 and β > 0. The controller can
also implement a weighted minimization of both objectives
when α, β > 0.

With the needle steering control actions being per-
formed through event-triggering, the online optimization is
implemented through finding event points, `i, along with
the required change in needle rotation velocity, ∆

.
φi, at

those points which minimize the cost. For this controller
implementation, the number of event points must be cho-
sen before the insertion. This results in a segmentation of
the insertion space ` = {`0 : `1, `1 : `2, ..., `n−1 : `n} with
each segment having a desired needle base rotation veloc-
ity ω =

.
φ(`i), where {i ∈ 0, 1, ..., n − 1}. As a first step in

optimization, the result given in (7) is rearranged to limit
the total change of the value of φ(`) in each segment. This
change in φ(`) in each segment is limited by a constant

∆
.
φi, and is used in

|
.

φ(`i)| 6
(`i+1 − `i)

∆
.
φi

where `i 6 ` < `i+1 (15)

so that the value of
.
φi for each segment can be limited.

Using (15) allows tissue trauma to be limited by a

choice of ∆
.
φi independently of the needle deflection cost

function. For this paper, the value of ∆φi was empirically
chosen to be π, such that the total number of rotations is
directly limited to be equal or less than half of the number
of event points chosen. Using this limit, the cost function
minimization now is independent of any tissue effects for a
given number of event-trigger points.

The minimization of the cost function is done by a ge-
netic algorithm [27]. Here a traditional genetic algorithm
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was modified to have performance closer to simulated an-
nealing by implementing a large number of cross-overs and
large uniform random distribution used to seed each gener-
ation. The algorithm was “greedy” in that it returned only
the single best-performing individual which was then prop-
agated and compared and crossed-over with new individu-
als created from the uniform distribution. The two needle
model parameters, found through ultrasound imaging, θ0
and κ were updated at the beginning of each iteration. The
number of individuals tested at each iteration was held con-
stant, and the number of cross-over individuals created was
chosen to be equal to the number of regular individuals.

Each individual consisted of Ci coupled event-trigger
points and control signal values < `i,

.
φi >, where i =

1, 2...Ci to describe the control actions for a complete in-
sertion, the cross-overs were made by swapping a ran-
dom number of coupled values between two individuals.
The cross-over and random individual generator were con-
strained such that the algorithm only optimized control
actions which could be taken in the future as the needle
is inserted deeper into tissue. To do this, the values of
< `i,

.
φi > from the best individual of the previous gen-

eration were used for any point i where the current inser-
tion depth was greater than `i. The result from the simu-
lation of each individual was multiplied by α and stored,
as the simulation returns the needle-tip deflection at the
target insertion depth,

√
y(`f )2 + z(`f )2, and incorporates

the minimal rotation constraint.
To calculate the second component of the cost func-

tion βmax
(√

y(`)2 + z(`)2
)

, each pair of adjacent trigger-

points in the individual were used to check if the values of.
y(`) or

.
z(`), defined in (1), had crossed zero in that sec-

tion. This zero crossing implies the needle deflection was
at a maximum or minima. The values of y(`) and z(`)
at the points where

.
y(`) or

.
z(`) are equal to zero were

evaluated by inserting the depth, `, where the derivatives
are zero into equations (10) and (11). The largest result

of
√
y(`)2 + z(`)2 across all of the zero-crossing points was

multiplied by β and used to cacluate that individual’s score
with respect to the cost function, if there was no zero-
crossing in

.
y(`) or

.
z(`) then the largest deflection is the

final-tip deflection, and this was multiplied by β and used
instead. The average computation time of the controller
optimization routine during the insertion experiments is
given in Table 3 where each generation of the genetic algo-
rithm consisted of 60 individuals, 30 of which were created
through cross-overs.

5. Experimental Setup

During the experiments, ultrasound images are captured
and processed in real-time to return the needle deflection.
The ultrasound transducer, see Fig. 8, was mounted on a
motorized linear rail which moved the transducer such that
the needle-tip was always contained in the imaging plane.
The ultrasound machine used for the experiments was an

Ultrasonix Touch with a 4DL14-5/38 Linear 4D transducer
(Ultrasonix Corp, Richmond, BC, Canada). For these ex-
periments, only the 2D imaging functionality of the ultra-
sound probe was used. The needle was controlled during
insertion using a hand-held steering device, Fig 8, origi-
nally developed in [7]. Optical tracking markers were placed
on the hand-held device and a Micron Tracker (HX60 from
Claron Technology Inc., Toronto, ON, Canada) was used to
measure the length of the needle inserted into tissue. For
the phantom tissue insertions, the needles used were stan-
dard 18-gauge 200 mm prostate seeding needles (Eckert &
Ziegler BEBIG GmbH, Berlin, Germany). The image pro-
cessing, controller optimization, and event-triggered con-
troller were all programmed in Matlab 2016a (The Math-
works Inc, Natwick, MA, USA) and ran using the Simulink
Real-Time environment, on an Intel Core i7-3930K running
at 3.20 GHz (Intel Corporation, Santa Clara, CA, USA).

6. Ultrasound Image Processing

For each of the insertion experiments, 2D ultrasound
image slices are processed in real-time at a frame-rate of

20 Hz. The 2D functionality of the probe, rather than
3D/4D functionality, was used to replicate the imaging

capabilities of the transrectal ultrasound probes (TRUS)
used clinically. As shown in Fig. 8, during needle insertion
the ultrasound probe is translated along the direction of
needle insertion, the 0x′-axis, such that the needle tip is

always captured in the ultrasound image slice. These
ultrasound images are processed in real-time using an

altered version of the algorithm presented in [25] to track
the needle-tip deflection. The images are captured at

discrete time intervals, corresponding to the 20 Hz frame
rate of the ultrasound machine, with the imaging time

step denoted by kUS . With the ultrasound probe is
moving along the 0x′-axis, the image frame,

corresponding to the 0y′ and 0z′ axes, captures the needle
tip deflection (with respect to the target 0x′-axis). The

pixel coordinates of the image are indicated by py and pz
and the pixel intensity of the image, at time step kUS , is
defined as IkUS

(py, pz). The insertion depth of the needle
was also measured for each of the ultrasound images,

defined as `kUS
, and this information is used along with

the tracked needle-tip location to fit parameters of the
reduced-order bicycle model, to be covered in Sec. 6.1.
The image processing routine for each frame consists of

two stages which are shown in Fig. 6. The first stage is a
preprocessing stage that enhances the visibility of the

needle tip to make it more distinct from the tissue
background in the image and to make the tracking

invariant to changes in the needle tip pixel intensity. The
second stage uses template matching to perform the

needle tip tracking. At the beginning of insertion, a user
clicks on the needle tip in the first frame of the ultrasound
image and the image enhancement and tracking are done

using a region-of-interest (ROI) around this point.

9
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Current Ultrasound Frame Variance Image 

Previous Variance
Image Template

Patch           

Fig. 6. Ultrasound image processing showing original input im-
age, variance image, template patch, and resulting needle-tip
location (indicated by red dot).

For preprocessing, the needle-tip visibility is improved by
the creation of a variance image of the ROI. This variance
image, when used for tracking, is similar in theory to the
sum of conditional variance method presented in [28]. To
calculate the variance image, statistics of the pixel intensity
in the ROI are used, given

µkUS
=

1

npx

npx∑
j=1

IkUS
(pyj , pzj)

σkUS
=

1

npx

√√√√npx∑
j=1

(IkUS
(pyj , pzj)− µkUS

)
2

(16)

where npx is the number of pixels in the ROI, pyj and pzj
are the pixel locations within the ROI, µkUS

and σkUS
are

the resulting mean and standard deviation of the pixel in-
tensities. The variance image is then calculated as

VkUS
(pyj , pzj) =

|IkUS
(pyj , pzj)− µkUS

|
σkUS

(17)

where VkUS
is the resulting variance image intensity for

each pixel pyj , pzj in the ROI. This results in an increase
of contrast between the needle and the background tissue.

To perform the needle tip tracking, a method similar
to [29] is used, under the assumption that the needle-tip
location only changes by a small amount between sub-
sequent ultrasound images due to the mechanical char-
acteristics of the needle. Needle tip tracking is done us-
ing sum-absolute-difference template matching between a
small patch of the variance image in the previous frame,
Pk−1US

⊂ Vk−1US
(pyj , pzj), centered around the needle tip,

pyTIP and pzTIP , and the region of interest in the current
frame VkUS

(pyj , pzj). Due to the use of variance images,
this sum-absolute-difference template matching is equiva-
lent to preforming normalized cross-correlation based tem-

plate matching. The center position of the best template
match is the needle-tip position, pyTIP |kUS

and pzTIP |kUS
,

which is converted into a metric deflection, in mm, in the
0y′ and 0z′ axis. The metric needle tip deflections for each
image frame are denoted by yUS(`kUS

) and zUS(`kUS),
where the pixel-to-millimeter ratios were measured experi-
mentally with a ratio 0.10 mm

px for the 0y′-axis and 0.12 mm
px

for the 0z′-axis. The tracked needle tip is then used for es-
timation of θ0 and κ during the needle insertion. For the
experimental results, presented in Sec. 6.2 with the image
processing time given in Table. 3, the size of the region-
of-interest was a 129px×129px square and the size of the
needle-tip template was 65px×65px.

6.1. Image based parameter fitting

Two of the parameters of the reduced-order bicycle, θ0 and
κ are required for the event-trigger control optimization.
These parameters correspond to the initial angle of nee-
dle insertion and the (inverse of) the radius of curvature.
The ultrasound processing algorithm returns the location
of the needle tip and the corresponding insertion depth,
resulting in the `kUS

, yUS(`kUS
), zUS(`kUS

) in metric coor-
dinates. During insertion, the location of the needle-tip is
recorded for every frame, and once the needle has been in-
serted past a depth of 10 mm, the values of θ0 and κ are
estimated, with an updated estimate returned with every
frame. Here the value of 10 mm was chosen empirically to
allow for a small amount of needle deflection to occur before
estimation such that the value of κ can be measured. Note
that the values of θ0 and κ are defined to remain constant
for a single insertion but may change from insertion to in-
sertion. During insertion, as the parameter estimates are
updated, the current best estimate is used in the controller
optimization routine. The controller optimization routine
simulates the needle insertion using previous control ac-
tions (if any event-trigger depths have been passed) on the
current system estimate, thus keeping θ0 and κ constant for
that insertion simulation. The simulation of the needle pa-
rameter fitting algorithm, given at the end of this section,
shows that the estimate settles to the correct values very
quickly, within 40 mm of needle insertion, so in practice,
the model parameters being used for control optimization
remain essentially constant after that depth.

As with the optimization for the event triggered con-
troller, the parameter fitting for the model was done us-
ing a modified genetic algorithm. The same percentage of
cross-overs and generation of random individuals to refill
the population per iteration were used. The contrast to the
control optimization algorithm, this algorithm the best 30%
of the population was propagated forward at each iteration.
Another difference was the way that the individuals were
constructed, each individual consisted only of a single set
of coupled values < θ̃0, κ̃ >. Due the limit on θ(`) in the
model, {θ ∈ R : 0 ≤ θ < π}, and the use of the guide tem-
plate during insertion which mechanically constrains the
needle during insertion into tissue such that θ0 is small,

10
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the value of θ̃0 was limited in the algorithm to the range
0 rad ≤ θ̃0 ≤ 0.174 rad (0.174 rad ≈ 10◦). The value of κ̃
was also constrained to the range 1

10000 ≤ κ̃ ≤ 1
500 which

is larger range than required from data gathered from pre-
vious insertion experiments and the literature. To solve for
these parameters, the needle path is simulated for a the set
of initial values < θ̃0, κ̃ > resulting in deflections ỹ(`) and
z̃(`). The best individual is chosen such that it minimizes
the following cost function

LFit = min
<θ̃0,κ̃>

n∑
j=1

√
[ỹ(`j)− yUS(`j)]

2
+ [z̃(`j)− zUS(`j)]

2

n

(18)
where the score LFit is minimized simulated needle tip path
is closest to the observed tip path at measurement test
points j = 1, 2, ..., n. Multiple measurement points j are
used, rather than just the current needle-tip location, to
make the parameter estimation routine more robust to im-
age noise and occlusion based needle-tip localization errors,
which occur intermittently during needle-tip tracking. For
this implementation, these points were chosen to measure
the needle location a equidistant insertion depths spanning
from the insertion point, ` = 0, to the current needle-tip
point `Img. For the experimental results 11 test points were
empirically determined to be sufficient for parameter fit-
ting. To convert from `kUS

to x(`kUS
), (4) was inverted

using each individual’s κ̃. Finally, for each incoming frame
an iteration of the genetic algorithm as run, where the sys-
tem was simulated using the analytic solution given in Sec.
4, incorporating the control actions that had been taken
up to the current insertion depth. The LFit was evaluated
using the resulting needle-tip path from simulation and the
measured needle-tip locations from the frames closest to
each j test point depth. The < θ̃0, κ̃ > of the best perform-
ing individual was returned as the values θ0 and κ used
for the control optimization. The computation time of the
parameter estimation routine is given in Table. 3 where 50
individuals were used for each generation.

0

0.50

0.25

20 40 80 100

Fig. 7. Needle parameter estimitation score with respect to
insertion depth.

The needle parameter optimization was validated in
simulation by comparing the needle-tip path of a sim-
ulated insertion with known < θ0, κ > values to the
needle-tip path predicted with the estimated parameters
< θ̃0, κ̃ > from the genetic algorithm. For the validation,
10000 insertion were simulated with uniformly random se-
lections of θ0 and κ0, where the value of θ0 was tested
in the range 0 ≤ θ0 ≤ π

4 and κ was tested in the range

1
10000 ≤ κ ≤ 1

500 . To simulate a “measured” needle-tip
path, zero-mean Gaussian noise was added to the simu-
lated needle deflection (derived from equations (10) and
(11), such that yUS(`) = y(`) + N and zUS(`) = z(`) + N

with N ∼ N (0, 0.5). The parameters < θ̃0, κ̃ > were esti-
mated using simulated values with ` being incremented in
1.0 mm steps. The plot of the average estimator score, LFit,
is given in Fig. 7 with the error bars showing the standard
deviation of the estimator score across the 10000 simula-
tions. These results show that the parameter fitting is able
to estimate the needle shape with an mean-squared error
of 0.1 mm after the needle has been inserted to a depth of
40 mm.

Handheld Needle
Steering Device

Ultrasound
Probe

Motion Tracker
Markers

Phantom
Tissue

Linear
Stage

Fig. 8. Experimental setup with ultrasound probe, hand-held
needle insertion device, and tissue phantom.

6.2. Experimental Results

Three different tissue phantoms were fabricated to eval-
uate the performance of the needle steering system. Two
non-homogeneous tissue phantoms were made from bovine
and porcine tissue embedded in gelatin (Knox from Kraft
Inc., Northfield, IL, USA). These bovine and porcine phan-
toms were created to closely resemble the ultrasound imag-
ing and mechanical properties of human tissue. The gelatin
was used to hold the tissue in the experimental setup and
to provide a flat surface for the ultrasound probe to scan
along, such that there was sufficient contact between the
probe and the tissue phantom to maintain ultrasound im-
age quality throughout the insertion (see Fig. 8). A third
tissue phantom made entirely from plastisol (M-F Man-
ufacturing Co, Fort Worth, USA) which has friction and
stiffness properties higher than seen in human tissue. The
elevated friction and stiffness create a more challenging sce-
nario for the controller as the needle deflection during in-
sertion is increased.

A total of 10 insertion trials was performed for each
of the three phantom tissues, with each insertion having a
desired target depth of 120 mm. The needle base rotation
was performed by the hand-held device using the optimal
event-trigger points and rotation values found in by the
genetic algorithm. The optimization parameters, α and β,
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were chosen to be 10 and 1 respectively. For these results,
only three event-trigger points were used and the number
of total needle rotations was limited to be less than 3. For
most of the trials, the optimized event-triggered control
output resulted in fewer than two full rotations. The nee-
dle insertion length, `, required for the controller and ul-
trasound image processing was measured in real-time using
the micron device; see Fig. 8.

The deflection of the needle tip away from the 0x′-axis
was measured through ultrasound imaging. The needle tip
location at the target insertion depth was used to evaluate
the performance of the controller. As in equation (14), the
Final Tip Deflection is calculated as

Final Tip Deflection =
√
y(`f )2 + z(`f )2 (19)

where `f represents the target insertion depth. The con-
troller was tuned to minimize deflection over the entire in-
sertion. To evaluate this, the other performance measure
that was used was the Mean Tip Deflection, given by

Mean Tip Deflection =

∫ `f

`=0

√
y(`)2 + z(`)2

`f
d` (20)

which calculates the average needle tip deflection away from
the 0x′-axis throughout the insertion. The last metric that
was evaluated was the total rotation amount that the nee-
dle made. To calculate this, the absolute of each control
action

.
φi was taken and the resulting value of φ(`) evalu-

ated, where the initial bevel angle, φ0, is neglected. This
simplified to the following

Total Rotation Amount = |φ(`f )| =
n−1∑
i=0

∣∣f iφ(`i, `f )
∣∣ (21)

where f iφ(`i, `) is evaluated using the method in (7). The
values for the Final Tip Deflection and Mean Tip Deflec-
tion, and Total Rotation Amount were averaged over the
results for the 10 insertions per tissue phantom in Table 1.
Maxiumum Total Rotation Amount and maximum Tip De-
flection at any length during insertion are given in Table 2.
The needle tip-path captured for the porcine, bovine, and
plastisol phantoms are displayed in Fig. 9a, Fig. 9b, Fig.
9c respectively. The computational time of the image pro-
cessing algorithm, the parameter estimation algorithm, and
the control optimization algorithm are presented in Table
2 with the template patch sizes and number of individu-
als per generation given in Sec. 6, Sec. 6.1, and Sec. 4.1
respectively.

Table 1. Average Needle Insertion Results

Phantom
Tissue

Final Tip
Deflection
Average
(mm)

Mean Tip
Deflection
Average
(mm)

Total
Rotation
Amount
(degrees)

Porcine 0.40 ± 0.24 0.25 ± 0.06 174 ± 86

Bovine 0.51 ± 0.14 0.31 ± 0.08 177 ± 84

Plastisol 0.48 ± 0.25 0.30 ± 0.12 137 ± 68

Table 2. Maximum Needle Insertion Results

Phantom
Tissue

Max Final Tip
Deflection

Average (mm)

Max Total
Rotation Amount

(degrees)

Porcine 0.86 306

Bovine 0.69 306

Plastisol 0.90 242

Table 3. Processing Time per Image Frame

Procedure
Average

Time (ms)
Max Time

(ms)

Image Processing 36.0 ± 0.4 40.0

Parameter
Estimation

1.6 ± 0.7 6.3

Control
Optimization

4.6 ± 1.9 8.16

From the tabular data, the controller is shown to per-
form approximately the same across the three tissue types.
The Final Tip Defection average across all 30 trials was 0.47
mm with an averaged Mean Tip Deflection of 0.27 mm. The
maximum needle tip deflection at the target was 0.90 mm,
which compares favorably to the literature surveyed in [3]
and greatly exceeds the current clinical accuracy demon-
strated in [5].
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(a) Needle tip path and control signal in porcine tissue.
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(b) Needle tip path and control signal in bovine tissue.
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(c) Needle tip path and control signal in plastisol tissue.

Fig. 9. Experimental results for three different tissue phantoms.
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7. Conclusion

We have demonstrated a system designed for use in either
biopsy or brachytherapy percutaneous procedures. This
system steers the needle using a hand-held device using
an event-trigger based controller designed to reduce nee-
dle deflection during insertion. The controller incorporates
a nonholonomic reduced-order bicycle model with required
model parameters being estimated online from ultrasound
images. The parameter estimation and control signal plan-
ning use the presented solution to the kinematic bicycle
model which is shown to increase model simulation perfor-
mance by 21x when compared to a discrete-time step im-
plementation of the model. From insertion trials in ex-vivo
tissue phantoms, the controller is shown to decrease Final
Tip Deflection to an average of 0.47 mm and Mean Tip De-
flection to an average of 0.27 mm, significantly better than
seen clinically at current. The total amount of needle rota-
tion was constrained during insertion with the maximum
total needle rotation of 306o during experimentation.

Future work will involve the application of the ana-
lytic bicycle model solution in other control paradigms. In
particular, the model can be used for intraoperative path
planning to steer the needle around obstacles and towards
targets located away from the insertion axis. Future work
could also involve changes to model parameter fitting, by
incorporating uncertainty directly into the analytic model
through a Bayesian statistic or Markov chain approach.
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