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Abstract—Trilateral haptic systems can be modeled as three-
port networks. Analysis of coupled stability of a three-port net-
work can be accomplished in either the passivity or the absolute
stability frameworks assuming all three ports are connected to
passive but otherwise unknown terminations. This paper first
introduces our recent results in terms of extending Raisbecks
passivity criterion and Llewellyns absolute stability criterion
to general three-port networks – both criteria are founded on
the properties of a positive-real Hermitian matrix. Next, we
show that the absolute stability criterion is less conservative
than the passivity criterion. Then, to show how the two criteria
may be utilized at the system design stage, we apply them
to the problem of designing controllers for a dual-user haptic
teleoperation system and a triple-user collaborative haptic virtual
environment. Using the two criteria, controllers are then designed
and compared in terms of conservatism in simulations and
experiments.

Index Terms—Three-port network, trilateral haptic system,
absolute stability, passivity.

I. I NTRODUCTION

New application of multilateral teleoperation systems have
recently emerged including collaboration of multiple users to
perform a haptic virtual task and shared control of a robot
in a remote environment by multiple users. Practical uses of
these include tele-rehabilitation [1], surgical training[2], and
cooperative multi-robot systems [3]. An interesting classof
multilateral haptic systems is the trilateral one, which can be
modeled as a three-port network. Two examples of trilateral
haptic systems are dual-user haptic teleoperation systems(two
master robots and one slave robot) and triple-user collaborative
haptic virtual environments (three master robots).

In designing haptic teleoperation controllers, the main goals
are performance and stability. For a bilateral teleoperation sys-
tem consisting of a teleoperator (master, slave and controllers)
coupled to terminations (human operator and environment),
performance is the ability of a teleoperation system to present
the undistorted dynamics of the environment to the human
operator. Taking precedence to performance is stability, which
is necessary for safe teleoperation. Direct investigationof tele-
operation system stability requires not only the teleoperator’s
immittance(z, y, h, g) parameters, but also the models of the
human operator and the environment, which are usually un-
known, uncertain, and/or time-varying [4], [5]. Consequently,
conventional techniques cannot be used to study the stability
of teleoperation systems. Methods for analyzing the stability
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of teleoperation system can be categorized as teleoperator
passivity and teleoperator absolute stability criteria.

By definition, a teleoperator is passive if the total energy
delivered to it at its ports for all possible passive termina-
tions is non-negative at all time [6]. This means that, on
a net basis, the teleoperators terminations are performing
work on the teleoperator. Also, by definition, a teleoperator
is absolutely stable if the teleoperation system remains stable
for all possible passive terminations. For bilateral teleoperation
systems comprising one master and one slave, teleoperator
passivity and absolute stability can be analyzed via Raisbeck’s
criterion [7] and Llewellyn’s criterion [8], respectively. In this
paper, we extend these two criteria to trilateral teleoperators;
this is not a trivial task for reasons discussed later. Similar to
Raisbecks and Llewellyns criteria for bilateral teleoperators,
the proposed criteria for the passivity and absolute stability of
trilateral teleoperators are applicable to LTI systemswith or
without communication delay.

For absolute stability analysis of a trilateral teleoperator,
in [9], [10], and [11], methods are proposed in which the
three-port network model of the teleoperator is reduced to a
two-port network by assuming a known termination for the
third port, paving the way for the application of Llewellyn’s
criterion.Unfortunately, in the above approaches, a degree of
freedom is lost when the third port is coupled to a known
termination. In [12], the stability of a nonreciprocaln-port
network was studied by finding a reciprocaln-port network
with the same stability characteristics. For the reciprocal n-
port network, absolute stability can be studied through its
equivalence to passivity. This method can be lengthy for
generaln-port networks; however, the method is tractable for
three-port networks.

For passivity analysis of a trilateral teleoperator, Wanget
al. [13] proposed three different passive architectures basedon
four-channel shared control. Shahbaziet al. [14] performed
stability analysis for dual-user teleoperation systems (three-
port networks) by using the passivity theory. In [15], Panzirsch
et al. propose a time-domain passivity-based control approach
for a three-port network. In this work, three passivity observers
and three passivity controllers have been used. In [16], Mendez
et al. presented a criterion for passivity ofn-port networks
with unknown terminations. The criterion gives necessary
and sufficient conditions for passivity of ann-port network
assuming that the unknown terminations are passive.

In this paper, a comparison on the performance between
absolute stability and passivity criteria for three-port networks
is provided. In two case studies involving a dual-user haptic
teleoperation system and a triple-user collaborative haptic
virtual environment system, each of these two criteria is used
for the design of stabilizing controllers.

The rest of the paper is organized as follows: The next
section gives mathematical definitions and lemmas for analysis
of passivity and absolute stability. In Section III, for two-port
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networks, we show the conservatism of the Raisbeck’s passiv-
ity conditions as compared to Llewellyn’s absolute stability
conditions. In Section IV, the proposed passivity and absolute
stability criteria for three-port networks are derived. Weshow
the conservatism of the passivity conditions compared to
the absolute stability conditions. Then, as a case study, in
Section V, the passivity and absolute stability criteria are
used in designing a trilateral shared control architecturefor
a dual-user teleoperation system and a triple-user collabo-
rative haptic virtual environment system. The passivity and
absolute stability conditions in terms of system parameters
including controller gains are found. Finally, simulations and
experiments to verify the validity of the calculated conditions
are presented in Section VI. Section VII contains concluding
remarks and future work.

II. M ATHEMATICAL PRELIMINARIES

Lemma 1. [17] Let P1 and P2 be the immittance matrices
of two n-port networks. Then, ifP1 andP2 possess identical
principal minors of all orders, the two n-port networks are
stable (weakly stable) together.�

Definition 1. [18] A Hermitian matrix is a complex square
matrix that is equal to its conjugate transpose.

Property 1. [19] A Hermitian matrix is positive definite
(positive semidefinite) if its principal minors are all positive
(nonnegative).

Lemma 2. [20] A linear time-invariant system with transfer
matrixG(s) is passive (strictly passive) ifG(s) is positive real
(strictly positive real).

Definition 2. [20] A n × n proper rational transfer matrix
G(s) is called positive real if
i) Poles of all elements ofG(s) are in Re[s] ≤ 0,
ii) Any pure imaginary polejω of any element ofG(s) is a

simple pole and the residue matrixlims→jω(s − jω)G(s)
is positive semidefinite Hermitian,

iii) For all real ω for whichjω is not a pole of any element of
G(s), the matrixG(jω)+GT (−jω) is positive semidefinite.

Property 2. [21] A gyration operator, which transforms one
immittance matrix to another, preserves the passivity property.

III. PASSIVITY AND ABSOLUTE STABILITY OF TWO-PORT
NETWORKS

For two-port networks, the well-known Raisbeck’s passivity
criterion [7] and Llewellyn’s absolute stability criterion [8]
have been developed to investigate the stability of the network
when connected to arbitrary passive terminations.

A. Raisbeck’s passivity criterion [7]:

Criterion 1. If pmn = rmn + jxmn, m,n = 1, 2, represents
any of the four immittance parameters (z, y, h, and g) of
a two-port network, for all real values of frequenciesω, the
network is passive if and only if

1) TheP matrix have no poles in the right-half plane (RHP).
2) Any poles ofP matrix on the imaginary axis are simple,

and the residues of theP matrix elements at these poles
satisfy

kmm ≥ 0, m = 1, 2

k11k22 − k12k21 ≥ 0, k12 = k∗21 (1)

wherekmn, m,n = 1, 2, denotes the residue ofpmn and
k∗mn is the complex conjugate ofkmn.

3) The real and imaginary part of theP matrix elements
satisfy

r11 ≥ 0 (2a)
r22 ≥ 0 (2b)

4r11r22 − (r12 + r21)
2 − (x12 − x21)

2 ≥ 0 (2c)

�

B. Llewellyn’s absolute stability criterion [8]:

Criterion 2. A two-port network with the immittance param-
eterP is absolutely stable if and only if Conditions 1) and 2)
in Criterion 1 hold and, for all real values of frequenciesω,
we have

3)
r11 ≥ 0 (3a)
r22 ≥ 0 (3b)

r11r22 −
|p12p21|+Re(p12p21)

2
≥ 0 (3c)

�

Conditions 1) and 2) of Criterion 1 imply those of Criterion
2. As part of the two conditions 3) in the two criteria, (2a)-
(2b) in the passivity criterion are the same as (3a)-(3b) in the
absolute stability criterion. Now, based on the relationship

Re(
√
pmnpnm) =

√

|pmnpnm|+Re(pmnpnm)

2
(4)

wherem,n = 1, 2, Condition (3c) in Criterion 2 can be re-
written as

(Re(
√
p12p21))

2

r11r22
≤ 1 (5)

while Condition (2c) in Criterion 1 can be manipulated into
the form

(Re(
√
p12p21))

2

r11r22
+

(|p12| − |p21|)2
4r11r22

≤ 1 (6)

Obviously, the passivity condition (6) (or the equivalent (2c))
is more conservative than the absolute stability condition(5)
(or the equivalent (3c)). These two conditions are equivalent
if and only if |p12| = |p21|.

As shown above, Raisbeck’s passivity criteria and
Llewellyn’s absolute stability criteria are equivalent ifand
only if the two-port network with immittance matrix have
|p12| = |p21|. Also, all passive two-port network are absolutely
stable but not vice versa [22].

IV. PASSIVITY AND ABSOLUTE STABILITY OF
THREE-PORTNETWORKS

In this paper, we will discuss conditions for the passivity
and absolute stability of three-port networks . We will show
that these criteria are equivalent conditions, and comparethe
two in the general case in terms of conservativeness.

Consider a general nonreciprocal three-port network shown
in Figure 1 with the immittance matrix

P =

[

p11 p12 p13
p21 p22 p23
p31 p32 p33

]

(7)
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Figure 1. A general three-port network.

Where, fi and Vi, i = 1, 2, 3 are the forces and velocities of
each port. Let pmn = rmn + jxmn, m,n = 1, 2, 3. Later in
the paper, we will show through case studies how to calculate
such a matrix for a given trilateral haptic system. We propose
the following theorems for the passivity and absolute stability
of the three-port network modeled byP .

A. Passivity theorem

Theorem 1. A three-port network with the impedance matrix
P in (7) is passive if and only if

1) TheP matrix elements have no poles in the RHP.
2) Any poles of theP matrix elements on the imaginary axis

are simple, and the residues of theP matrix elements at
these poles satisfy

kmm ≥ 0, m = 1, 2, 3

k11k22 − k12k21

k11
≥ 0

k11k33 − k13k31

k33
≥ 0

k22k33 − k23k32

k22
≥ 0

k11k33 − k13k31

k11
− k11k23 − k21k13

k11k22 − k12k21

k11k32 − k31k12

k11
≥ 0

k12 = k∗21, k13 = k∗31, k23 = k∗32

wherekmn m,n = 1, 2, 3, denotes the residue ofpmn and
k∗mn is the complex conjugate ofkmn.

3) The real and imaginary part of theP matrix elements
satisfy the following inequalities

r11 ≥ 0 (8a)
r22 ≥ 0 (8b)
r33 ≥ 0 (8c)

4r11r22 − (r12 + r21)
2 − (x12 − x21)

2 ≥ 0 (8d)

4r11r33 − (r13 + r31)
2 − (x13 − x31)

2 ≥ 0 (8e)

4r22r33 − (r23 + r32)
2 − (x23 − x32)

2 ≥ 0 (8f)

4r11r22r33 − r33[(r12 + r21)
2 + (x12 − x21)

2]

− r22[(r13 + r31)
2 + (x13 − x31)

2]

− r11[(r23 + r32)
2 + (x23 − x32)

2]

+ (r23 + r32)(r13 + r31)(r12 + r21)

+ (r12 + r21)(x13 − x31)(x23 − x32)

− (r13 + r31)(x12 − x21)(x23 − x32)

+ (r23 + r32)(x13 − x31)(x12 − x21) ≥ 0 (8g)

�

Proof. According to Lemma 2, the three-port network is
passive if and only if its transfer matrix (i.e., the matrixP in
(7)) is positive real, which can be verified through Definition
2. It is obvious that Condition 1) in the theorem is the same
as Condition i) in Definition 2.

According to Condition ii) in Definition 2, the residue
matrix is positive semidefinite Hermitian, so we have

k12 = k∗21, k13 = k∗31, k23 = k∗32 (9)

wherek∗mn is the complex conjugate ofkmn, m,n = 1, 2, 3.
Based on Property 1, the residue matrix is positive semidefinite
if its principal minors are all nonnegative, i.e.,

kmm ≥ 0, m = 1, 2, 3 (10)
k11k22 − k12k21 ≥ 0 (11)
k11k33 − k13k31 ≥ 0 (12)
k22k33 − k23k32 ≥ 0 (13)
k11k22k33 − k11k23k32 − k22k13k31 − k33k12k21

+ k12k23k31 − k13k21k32 ≥ 0 (14)

The inequalities (9)-(14) are equivalent to those in Condition
2) of Theorem 1.

According to Condition iii) of Definition 2,

P (jω) + PT (−jω) =

[

2r11 r12 + r21 r13 + r31
r12 + r21 2r22 r23 + r32
r13 + r31 r23 + r32 2r33

]

+j

[

0 x12 − x21 x13 − x31

x21 − x12 0 x23 − x32

x31 − x13 x32 − x23 0

]

(15)

needs to be positive semidefinite. Using Property 1, this leads
to Conditions (8a)-(8g). This concludes the proof.

B. Absolute stability theorem

Theorem 2. A three-port network with impedance matrixP
in (7) satisfying the symmetrization condition

p13p21p32 − p12p23p31 = 0 (16)

is absolutely stable if and only if Conditions 1) and 2) in
Theorem 1 hold and, for all real values of frequenciesω, we
have
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3)
r11 ≥ 0 (17a)
r22 ≥ 0 (17b)
r33 ≥ 0 (17c)

r11r22 −
|p12p21|+Re(p12p21)

2
≥ 0 (17d)

r11r33 −
|p13p31|+Re(p13p31)

2
≥ 0 (17e)

r22r33 −
|p23p32|+Re(p23p32)

2
≥ 0 (17f)

r11r22r33 − r11
|p23p32|+Re(p23p32)

2

− r22
|p13p31|+Re(p13p31)

2

− r33
|p12p21|+Re(p12p21)

2
+ 2Re(

√
p12p21)Re(

√
p13p31)Re(

√
p23p32) ≥ 0 (17g)

�

Proof. [23] According to Lemma 1, if there exists a reciprocal
three-port network with impedance matrixPeq that has the
same stability (weak stability) characterization as the nonre-
ciprocal three-port network with impedance matrixP , then

det(Peq + P0) = det(P + P0) (18)

for any passive (strictly passive)P0 = diag[p1, p2, p3]. Ac-
cording to (18) in the paper, we have

det

[

pa + p1 pb pd
pb pc + p2 pf
pd pf ph + p3

]

= det

[

p11 + p1 p12 p13
p21 p22 + p2 p23
p31 p32 p33 + p3

]

Calculating the two determinants and equating the coefficients
of p1, p2, andp3 (because the above is to hold foranypassive
(or strictly passive)P0 = diag[p1, p2, p3]), if and only if the
symmetrization condition (16) holds, we get

Peq =

[

p11 γ1
√
p12p21 γ2

√
p13p31

γ1
√
p12p21 p22 γ3

√
p23p32

γ2
√
p13p31 γ3

√
p23p32 p33

]

(19)

whereγi = ±1 for i = 1, 2, 3. The three-port network with
transfer matrixPeq is absolutely stable if and only if it is
passive [24]. According to Lemma 2,Peq is passive if and
only if it is nonnegative real, which can be verified through
Definition 2. Thus, it is easy to show that Conditions 1) and
2) in Theorem 1 need to be satisfied. Additionally, according
to Condition iii) of Definition 2,

Peq(jω) + PT
eq(−jω) =

[

2r11 2γ1Re
√
p12p21 2γ2Re

√
p13p31

2γ1Re
√
p12p21 2r22 2γ3Re

√
p23p32

2γ2Re
√
p13p31 2γ3Re

√
p23p32 2r33

]

(20)
needs to be positive semidefinite. Using Property 1 and equal-
ity (4) (wherem,n = 1, 2, 3) leads us to Conditions (17a)-
(17g). This concludes the proof.

Remark 1. Theorem 1 and Theorem 2 holds not only for
the impedance matrix (Z) of a general network but also for
its other immittance matrices (Y , H , G). The reason for this

Passive

Active and 

potentially 

unstable

Active and 

absolutely 

stable

0 1

1

W1

W2

Figure 2. Stability-activity diagram.

is that according to Property 2 a gyration operators transform
one immittance matrix to another, and preserves passivity.

C. Comparison of passivity and absolute stability conditions

Conditions 1) and 2) of Theorem 1 imply those of Theorem
2. Also, as part of Condition 3) in Theorem 1, (8a)-(8c) in
Theorem 1 are the same as (17a)-(17c) in Theorem 2. As
shown in Section III, the passivity condition (8d)-(8f) is more
conservative than the absolute stability condition (17d)-(17f),
respectively. These conditions are equivalent if and only if
|p12| = |p21|, |p13| = |p31|, and |p23| = |p32|.

Furthermore, Condition (17g) in Theorem 2 can be re-
written as

W1 =

(Re(
√
p23p32))

2

r22r33
+

(Re(
√
p13p31))

2

r11r33
+

(Re(
√
p12p21))

2

r11r22

− 2Re(
√
p12p21)Re(

√
p13p31)Re(

√
p23p32)

r11r22r33
≤ 1. (21)

On the other hand, noting that

(rmn + rnm)2 + (xmn − xnm)2

= 4(Re(
√
pmnpnm))2 + (|pmn| − |pnm|)2 (22)

wherem,n = 1, 2, 3, Condition (8g) in Theorem 1 can be
manipulated into the form

W1 +W2 ≤ 1 (23)

In the following, we will show thatW2 ≥ 0, establishing the
fact that the passivity condition (23) (or the equivalent (8g))
is more conservative than the absolute stability condition(21)
(or the equivalent (17g)).
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In (23), we haveW2 = W3 +W4 −W5 where

W3 =
r11(|p23| − |p32|)2

4r11r22r33
+

r22(|p13| − |p31|)2
4r11r22r33

+
r33(|p12| − |p21|)2

4r11r22r33
,

W4 =
2Re

√
p12p21Re

√
p13p31Re

√
p23p32

r11r22r33
,

W5 =
(r12 + r21)(r13 + r31)(r23 + r32)

4r11r22r33

+
(r12 + r21)(x13 − x31)(x23 − x32)

4r11r22r33

− (r13 + r31)(x12 − x21)(x23 − x32)

4r11r22r33

+
(r23 + r32)(x13 − x31)(x12 − x21)

4r11r22r33

Obviously, W3 ≥ 0. Because of (4),W4 ≥ 0. Therefore,
wheneverW5 < 0, thenW2 > 0. WhenW5 > 0, thenW2 ≥ 0
if and only if (W3 +W4)

2 −W 2
5 ≥ 0, which is equivalent to

(|p12| − |p21|)2[16r33r123 + 4r11r33(|p23| − |p32|)2

− 4(Re
√
p13p31)

2((r23 + r32)
2 + (x23 − x32)

2)]

+ (|p13| − |p31|)2[16r22r123 + 4r22r33(|p12| − |p21|)2

− 4(Re
√
p23p32)

2((r12 + r21)
2 + (x12 − x21)

2)]

+ (|p23| − |p32|)2[16r11r123 + 4r11r22(|p13| − |p31|)2

− 4(Re
√
p12p21)

2((r13 + r31)
2 + (x13 − x31)

2)] ≥ 0 (24)

wherer123 = Re
√
p12p21Re

√
p13p31Re

√
p23p32. It is easy to

show that (24) always holds. Thus, regardless of sign ofW5,
we haveW2 ≥ 0.

In the stability-activity diagram of Figure 2, we have graphi-
cally represented (21) and (23) in a two-dimensional space by
choosingW1 and W2 as the two coordinates. Evidently, all
passive three-port networks are absolutely stable, but notall
absolutely stable three-port networks are passive.

Remark 2. The passivity criterion of three-port network in
Theorem 1 is equivalent to the absolute stability criterionin
Theorem 2 if and only if the impedance matrix in (7) have

|p12| = |p21|, |p13| = |p31|, |p23| = |p32|. (25)

This is true becauseW2 = 0 if and only if (25) holds. This
holds not only for the impedance parameters of a general three-
port network but also for its other immittance parameters.

Remark 3. For teleoperation control systems, using the
absolute stability criterion will allow for higher transparency
compared to using the passivity theorem. The reason for this
is that passivity criterion is more restrictive than the absolute
stability criterion, and there is a trade-off between stability
and transparency. In the case studies that will follows higher
teleoperation transparency under absolute stability conditions
compared to passivity conditions will be shown.

V. CASE STUDY: COMPARISON OFPASSIVITY AND
ABSOLUTE STABILITY FOR TRILATERAL HAPTIC SYSTEMS

In this section, the aim is to compare passivity and absolute
stability for trilateral haptic systems. A trilateral haptic system
may be a dual-user haptic teleoperation system with one slave
robot, or a collaborative haptic virtual environment with three
users. In the following, we will consider both cases, which
happen to the nonreciprocal three-port networks. We begin by
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Figure 3. A dual-user haptic teleoperation system under four-channel control.

reviewing a four-channel, dual-user teleoperation systemand
specifically investigate the stability of position-position control
scheme. Later, we will introduce a triple-user haptic virtual
environment and study its stability.

A. A dual-user teleoperation system with position-position
shared control

In a dual-user teleoperation control system, the goal is
that two users collaboratively control a robot to perform a
desired task on a remote environment. Such a system consists
of two master robots for the two users and one slave robot
that is in contact with the environment. This configuration
has applications in many real-world scenarios such as when
the aim is to train a novice trainee (user 1) to do a task in
a remote environment under haptic guidance from a mentor
(user 2). As elaborated by [2], [11], the desired position and
force of each robot are the weighted sum of positions and
forces of the other two robots. The weights are determined
by a parameterα ∈ [0, 1] which in practice gives the relative
authority that each operator has over the slave robot.

In a dual-user teleoperation system, the dynamics of the two
masters and the slave in contact with the two users and the
environment, respectively, are

ZmiVhi = Fhi + Fcmi (26a)
ZsVe = Fe + Fcs (26b)

where i = 1, 2, andZmi andZs are the impedances of the
two masters and the slave, respectively. Also,Fhi denotes the
interaction force between the two users and the two masters
and Fs denotes the interaction force between the slave and
the environment. Lastly,Vhi, and Ve are the users and the
environment velocities.

The four-channel dual-user shared control laws [11], [16]:

Fcmi = −CmiVhi − C4miVhid + C6miFhi − C2miFhid (27a)
Fcs = −CsVe + C1Ved − C5Fe + C3Fed (27b)

whereCmi andCs are local position controllers,C6mi andC5

are local force controllers, andC1, C2mi, C3, andC4mi are
feedforward and feedback compensators. Also,Vhid andVed

are the reference velocities andFhid andFed are the references
forces for the two masters and the slave, where using the
complementary-linear-combination (CLC) laws for authority
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sharing are

Vh1d = αVe + (1− α)Vh2 (28a)
Vh2d = (1− α)Ve + αVh1 (28b)
Ved = αVh1 + (1 − α)Vh2 (28c)

Fh1d = αFe + (1− α)Fh2 (28d)
Fh2d = (1− α)Fe + αFh1 (28e)
Fed = αFh1 + (1 − α)Fh2 (28f)

Consequently,α determines how the two users collaborate
and contribute to the reference position for the slave, and it
also determines what share of force feedback they (trainee
and mentor) receive. For instance, ifα = 0, the slave robot
will be completely controlled by the mentor and the trainee
will receive large force feedback urging him/her to follow the
mentor’s motions. On the other hand ifα = 1, the slave robot
is completely controlled by the trainee, allowing the mentor
to assess the skill level of the trainee by feeling the reflected
forces. If 0 < α < 1, the trainee and the mentor collaborate
and each contribute to the slave robot position while receiving
some force feedback.

Position-position control is a special case of dual-user
shared control in which there is no force sensor measurements
andC2m1 = C2m2 = C3 = C5 = C6m1 = C6m2 = 0. For
simplicity of deriving stability conditions, we consider this
special case of the earlier-described 4-channel teleoperation
system. For good position tracking, the common choice is
C1 = Cs, C4m1 = −Cm1, and C4m2 = −Cm2. Assume
Zm1 = Mm1s, Zm2 = Mm2s, Zs = Mss, and let us make
the following choices for the local position controllers:

Cm1 =
Kpm1 +Kvm1s

s
, Cm2 =

Kpm2 +Kvm2s

s
,

Cs =
Kps +Kvss

s
(29)

To get the impedance matrix of position-position control
dual-user teleoperation system, first substitute (28) in (27) and
then substitute the result in (26) to get

[

Fh1

Fh2

Fe

]

=

[

z11 z12 z13
z21 z22 z23
z31 z32 z33

][

Vh1

Vh2

Ve

]

(30)

where

z11 =
Kpm1 +Kvm1s

s
+Mm1s

z12 = −(1− α)
Kpm1 +Kvm1s

s

z13 = −α
Kpm1 +Kvm1s

s

z21 = −α
Kpm2 +Kvm2s

s

z22 =
Kpm2 +Kvm2s

s
+Mm2s (31)

z23 = −(1− α)
Kpm2 +Kvm2s

s

z31 = −α
Kps +Kvss

s

z32 = −(1− α)
Kps +Kvss

s

z33 =
Kps +Kvss

s
+Mss

While for simplicity this example did not involve communi-
cation time delay, the teleoperator’s impedance matrix canbe
calculated in a similar manner in the presence of delay. Also,
the upcoming passivity and absolute stability analyses canbe
performed in a similar manner for delayed teleoperators as
the proposed criteria apply to general immittance matricesfor
trilateral teleoperators.

In the following subsections, we will discuss different
methods to analyze the system stability. The first method tries
to find an (infinite) set of equivalent bilateral teleoperations
system for the trilateral teleoperation system by couplingone
port to a known termination and then utilizes Llewellyn’s
criterion for finding the stability conditions; this provesto
be a cumbersome and open-ended investigation. The second
and third methods are based on Theorem 1 and Theorem 2
for direct stability analysis of a three-port network for three
passive but otherwise arbitrary terminations; these methods
involve compact, closed-form conditions.

1) Stability analysis via reduction to two-port networks:
To reduce the three-port network to an equivalent two-port
network between the two users, one can couple the environ-
ment port to a known load termination and then absorb the
load termination into the network. To find the equivalent two-
port impedance matrix, in the simplest case, one can consider
the aforementioned load to be a pure known stiffnessK > 0.
Assumeα = 1

2
. Then, usingFe

Ve

= K, the equivalent two-port
network for the dual-user teleoperation control system is given
by

[

Fh1

Fh2

]

=

[

Z ′

11 Z ′

12

Z ′

21 Z ′

22

] [

Vh1

Vh2

]

(32)

For brevity, we do not show the elements of the matrixZ ′(jω).

Now, the stability of the reduced two-port network (32) must
be testedfor all possible choices ofK and all frequencies
ω. By Llewellyn’s criterion, the stability of the dual-user
teleoperation system is guaranteed if, for allK and all ω,
we have

Kvm1 −
1

4

(KvsKvm1ω
2 −KpsKpm1)(K +Kvs)

(K +Kvs)2ω2 + (Kps −Msω2)2

−1

4

(KvsKpm1 +Kvm1Kps)(Kps −Msω
2))

(K +Kvs)2ω2 + (Kps −Msω2)2
≥ 0 (33a)

1

4

(Kpm2 +Kvm2)(KpsK +KvsMsω
2)

(K +Kvs)2ω2 + (Kps −Msω2)2
≥ 0 (33b)

2Re(Z ′

11)Re(Z
′

22)− Re(Z ′

12Z
′

21)− |Z ′

12Z
′

21| ≥ 0 (33c)

To synthesize controllers based on (33) for all values ofK and
ω is a daunting task if not impossible. This issue is exacerbated
once one considers that the environment port’s load may
include damping and inertia in addition to stiffness, in which
case (33) would have to be satisfied for all values ranging
from 0 to ∞ of stiffness, damping, inertia and frequency. As
discussed in [11], the computational burden can be alleviated
by using the transformationΓ = Ze−1

Ze+1
, where Ze is the

complex impedance of the load termination, to map the right
half of theZe plane to the inside of a unit disk in theΓ plane.
However, this method still requires to pick a large number of
points in the unit disk in theΓ plane, test (33), and then repeat
this process for a large number of frequenciesω before one
can reasonably be sure that Llewellyn’s conditions are met for
a large set of points in the right half of theZe plane and for
a large set of frequencies.
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2) Stability analysis via Theorem 1:All the elements of
(30) have only a simple pole on the imaginary axis. Analysis
of the residues leads to

k11 = Kpm1 ≥ 0 (34)
k22 = Kpm2 ≥ 0 (35)
k33 = Kps ≥ 0 (36)
k11k22 − k12k21

k11
= (1− α+ α2)Kpm2 ≥ 0 (37)

k11k33 − k13k31

k33
= (1− α2)Kpm1 ≥ 0 (38)

k22k33 − k23k32

k22
= (2α− α2)Kps ≥ 0 (39)

k11k33 − k13k31

k11
− k11k23 − k21k13

k11k22 − k12k21

k11k32 − k31k12

k11
= 0

(40)

(34)-(36) and (40) are always satisfied. Also, (37) always holds
for all α ∈ [0, 1], thus, Conditions 1) and 2) of Theorem 1 are
fulfilled.

Applying (8a)-(8f) to (30) results in

Kvm1 ≥ 0 (41)
Kvm2 ≥ 0 (42)
Kvs ≥ 0 (43)

4Kvm1Kvm2 − (Kvm1 − αKvm1 + αKvm2)
2

− (Kpm1 − αKpm1 + αKpm2)
2

ω2
≥ 0 (44)

4Kvm1Kvs − (Kvm1 − αKvm1 + αKvs)
2

− (Kpm1 − αKpm1 + αKps)
2

ω2
≥ 0 (45)

It is easy to see that, condition (44) and (45) will be fulfilled
for all frequenciesω if the gains of the PD controllers in (29)
satisfy

(1− α)Kpm1 = αKpm2 (46)
(1− α)Kpm1 = αKps (47)

4Kvm1Kvm2 − (Kvm1 − αKvm1 + αKvm2)
2 ≥ 0 (48)

4Kvm1Kvs − (Kvm1 − αKvm1 + αKvs)
2 ≥ 0 (49)

On the other hand, under (46), condition (8g) becomes

− 1

2αω2
(Kpm1 −Kps)

2[Kvm1(1− α)2(2− α)

+Kvm2α
2(1 + α3)]− 1

α2ω2
(1− 2α)2Kvm1

− 1

2αω2
(1− 2α)(1 − α)(K2

pm1 −K2
ps)[α

2Kvm2

+ (α+ 2)Kvm1] + (1 + α)(2 − α)Kvm1Kvm2Kvs

− α2(2− α)Kvm2Kvs(Kvm2 +Kvs)

− (1 − α+ α2)Kvm1Kvm2[(1 − α)Kvm1 + αKvm2]

− (1 − α)2(1 + α)Kvm1Kvs(Kvm1 +Kvs) ≥ 0 (50)

It is easy to see that (46), (47), (48), (49), and (50) will be
fulfilled for all frequenciesω if

α =
1

2
, Kpm1 = Kpm2 = Kps, Kvm1 = Kvm2 = Kvs

(51)

So, a sufficient,frequency-independent, and compact condition
for passivity of the above-described position-position dual-user

teleoperation systems is given by (51).
3) Stability analysis via Theorem 2:In this case, it can

be shown that the symmetrization condition (16) will hold
only if α = 1

2
. It is possible to see that the absolute stability

conditions (17a)-(17d) become

Kvm1 ≥ 0 (52)
Kvm2 ≥ 0 (53)
Kvs ≥ 0 (54)
7

8
Kvm1Kvm2 +

1

8ω2
Kpm1Kpm2 −

Qm1Qm2

8ω2
≥ 0 (55)

7

8
Kvm1Kvs +

1

8ω2
Kpm1Kps −

Qm1Qs

8ω2
≥ 0 (56)

7

8
KvsKvm2 +

1

8ω2
KpsKpm2 −

QsQm2

8ω2
≥ 0 (57)

where Qm1 =
√

K2
vm1ω

2 +K2
pm1, Qm2 =

√

K2
vm2ω

2 +K2
pm2, and Qs =

√

K2
vsω

2 +K2
ps. Now,

under (52) and (53), condition (55) will be fulfilled for all
frequenciesω if the gains of the PD controllersCm1 and
Cm2 satisfy

Kpm1

Kvm1

=
Kpm2

Kvm2

, 7− 4
√
3 ≤ Kpm1

Kvm1

Kvs

Kps

≤ 7 + 4
√
3. (58)

On the other hand, condition (17g) will be fulfilled for all
frequenciesω if the gains of the PD controllers in (29) satisfy

Kpm1

Kvm1

=
Kpm2

Kvm2

, 5− 2
√
6 ≤ Kpm1

Kvm1

Kvs

Kps

≤ 5 + 2
√
6 (59)

Clearly, (58) holds if (59) holds. So, a sufficient,frequency-
independent, and compact condition for absolute stability of
the above-described position-position dual-user teleoperation
systems is given by (59), where all control gains are nonneg-
ative. Evidently, (59) is less restrictive than (51).

At the first glance, the constraintα = 1

2
imposed by the

symmetrization condition (16) seems very limiting. However,
one must note that various combinations of authority sharing
and teleoperation control laws exist andα = 1

2
is only an

artifact of using CLC authority sharing laws in conjunction
with position-position teleoperation control laws. For instance,
by changing the authority sharing laws (28) to the masters-
correspondence-with-environment-transfer (MCET) law pro-
posed in [11], for the same dynamics for the master and
the slave and the same position-position control laws as in
Section IV.A, the symmetrization condition (16) holds for any
α becauseZ13Z21Z32 − Z12Z23Z31 is identical to zero.We
compare the effect of CLC and MCET authority sharing
laws on the conditions that results from the absolute
stability and passivity criteria.

B. A triple-user collaborative haptic virtual environment

In a one degree of freedom triple-user collaborative haptic
virtual environment, the goal is that three users cooperatewith
one another in a virtual environment to perform a task while
receiving haptic feedback. This corresponds to multi-point-
of-contact interaction with a virtual environment. The system
consists of three master robots, each of which operate on a
specific point (grid mesh node) on the virtual object as shown
in Figure 4 [25], [26], [27]. The virtual object computes the
dynamic response (in terms of force feedback) at each of these
points by using the positions of the three masters. The virtual
object’s mechanical properties such as mass, stiffness, and
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Mm1 M01

Bm1

Km1 B01

K01

fh1

xh1 x01

Mm2 M02

Bm2

Km2 B02

K02

fh2

xh2 x02

Mm3 M03

Bm3

Km3 B03

K03

fh3

xh3 x03

B12

K12

B23

K23

B13

K13

Master 3

Master 2

Master 1 Virtual environment

User 1

User 2

User 3

Figure 4. A triple-user collaborative haptic virtual environment system.

damping can be adjusted to correspond to real life objects. One
application of such a trilateral system is in tele-rehabilitation,
in which two master robots are operated by two patients and
the third master robot is operated by a therapist. The therapist
interacts with the patients in a virtual environment designed for
rehabilitation exercises and monitoring the patients’ progress
through the received force feedback.

Dynamic modeling of the entire system based on a mass-
spring-damper mesh model for the virtual environment fol-
lows. Consider the triple-user collaborative haptic virtual envi-
ronment system shown in Figure 4. In this figure,Mmi, Kmi

and Bmi, i = 1, 2, 3, are the mass, stiffness, and damping
of the three masters. Also,M0i represents the mass of a
node of the virtual object mesh that is in contact with master
i. We assumeM0i is connected to a stationary ground via
springK0i and damperB0i. We also assumeK12, K13, K23

are the stiffness of springs connecting the three nodes of the
mesh of the virtual object. Similarly,B12, B13, B23 are the
dampers connecting the same three nodes. Lastly,fhi denotes
the interaction force between each user and the corresponding
master.

The dynamics of the three masters are

Mm1ẍh1 = fh1 +Km1(x01 − xh1) +Bm1(ẋ01 − ẋh1) (60a)
Mm2ẍh2 = fh2 +Km2(x02 − xh2) +Bm2(ẋ02 − ẋh2) (60b)
Mm3ẍh3 = fh3 +Km3(x03 − xh3) +Bm3(ẋ03 − ẋh3) (60c)

Also, the dynamics of the three nodes on the mesh of the

virtual object are

M01ẍ01 = Km1(xh1 − x01) +Bm1(ẋh1 − ẋ01)

+ K12(x02 − x01) +B12(ẋ02 − ẋ01)

+ K13(x03 − x01) +B13(ẋ03 − ẋ01)

+ K01(0 − x01) +B01(0 − ẋ01) (61a)
M02ẍ02 = Km2(xh2 − x02) +Bm2(ẋh2 − ẋ02)

+ K12(x01 − x02) +B12(ẋ01 − ẋ02)

+ K23(x03 − x02) +B23(ẋ03 − ẋ02)

+ K02(0 − x02) +B02(0 − ẋ02) (61b)
M03ẍ03 = Km3(xh3 − x03) +Bm3(ẋh3 − ẋ03)

+ K13(x01 − x03) +B13(ẋ01 − ẋ03)

+ K23(x02 − x03) +B23(ẋ02 − ẋ03)

+ K03(0 − x03) +B03(0 − ẋ03) (61c)

For simplicity, let us chooseBm1 = Bm2 = Bm3 = B01 =
B02 = B03 = B12 = B13 = B23 = 0. Thus, the impedance
matrix representation of the closed-loop triple-user haptic
virtual environment system is

[

fh1
fh2
fh3

]

=

[

z11 z12 z13
z21 z22 z23
z31 z32 z33

][

ẋh1

ẋh2

ẋh3

]

(62)

whereZ = A−1B and

A =







a1s − K12

Km2

− K13

Km3

− K12

Km1

a2s − K23

Km3

− K13

Km1

− K23

Km2

a3s







B =





a1q1s−Km1

s
− q2K12

s
− q3K13

s

− q1K12

s
a2q2s−Km2

s
− q3K23

s

− q1K13

s
− q2K23

s

a3q3s−Km3

s





In the above,

a1 = M01s+
Km1 +K12 +K13 +K01

s
,

a2 = M02s+
Km2 +K12 + k23 +K02

s
,

a3 = M03s+
Km3 +K13 +K23 +K03

s
,

q1 =
Mm1s

2 +Km1

Km1

, q2 =
Mm2s

2 +Km2

Km2

,

q3 =
Mm3s

2 +Km3

Km3

.

Next, we will consider this triple-user collaborative haptic
virtual environment system and analyze its stability basedon
both Theorem 1 and Theorem 2.

1) Stability analysis via Theorem 1:One can see that all
the elements of impedance matrix (62) have only a simple pole
on the imaginary axis, thus, Conditions 1) and 2) of Theorem
1 are fulfilled. For the impedance matrix (62), the passivity
conditions (8a)-(8c) will always equal zero. Condition (8d)-
(8f) turns out to be

− 1

ω2K4
m1K

4
m2K

2
m3

Q2
1Q

2
2 ≥ 0 (63)



9

where, the

Q1 = K12Km3M03ω
2 −K12Km3K23 −K12Km3K13

−K12Km3K03 −K23K13 −K12K
2
m3

Q2 = (1−Km1)K
2
m2M01Mm1(ω

2 + 1)2

+ (Km2 − 1)K2
m1M02Mm2(ω

2 + 1)2

+ ω2(Km1 − 1)K2
m2(Km1Mm1 +Km1M01 +K01Mm1

+K12Mm1 +K13Mm1 + 2Mm1M01)

+ ω2(1−Km2)K
2
m1(Km2Mm2 +Km2M02 +K02Mm2

+K23Mm2 +K12Mm2 + 2Mm2M02)

+K2
m2(1−Km1)(K01Km1 +K13Km1 −Mm1M01)

+K2
m1(Km2 − 1)(K02Km2 +K23Km2 −Mm2M02)

+ (Km1 −Km2)(K
2
m1K

2
m2 −K12)

Obviously, (63) will be fulfilled for all frequenciesω if and
only if Q2 = 0, which happens whenKm1 = Km2 = 1. This
will also make the left side of (8g) equal to zero, and stability
is ensured.

Given the symmetry between the three ports in a trilateral
system, a necessary and sufficient, frequency-independent, and
compact condition for passivity of the above-described triple-
user collaborative haptic virtual environment system is

Km1 = Km2 = Km3 = 1. (64)

2) Stability analysis via Theorem 2:It can be shown that
the symmetrization condition (16) will always holds once we
find the elements of the impedance matrix (62). It is easy to
see that the left side of stability conditions (17a)-(17c) will
always equal zero. Condition (17d)-(17f) turns out to be

1

2
Q2

1Q3Q4(−1 + sign(Q3)sign(Q4))sign(Q3)sign(Q4) ≥ 0

(65)

where

Q3 = ω4Mm1M01(Km1 − 1)− ω2(Km1 − 1)(Mm1Km1

+Km1K01 +K12Mm1 +K13Mm1)

+Km1(Km1 − 1)(K12 +K13 +K01) +K3
m1

Q4 = ω4Mm2M02(Km2 − 1)− ω2(Km2 − 1)(Mm2Km2

+Km2K02 +K12Mm2 +K23Mm2)

+Km2(Km2 − 1)(K12 +K23 +K02) +K3
m2

Obviously, (65) will be fulfilled for all frequenciesω if Km1 =
Km2 = 1. Also, if Q3 andQ4 have the same sign, (65) will
be fulfilled.

Given thatQ3 andQ4 are quadratic polynomials inω, there
is a total of 4 possibilities as shown in Figure 5 for the signs
of Q3 andQ4. Here, we only consider the case (b) in Figure
5 and the other 3 cases can be analyzed on a similar basis. In
this case, a sufficient condition for stability is

Km1 > 1, Km2 > 1, Mm1 > Mo1, Mm2 > M02

4K3
m1 > (Km1 − 1)(K12 +K13 +K01)

2

4K3
m2 > (Km2 − 1)(K12 +K23 +K02)

2 (66)

These conditions will make the left hand side of (65) equal to
zero. Since the left side of (17a)-(17d) have become identical
to zero, the left side of condition (17g) will also equal zero
and stability is ensured.

Given the symmetry between the three ports in a trilateral
system, a sufficient, frequency-independent, and compact con-

Q

Ȧ0

Q

Ȧ0

Q

Ȧ0

Q

Ȧ0

Q4

Q3 Q4 Q3

Q4

Q3

Q4 Q3

(a) (b)

(c) (d)

Figure 5. The four cases forQ3 andQ4 have same sign.

dition for stability of the above-described triple-user collabo-
rative haptic virtual environment system is either

Km1 = Km2 = Km3 = 1 (67)

or






































Km1 > 1, Mm1 > M01,

Km2 > 1, Mm2 > M02,

Km3 > 1, Mm3 > M03,

4K3
m1 > (Km1 − 1)(K12 +K13 +K01)

2,

4K3
m2 > (Km2 − 1)(K12 +K23 +K02)

2,

4K3
m3 > (Km3 − 1)(K13 +K23 +K03)

2.

(68)

Evidently, (67)-(68) is less restrictive than (64).

VI. SIMULATIONS AND EXPERIMENTS

In this section, the passivity and absolute stability conditions
for the dual-user teleoperation system found in the previous
sections will be verified via simulations and experiments.
For brevity, we do not report the experimental results of a
similar exercise for the triple-user collaborative hapticvirtual
environment. For checking the passivity of trilateral haptic
teleoperator, a passivity observer that calculates the dissipated
energy in the system has been incorporated into the simula-
tions and experiments. The dissipated energy is given by the
input-output energy integral

Ep(t) =

∫ t

0

fh1(τ)Vh1(τ) dτ +

∫ t

0

fh2(τ)Vh2(τ) dτ

+

∫ t

0

fe(τ)Ve(τ) dτ ≥ 0 (69)

The teleoperator is passive ifEp(t) is non-negative at all time
[6].

For checking the absolute stability of the trilateral haptic
teleoperator, the ports #2 and #3 were connected to passive
terminations while the input energy at the port #1 was mea-
sured. The three-port network teleoperator is absolute stable
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Table I
THE CONTROLLERS GAINS OF THE POSITION-POSITION DUAL-USER

TELEOPERATION SYSTEM USED IN SIMULATIONS. (A) PASSIVE AND

ABSOLUTELY STABLE, (B) ABSOLUTELY STABLE BUT NON-PASSIVE, (C)
POTENTIALLY UNSTABLE (I .E., NOT ABSOLUTELY STABLE) AND

NON-PASSIVE.

Master #1 Master #2 Slave
(A) Kpm1 30 Kpm2 30 Kps 30

Kvm1 5 Kvm2 5 Kvs 5
(B) Kpm1 3 Kpm2 30 Kps 150

Kvm1 5 Kvm2 50 Kvs 150
(C) Kpm1 3 Kpm2 80 Kps 15

Kvm1 5 Kvm2 20 Kvs 60

if and only if, at all timest > 0, we have [28]:

Es(t) =

∫ t

0

fh1(τ)Vh1(τ) dτ ≥ 0. (70)

A. Simulations

The position-position dual-user teleoperation system has
been simulated in MATLAB/Simulink. There is no time delay
in the communication channel between the masters and the
slave. Three 1-DOF robots as the two masters and the slave
are modeled by massesMm1 = 0.7, Mm2 = 0.9, and
Ms = 0.5, respectively. In simulations for both passivity and
absolute stability, the master #2 and the slave are connected
to LTI terminations with transfer functions1

s+1
, which are

passive as, fors = jω, we haveRe( 1

s+1
) = 1

ω2+1
> 0.

In passivity simulations, the master #1 is also connected to
another passive termination with transfer function1

s+1
, and a

sine-wave exogenous inputF ∗

h1 is applied. In absolute stability
simulations, port 1 is open and a sine-wave inputFh1 is
applied to the master #1.

The triple-user collaborative haptic virtual environmentsys-
tem has been simulated in MATLAB/Simulink. There is no
time delay in the communication channel between the masters
and the virtual objects. Three 1-DOF robots as the three
masters are modeled by massesMm1 = Mm2 = Ms = 1.6,
respectively. In simulations for both passivity and absolute
stability, the master #2 and #3 are connected to LTI termi-
nations with transfer functions1

s+1
. In passivity simulations,

The master #1 connected to another passive termination with
transfer functions 1

s+1
, and a sine-wave inputf∗

h1 is applied. In
absolute stability simulations, port 1 is open and a sine-wave
input fh1 is applied to the master #1.

1) Dual-user teleoperation system:According to (51) and
(59), the stability of the position-position dual-user teleoper-
ation system should depend on the controllers gains. In the
simulations, the controllers gainsKpm1, Kvm1, Kpm2, Kvm2,
Kps, and Kvs were chosen according to Table I. Gains in
Table I(A) satisfy (51) and (59), in Table I(B) satisfy (59) but
not (51), and in Table I(C) satisfy neither (51) nor (59). Also,
α = 1

2
.

The input energy (70) profiles (Es) are plotted in Figure
6(a). As it can be seen, if the controllers gains are selected
according to (59), e.g., as listed in Table I(A) and (B), thenthe
input energy at port 1 is non-negative at all times, indicating
the absolute stability of the trilateral haptic system. However,
when the controllers gains violate (59), e.g., as listed in
Table I(C), the input energyEs will become negative at least
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Figure 6. Simulation results for the dual-user teleoperation system. (a)
Input energyEs at the master #1’s port for absolute stability analysis, and
(b) passivity observer energyEp used for passivity analysis. Simulation
parameters are listed in Table I: parameters (A) for the absolutely stable
and passive, parameters (B) for the absolutely stable and non-passive, and
parameters (C) for the potentially unstable and non-passive.

Table II
THE CONTROLLERS GAINS OF THE TRIPLE-USER COLLABORATIVE HAPTIC

VIRTUAL ENVIRONMENT SYSTEM USED IN SIMULATIONS. (A) PASSIVE

AND ABSOLUTELY STABLE, (B) ABSOLUTELY STABLE BUT NON-PASSIVE,
(C) POTENTIALLY UNSTABLE AND NON -PASSIVE.

(A) M01 0.4 Km1 1 K01 15 K12 6
M02 0.4 Km2 1 K02 15 K23 6
M03 0.4 Km3 1 K03 15 K13 6

(B) M01 0.4 Km1 260 K01 15 K12 6
M02 0.4 Km2 260 K02 15 K23 6
M03 0.4 Km3 260 K03 15 K13 6

(C) M01 0.4 Km1 2 K01 6 K12 3
M02 0.4 Km2 1 K02 6 K23 3
M03 0.4 Km3 3 K03 6 K13 3

for a period of time, indicating potential instability of the
trilateral haptic system.

The dissipated energy (69) profiles (Ep) are plotted in
Figure 6(b). As it can be seen, if the controllers gains are
selected according to (51), e.g., as listed in Table I(A), then
the passivity observer outputEp is non-negative at all times.
However, when the controllers gains violate (51), e.g., as listed
in Table I(B) and (C), then the passivity observer outputEp

is not always positive, indicating the loss of passivity of the
haptic teleoperator. Evidently, passivity is more restrictive than
absolute stability.

2) Triple-user collaborative haptic virtual environment sys-
tem: According to (64) and (68), the stability of the triple-
user collaborative haptic virtual environment system should
depend on the controllers gains and robots parameters. In the
simulations, the parametersMmi, M0i, Kmi, K01, K12, K13,
andK23, wherei = 1, 2, 3, were chosen according to Table
II. Gains in Table II(A) satisfy (64) and (68), in Table II(B)
satisfy (68) but not (64), and in Table II(C) satisfy neither(64)
nor (68). Also,α = 1

2
.
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Figure 7. Simulation results for triple-user haptic virtual environment system.
(a) Input energyEs at the master #1’s port for absolute stability analysis,
and (b) passivity observer energyEp used for passivity analysis. Simulation
parameters are listed in Table II: parameters (A) for the absolutely stable
and passive, parameters (B) for the absolutely stable and non-passive, and
parameters (C) for the potentially unstable and non-passive.

The input energy (70) profiles (Es) are plotted in Figure
7(a). As it can be seen, if the parameters are selected according
to (67)-(68), e.g., as listed in Table II(A) and (B), then
the input energy at port 1Es is non-negative at all times,
indicating the absolute stability of the trilateral hapticsystem.
However, when the parameters violate (67)-(68), e.g., as listed
in Table II(C), the input energyEs will become negative at
least for a period of time, indicating potential instability of the
trilateral haptic system.

The dissipated energy (69) profilesEp are plotted in Figure
7(b). As it can be seen, if the parameters are selected according
to (64), e.g., as listed in Table II(A), then the passivity observer
output Ep is non-negative at all times. However, when the
parameters violate (64), e.g., as listed in Table II(B) and
(C), then the passivity energy observer outputEp is not
always positive, indicating non-passivity of the trilateral haptic
system. Evidently, passivity is more restrictive than absolute
stability, as far as the stability of the overall teleoperation
system is concerned.

B. Experiments

For experiments with a dual-user haptic teleoperation sys-
tem, we use an Phantom Omni robot (Sensable Technolo-
gies/Geomagic, Wilmington, MA, USA) as the master #2, and
two Phantom Premium 1.5A robots as the master #1 and as
the slave. Out of the three actuated joints of each robot, the
first joint, which rotates about the vertical, is consideredin the
experiments while the second and the third joints, which form
a parallel mechanism, are locked using high-gain controllers.
The Phantom Premium robot for master #1 is equipped with
a JR3 6-DOF force/torque sensor (JR3, Inc., Woodland, CA,
USA) for measuring the external contact forces.

The experimental setup is shown in Figure 8; this figure
shows the exact arrangement for the passivity experiments.For
the absolute stability experiments, the only difference isthat
the master #1 is controlled by a human user rather than being

Master #1SlaveMaster #2

JR3 force/torque 

sensor

Spring Clamped

Figure 8. Experimental setup where the master #2 is connected via passive
spring to stiff wall, the slave is in free motion. In absolutestability experiment,
the master #1 is controlled by a human user. In passivity experiment, the
master #1 is physically clamped.

Table III
THE CONTROLLERS GAINS OF THE POSITION-POSITION DUAL-USER

TELEOPERATION SYSTEM USED IN EXPERIMENTS. (A) PASSIVE AND

ABSOLUTELY STABLE, (B) ABSOLUTELY STABLE BUT NON-PASSIVE, (C)
POTENTIALLY UNSTABLE AND NON -PASSIVE.

Master #1 Master #2 Slave
(A) Kpm1 580 Kpm2 580 Kps 580

Kvm1 360 Kvm2 360 Kvs 360
(B) Kpm1 580 Kpm2 580 Kps 1740

Kvm1 360 Kvm2 360 Kvs 1080
(C) Kpm1 30 Kpm2 800 Kps 150

Kvm1 50 Kvm2 200 Kvs 600

physically clamped. In both passivity and absolute stability
experiments, the master #2 is connected via a pair of passive
springs to a stiff wall and the slave is in free motion. Each
of the passivity and the absolute stability experiments are
done under three different set of position-position teleoperation
control gains according to Table III. Gains in Table III(A)
satisfy (51) and (59), in Table III(B) satisfy (59) but not (51),
and in Table III(C) satisfy neither (51) nor (59).

As far as the absolute stability experiments, the input energy
(70) profilesEs are plotted in Figure 9(a). As it can be seen,
if the controllers gains are selected according to (59), e.g.,
as listed in Table III(A) and (B), then the input energy at
port 1Es is non-negative at all times, indicating the absolute
stability of the trilateral haptic teleoperator. However,when
the controllers gains violate (59), e.g., as listed in TableIII(C),
the input energyEs will become negative at least for a period
of time, indicating potential instability of the trilateral haptic
teleoperator.

As far as the passivity experiments, the dissipated energy
(69) profilesEp are plotted in Figure 9(b). As it can be seen,
if the controllers gains are selected according to (51), e.g., as
listed in Table III(A), then the passivity observer outputEp

is non-negative at all times. However, when the controllers
gains violate (51), e.g., as listed in Table III(B) and (C),
then the passivity observer outputEp is not always positive,
indicating the loss of passivity of the haptic teleoperator. This
again reaffirms that the teleoperator passivity requirement is
too restrictive and conservative (for the teleoperation system
stability) compared to teleoperator absolute stability.
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Figure 9. Experiment results for the dual-user teleoperation system. (a) Input
energyEs at the master #1’s port for absolute stability analysis, and(b)
passivity observer energyEp used for passivity analysis. Both plots pertain to
a position-position dual-user teleoperator. Experimental parameters are listed
in Table III: parameters (A) for the absolutely stable and passive, parameters
(B) for the absolutely stable and non-passive, and parameters (C) for the
potentially unstable and non-passive.

VII. C ONCLUSIONS ANDFUTURE WORKS

In this paper, we showed how the absolute stability crite-
rion is less conservative than the passivity criterion for both
bilateral and trilateral haptic teleoperators and that thetwo
criteria become the same when a bilateral or trilateral haptic
system is modeled by a immittance matrix have|p12| = |p21|,
|p13| = |p31|, and|p23| = |p32|. Both analytically and through
simulations/experiments involving dual-user haptic teleoper-
ation of one slave robot and triple-user collaborative haptic
teleoperation in a virtual environment, the two criteria were
compared. It was concluded that the absolute stability criterion
is less conservative compared to the passivity criterion for
position tracking trilateral haptic teleoperators. In thefuture,
the absolute stability criterion can be used to investigatethe
stability of trilateral haptic systems that experience time delays
in their communication channels.
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