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Abstract—The use of robots for rehabilitation has become
increasingly attractive in recent years. Robots are capable of
providing highly repetitive hands-on therapy for patients. In this
paper, we present a robotic system for learning a therapist’s
behavior when interacting with a patient to complete a therapy
task. Learning from Demonstration (LfD) techniques are utilized
to statistically encode the therapist’s behaviors during interaction
with a patient. Demonstrations are provided by having the
therapist move the patient (and the robot) during the therapy
task, which is known as kinesthetic teaching. Later, reproduction
of the therapist’s interaction is performed by a robot in the
absence of the therapist, allowing a patient to continue practicing
the therapy task. The results show the system is able to provide
interactions similar to the therapist’s demonstrated behavior for
a given task.

Index Terms—Robotic rehabilitation, kinesthetic teaching, ac-
tivities of daily living

I. INTRODUCTION

With an increase in the age of the population, integration
of robotic assistance in rehabilitation medicine has grown
more attractive in recent years. Robots enable the provision of
repetitive, high-intensity hands-on therapy [1]. These benefits
are applicable to post-stroke rehabilitation as an example,
where repeated activation of muscle motor groups is necessary
to reassociate damaged neural structures [2]. Stroke is the fifth
leading cause of death globally, causing approximately 6.5
million deaths each year [3]. In Canada alone, stroke costs the
healthcare system $22.2B annually [4], leaving more effective
and efficient treatments to be desired. Conventional hand-over-
hand therapy for stroke patients, in which the therapist would
monitor the patient and directly apply assistive/resistive forces
when necessary, is too burdensome on the therapist. This limits
the amount of time a therapist can effectively spend with a
patient which in turn limits the opportunity for the patient to
practice.

Rehabilitation medicine has also recently come to focus
on practicing functional tasks, also referred to as Activities
of Daily Living (ADLs). ADLs take the form of day-to-
day tasks such as opening doors, cooking, and dressing to
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name a few, and are practiced in order to provide gains in
neuromuscular coordination that are directly translatable to
daily life. Current practice is for therapists to either perform
assessments of rehabilitation gains using ADLs in tests, or to
perform in-home training for practicing ADLs. Use of ADLs
as a focus for stroke rehabilitation has been shown to provide
improved independence and quality of life outcomes [5]. This
is opposed to the more traditional movement therapy, in which
a patient simply moves and exercises their affected limbs.
Robots have traditionally been preprogrammed to provide
interactions appropriate to predefined tasks, which is sufficient
in the simple case of movement therapy. However, ADLs
are inherently more complex; the tasks are performed in
unstructured environments where task parameters may vary
greatly (e.g., the shape of a door handle, the location of the
handle, etc.) and full knowledge of the task is unobtainable.
As a result, ADL-based therapy has only recently begun to
see computer implementation as in [6], and has seen little
to no integration with robotics in particular. Despite these
limitations, healthy humans can perform ADLs robustly. In
order to take advantage of this robustness, rehabilitation robots
should be programmed to enable quick redefinition of therapy
tasks and the therapeutic behavior by therapists that have
minimal programming knowledge. This redefinition happens
not by manipulating computer codes but by physically moving
the rehabilitation robot as will be explained later.

Learning from Demonstration (LfD) techniques [7] can be
implemented to allow for hands-on kinesthetic demonstration-
based reprogramming of robots for this purpose. Demonstra-
tion refers to the performance of a task which a robotic system
observes either indirectly (e.g., through motion capture) or
directly (i.e., the robot is moved by the demonstrator through
the task trajectory). By statistically encoding behaviors learned
through demonstrations, the robot can be programmed in-
tuitively to imitate desired actions such as providing thera-
peutic forces to patients interacting with the robot. Learning
methods making use of Gaussian Mixture Models (GMMs)
[8] have become especially prevalent in the field of robotic
automation in recent years. These models require relatively
few demonstrations for recreation of the demonstrated be-
havior as opposed to other machine learning methods such
as reinforcement learning, and so are ideal for the described
scenario [7]. Research in the area of robotic rehabilitation978-1-5386-2512-5/18/$31.00 c©2018 IEEE



has seen a rise in the incorporation of LfD techniques. LfD
techniques have been used to succesfully teach a robot to guide
a patient through specified trajectories for ADL training [9],
[10]. Authors in [11] present an LfD approach that allows an
assistive robot to cooperatively dress a user while being able
to adapt to the highly unstructured nature of the task. LfD
has also been employed to teach robots to assist a patient in
completing a trajectory based specifically on the variance of
the therapist’s demonstrations [12], [13]. However, there is a
lack of literature aiming to learn a therapist’s impedance, and
using the learned impedance to provide assistance to a patient
practicing ADLs.

Providing demonstrations to the learning system itself
should also be as intuitive as possible. Kinesthetic demon-
stration provides such an intuitive method. As a first step, this
entails making the robot manipulator as compliant as possible
to an operator’s physical input. For smaller lightweight robots,
this can often be achieved simply through the operator’s input
overcoming the inertia and other dynamics of the robot’s me-
chanical components, i.e., motors. For larger robots, however,
this is typically impossible as internal gearing and friction
make the structure non-backdrivable. Admittance control is a
common technique for introducing compliance in such cases
[14]. A force sensor is attached to the robot end-effector.
Interaction forces sensed at the end-effector cause movements
such that a pre-set dynamic relationship between the applied
force and the ensued motion holds. This second method will
be employed with the setup presented in this work.

We present a proof of concept system for kinesthetic
teaching of rehabilitation robots based upon LfD principles.
The system is intended to be kinesthetically programmed by
users with little to no programming experience, e.g., physio-
therapists. Provided with motion and force data from various
demonstrations, the system aims to extract a data-driven model
of the therapist’s behavior (e.g., the levels of assistive/resistive
forces) throughout the performance of an ADL task. This will
require a set demonstrations involving both the therapist and
the patient completing the task (successfully), and another
set involving only the patient attempting to complete the
task (unsuccessfully). Through this, a so-called ”performance
differential” [12] may be defined, inherently describing the
therapist’s behavior. Fig. 1 depicts a generalization of the
system.

The paper is organized as follows. Section II outlines the
proposed components involved in the design of the system, and
Section III describes the experimental evaluation and presents
the results. Section IV provides discussion of results and
finally Section V offers concluding remarks and comments
on future directions for the work.

II. PROPOSED APPROACH

We aim to produce a system that learns and replicates
the impedance-based behavior of a therapist in 3-dimensional
space, where a robot and two humans (i.e., a therapist and a
patient) will perform a collaborative task. The robot manipu-
lator acts as a separate agent interacting with the task, much
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Fig. 1. A generalized diagram for the LfD procedure employed in this work,
where in this example the participants open a (self-closing) door. In diagram
1, the therapist and patient cooperatively interact while completing the task,
moving the door to the position shown in diagram 2. In diagrams 3 and 4, the
patient attempts to complete the task on their own. In phases 1-4, the robot
is compliant and only passively observes and records the demonstrations.
The learning system then learns the therapist’s behavior from the provided
demonstrations in phases 1-4. Then, in diagrams 5 and 6, the robot replicates
the learnt behavior, allowing the patient to practice the therapy task in the
therapist’s absence while experiencing the therapist’s interactions.

like how the therapist and the patient will contact the task
environment. We fix the robot end-effector having an attached
wrist force sensor to the task. We need three components:
an admittance controller for making the robot compliant, an
algorithm for learning the task trajectory, and an algorithm
for learning and reproducing the therapist’s impedance-based
behaviors. Fig. 2 provides an overview of the system.

A. Admittance Control Scheme
A simple admittance control scheme is used to introduce

compliance to the robot. Admittance controllers produce a
desired displacement based on a predefined relationship with
sensed forces. In implementation, this takes the form of the
transfer function

G(s) =
xSdes

(s)

fS(s)
=

1

Λs2 + Ψs+ Γ

where fS is the force exerted on the sensor, xSdes
is the

desired displacement of the robot, and Λ, Ψ, and Γ represent
the inertia, damping, and stiffness constants, respectively. The
control law is given by

fS = ΛẍSdes
+ ΨẋSdes

+ ΓxSdes
(1)

Fig. 3 provides a schematic of the admittance control loop.
The admittance control adds the displacement xSdes

calculated
from (1) to the robot’s current position. As the patient and
therapist exert forces on the robot end-effector, the forces
measured by the sensor can be expressed as

fS = fE + fP + fT (2)

where fE is the force presented by the task environment, fP
is the force exerted by the patient, and fT is the therapeutic
force exerted by the therapist on the robot end-effector.
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Fig. 2. Process for reproducing the therapist’s behavior learned through demonstrations. Demonstrations are provided to train the learning system (in blue).
Then, in reproductions, the patient and task environment exert forces on the robot’s force sensor. The admittance controller (in green) causes changes in the
robot’s end-effector position according to the measured forces. Reproduction of the therapist’s behavior (in red), which in this scenario is an applied force, is
determined using position feedback from the robot and the learned model.
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Fig. 3. Admittance control block diagram. The force measured by the force
sensor fS produces the desired displacement xSdes

through the control law
in (1). A position controller produces the robot control torques u using the
displacement.

B. Algorithm for Task Trajectory Encoding

LfD is employed in the system to generalize and learn
the spatial movements necessary to complete the task. LfD
typically involves two separate phases: a demonstration phase
where trajectories are learned and statistically encoded, and
a reproduction phase where the system performs regression
using the generated model to provide a rendition of the
earlier demonstrated behavior. A GMM is trained using all
demonstrations, providing a probabilistic representation of the
motion required to complete the task. GMMs are probability
density functions used to cluster data, constructed as weighted
sums of Gaussian component densities [8]. This is expressed
as

p (ξ) =

Nk∑
k=1

p (k) p (ξ|k)

with a total of Nk Gaussian components in the model, p (k)
being the priors, p (ξ|k) being the conditional density func-
tions, and ξ being a D-dimensional data vector. In this work,
ξ = xR = [x, y, z]

T , is the position of the robot end-effector
expressed in the robot’s base frame. The parameters p (k)
and p (ξ|k) are computed through the use of each Gaussian’s
parameters {πk, µk,Σk}, representing the prior probabilities,
mean vectors, and covariance matrices, respectively. For de-
tails, see [8].

The Gaussian parameters are trained using the Expectation-
Maximization algorithm, iterating the parameters until the
convergence of an optimization measure (typically the log-
likelihood) is achieved. The E-step is of particular interest,
where the likelihood or activation weight of each ith Gaussian
is computed for each data point ξ as follows:

wi =
πiN (ξ|µi,Σi)∑Nk

k πkN (ξ|µk,Σk)
(3)

C. Algorithm for Encoding Therapist’s Impedance-based Be-
havior

We propose that during performance of a task, the in-
teraction forces exerted on the robot end-effector by each
of the agents (task environment, patient, therapist) can be
simplified as a set of spring forces, linearized about points
of the demonstration. We then rewrite (2) as

fS = fE + fP + fT

= (KE +KP +KT ) (xf − xR)

= (K ′E +KT ) (xf − xR)

(4)

where xf is the approximate position of the task goal point
(taken as the average of the demonstration endpoints), and KE ,
KP , and KT represent the stiffnesses of the linearized task
environment, patient, and therapist, respectively. As the system
aims to learn specifically the therapist’s force, we combine the
spring constants for the patient and the task environment forces
into K ′E , i.e., K ′E = KE +KP .

Demonstrations will be recorded for two cases: when the
task is performed by the therapist and the patient together
(assisted), and when the patient attempts to perform the task
by themselves (not assisted). We define the spring constants
linearized from the data associated with these cases as KA =
K ′E +KT and KNA = K ′E , respectively. The spring constant
for the therapist’s force can then be estimated from the
difference between the assisted and unassisted spring constants
as follows

KT = KA −KNA (5)

Estimation of the linearized spring constants will be per-
formed in a manner similar to [15] and [16]. Weighted
Least Squares (WLS) estimation is used to compute the
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Fig. 4. Simplified diagram of position-based impedance retrieval for reproduc-
tion of the therapist’s behavior. In (a), activation weights for the first Gaussian
component (colored blue) are highest when the robot is in close proximity
to the component. A stiffness constant is retrieved for the corresponding
Gaussian and used to generate the forces learned from the therapist. In (b), a
different stiffness constant is used when the patient progresses into the spatial
coordinates associated with a different Gaussian component (colored red). In
actual reproduction, the retrieved stiffness constant may be a mixture of the
learned stiffness constants influenced by multiple components, instead of a
single constant from the influence of a single component as shown here.

stiffness constant associated with each Gaussian compo-
nent Ki =

[(
XTWiX

)−1
XTWiFS

]
, where by concate-

nating all N datapoints from every demonstration together,
we have X = [(xf − xR1

) , . . . , (xf − xRN
)]
T , Wi =

diag ([wi1 , wi2 , . . . , wiN ]) as calculated in (3), and FS =
[fS1

, fS2
, . . . , fSN

]
T . In this work, we assume no correlation

exists between forces and positions across different Carte-
sian axes. As a result, the WLS estimation is performed
for each axis and all spring constant matrices simplify to
Ki =

[
Kix ,Kiy ,Kiz

]T
. KA and KNA are estimated for each

Gaussian component in this way, where position and force
data from the assisted demonstrations are used in X and FS

to calculate KA, and from the unassisted demonstrations to
calculate KNA. Then, the estimated KT for each Gaussian
component is taken as the difference between KA and KNA

as in (5).
In the reproduction phase, the estimated therapist force

applied by the robot is given as

fT =

Nk∑
i=1

wi [KTi
(xf − xR)] (6)

where KTi is the therapist’s stiffness associated with each ith

Gaussian component, calculated as described previously. The
robot’s position xR is used to calculate the weights wi of each
component. The applied force fT is then given by the mixture
of the spring forces from all of the components according to
the robot’s distance from the target point. Fig. 4 depicts this
concept.

III. EVALUATION

A. Experimental Setup

We evaluate the system on a simple cooperative task where
the participants open a drawer fully. The drawer has a spring
attached to its back, which resists the opening movement
and tends to return the drawer to its closed position. In the
experiments, the patient is emulated by a spring attached to
the front of the drawer, which tends to open the drawer. The

Therapist

Patient

Robot

Force Sensor

Resistive Spring

Fig. 5. Experiment setup.

constants of the resistive and patient springs are equal, but
the springs come to relaxation at a point before the drawer is
fully opened. This means the emulated patient cannot complete
the task alone. A Motoman SIA-5F (Yaskawa America, Inc.,
Miamisburg, Ohio, USA) seven Degrees-of-Freedom (DoF)
serial manipulator is used as the rehab robot, with a 6-DoF
ATI Gamma Net force and torque sensor (ATI Industrial
Automation, Inc., Apex, North Carolina, USA) attached at the
wrist joint before the end-effector. The therapist is represented
by an able-bodied participant. Fig. 5 shows the experimental
setup.

The admittance parameters in (1) were chosen experimen-
tally, where Λ and Γ were given values permissive to free
movement, while the damping parameter Ψ was given a higher
value and decreased until instability was observed. Final values
for admittance parameters are given as Λ = 0, Ψ = 5 N·s/mm,
and Γ = 0.1 N/mm.

Three demonstrations are performed for each of the assisted
and unassisted scenarios, providing six demonstrations in total.
In the assisted scenario, the user representing the therapist pro-
vides assistance when the motion of the patient alone begins
to slow. In the unassisted scenario, the spring representing the
patient is allowed to pull the drawer to equilibrium. To acquire
more data, the drawer is moved to its fully extended position
and released, moving against the patient back to equilibrium.
Complete force profiles for the full motion trajectory are
generated for the unassisted case in this manner.

B. Results

A model of 12 components (Nk = 12) was generated
from the provided demonstrations. This selection is partially
motivated by the biomechanics of human reaching movements;
a person first accelerates their hand, travels towards the goal
at velocity, and finally decelerates to accurately end their
movement. As such, we choose the number of components
to be a multiple of three. Fig. 6 shows the generated model
against the training data. The learned model is then used to
estimate the spring constant values KTi as described in Section
II-C.



Fig. 6. Decomposition of motion trajectory into Nk = 12 components using
a GMM.

Fig. 7. Reproduced assistive force output and component weights for a
patient-only reenactment of the task. The model outputs a noticeably large
force for the k = 11 Gaussian component.

The system is then evaluated in the real-world experimental
setup. The drawer is released from its initial closed state
with only the patient-emulating spring and the rehab robot
acting against the resistive spring to open the drawer. Since
the motions and forces associated with the task are almost
completely in the y-axis, only those results are shown hereon.
Resulting trajectory and force data is captured in Fig. 7.

We compare the resulting net forces from the reproduction
to the mean of those obtained during demonstrations. The
force profiles are arranged against their respective position
profiles, shown in Fig. 8. Note that for plotting purposes,
the net reproduction force data is calculated by summing
the model’s assistive force fT , obtained from (6), with the
sensor’s perceived force fS . Mean absolute error (MAE) for
the reproduction is found to be MAE = 1.8763 N with the
maximum instantaneous absolute error found as AEmax =
8.012 N. Lastly, the datasets have a correlation coefficient of
ρ = 0.4034.

IV. DISCUSSION

Reproduction of the therapist’s assistance is performed
successfully. When releasing the drawer from its initial closed
position, the system is able to command the robot to assist

Fig. 8. Net force profile comparisons across reproduction and training
datasets. The unassisted case force data is in dotted red, the therapist-
assisted case force data is in solid blue, and the robot-assisted data is in
dashed green. The model force output closely matches that of the therapist
demonstrations until nearer to the target point; the forces afterwards provide
sufficient assistance to complete the task, but are noticeably higher.

the patient in opening the drawer fully. No sudden, unsafe
movements or moments of instability were observed. However,
the MAE and correlation appear to indicate that the system
produces only a moderately accurate reproduction of the ther-
apist’s assistive force. The results presented in Fig. 8 provide
some insight on a possible source of the error. The system
reproduces appropriate force output with minimal discrepancy
for the majority of the period in which there is therapist
intervention, roughly between y = 50 mm and y = 170
mm. However, forces after this point quickly diverge from
the real therapist’s and are responsible for the high AEmax.
Relating this to Fig. 7 identifies the Gaussian component
k = 11 as potentially problematic. This is likely because the
demonstration data have greater variance near the end of their
trajectories, as seen in Fig. 6. Gaussian k = 11, which is
nearest to the target point, must cover a larger spatial volume
than most of the other Gaussians. However, the linearization of
the assistive stiffness constants may be too general as a result.
A finer resolution is needed for the model, but simply adding
more Gaussian components may be an impractical solution as
it increases model complexity and computation time, making
the system less user-friendly. The EM algorithm may also
place the additional Gaussian components away from that
portion of the trajectory anyways. A possible solution would
be to restructure the task in order to take advantage of more
sophisticated Gaussian modeling methods such as the Stable
Estimator of Dynamical Systems (SEDS), which provides a
global-asymptotically stable task model [17].

With regards to the compliant nature of the system, the
results are satisfactory. The system is kinesthetically movable,
but not transparent to an ideal degree since the damping
coefficient is high. Implementing an adaptive admittance con-
troller, such as in [18] or [19] is a possible solution where
the controllers adapt the admittance parameters online in
response to parameters like the force tracking error or signal
energy. Alternatively, an impedance controller can be used



with torque control. The robot dynamics would be required
however, which are not readily available in this case.

V. CONCLUSION

In this paper, kinesthetic teaching of a robot was used for
learning a therapist’s behavior from recorded demonstrations.
GMMs were used as the basis for learning the movements
necessary for completing an activity of daily living task,
and an assistive force was reproduced by the robot based
on estimations of the therapist’s impedance-based behavior
in the therapist’s absence. We show that the system is able
to properly reproduce the therapist’s behaviors to assist a
patient in completing the task. Future work will aim to
incorporate improved learning algorithms that better generalize
across demonstrations. We will also incorporate assistance-as-
needed (AAN) features, in which the robot delivers assistance
depending on the patient’s performance.
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collaborative impedance-based robot behaviors,” in Proceedings of the
Twenty-Seventh AAAI Conference on Artificial Intelligence, AAAI’13,
pp. 1422–1428, AAAI Press, 2013.

[16] P. Kormushev, S. Calinon, and D. G. Caldwell, “Imitation learning of
positional and force skills demonstrated via kinesthetic teaching and
haptic input,” Advanced Robotics, vol. 25, no. 5, pp. 581–603, 2011.

[17] S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear dy-
namical systems with gaussian mixture models,” IEEE Transactions on
Robotics, vol. 27, pp. 943–957, Oct 2011.

[18] H. Seraji, “Adaptive admittance control: an approach to explicit force
control in compliant motion,” in Proceedings of the 1994 IEEE Inter-
national Conference on Robotics and Automation, pp. 2705–2712 vol.4,
May 1994.

[19] F. Dimeas and N. Aspragathos, “Online stability in human-robot coop-
eration with admittance control,” IEEE Transactions on Haptics, vol. 9,
pp. 267–278, April 2016.


