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Abstract— Human-robot collaboration (HRC) significantly
extends robotic systems’ applications when working in spaces
like houses, hospitals, or laboratories. However, new challenges
appear during a close collaboration between humans and
robots and imitating the movement of humans by robots.
Learning from demonstration (LfD), or kinesthetic teaching,
is a popular approach to help teach a robot human behavior
by demonstrations without the need to explicitly reprogram
the robot for different procedures. In this paper, we propose
a method for object manipulation, including lifting, carrying,
and lowering the object through a collaboration of a human
with a wheeled mobile manipulator (WMM). The WMM is first
trained with the help of a human demonstrator to collaborate
with the user to execute the task. Then, the WMM will
independently cooperate with the user by reproducing the
learned skills to perform the same task. The redundancy of
the WMM will also be employed to enhance its force exertion
capability in the vertical direction to offset the object’s weight.
The advantages and effectiveness of the proposed method are
investigated through experiments.

I. INTRODUCTION

Wheeled mobile manipulators (WMMs) have found many
applications in diverse fields, including door opening for
disaster rescue [1], heavy object pushing [2], and human-
robot collaboration (HRC) [3] due to their mobility and
manipulation capability. The addition of a mobile platform
greatly enlarges a manipulator arm’s workspace, enabling it
to execute tasks requiring a large range of motion. Using
WMMs for HRC is beneficial in improving work efficiency
and reducing the human user’s burden. Because the envi-
ronment is unstructured and the tasks are unmodeled, taking
full advantage of a WMM for HRC to execute tasks is in-
credibly challenging. Learning from Demonstration (LfD), or
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kinesthetic teaching, is a convenient and effective approach
to teach a robot various skills through human demonstrations
[4]. This approach considerably reduces the user’s burden to
program a complex robotic system and is also conducive to
reproducing the desired human intention.

Averaged across all professions, the top cause of injury
among workers is bodily reaction and exertion (including
overexertion). One leading cause of overexertion is repetitive
and demanding motions involving lifting and carrying heavy
objects. Workers who perform repetitive tasks of loading and
unloading risk injuries, musculoskeletal disorders, muscle
fatigue, and low productivity. One way to avoid these injuries
is by employing a WMM to offset the weight of the objects.
Also, due to the impact of the COVID-19 pandemic, WMMs
have found many applications to guarantee the safety of
human users [5]. For the tasks that need two people to
work together to carry an object, one of the workers can
be replaced by a robot. In the demonstration phase for the
LfD, the demonstrator will only need to be close to the user
for a short time to reduce disease transmission risk.

The deployment of mobile manipulators in HRC has
attracted many researchers in recent years [3], [6]–[9].
However, investigations to date have not considered the
configuration optimization for the WMM to enhance its force
exertion ability for heavy objects or employ the LfD tech-
nique to make the system “smarter”. Also, the majority of
the proposed methods only considered HRC in the horizontal
motion in carrying the object; object lifting and lowering
stages were not considered.

One limitation of the robotic system for HRC lies in that
the system is not intelligent enough to understand the user’s
intention, but the LfD approach can solve this problem by
intuitively transferring a human’s knowledge of a task to a
robot through demonstrations [10]. Learning based on the
Gaussian mixture model (GMM) has become prominent in
the fields related to HRC due to its need for only a few
demonstrations, its lack of need for explicit programming
on a task-specific basis, and fast computation compared
with other learning methods, making it feasible for real-time
implementation. From our group, Fong et al. utilized GMM
to encode the task trajectory during the demonstration phase
and realized impedance-based behavior learning through
stiffness estimation [11]. Then, they performed motion repro-
duction via Gaussian mixture regression (GMR) [12] during
the imitation phase for kinesthetic teaching of rehabilitation
robots. Rozo et al. [10] put forward a task-parameterized
version of GMM (TP-GMM) to encode the demonstrations
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and used GMR to reproduce the learned results. This method
has been effectively implemented in human-robot cooper-
ative transportation and assembly missions. However, the
feasibility of the tasks has been significantly limited by the
manipulator’s workspace.

The exploitation of WMMs can ease the kinematic and
dynamic limitations of robotic systems, which is another
obstacle for HRC. For instance, the WMM has an unlimited
workspace in the horizontal plane. Also, if the WMM system
is redundant for a given task, which means there are more
degrees of freedom (DOFs) in the system than the task needs,
the redundancy of the robotic system can be used to enhance
some required features for a task with null-space control.
From our group, Torabi et al. [13], [14] used the redundancy
of surgical robots to enhance the task performance for
surgeons. Chen et al. [15] proposed a dexterous grasping
method for a WMM to maximize its manipulability on a
given manipulation task via null-space control. To improve
the force exertion capability of a redundant manipulator,
Chiu [16] provided the notion of task compatibility, which
could strengthen the force exertion capability in a predefined
direction. Ajoudani et al. [17] advanced this concept by intro-
ducing a joint torque scaling matrix to handle the difference
among the joint torque limits. However, both approaches
were only conducted with a single manipulator and not for
a WMM system.

In the field of LfD for HRC, most of the literature only
focuses on some simple tasks or a portion of a complex
mission, such as moving an object [10] and handing over
an object [18]. In terms of performing configuration opti-
mization for a WMM system, most of the previous work has
been limited to ensuring singularity avoidance and manip-
ulability maximization [19]. These efforts failed to address
the problem of limited force exertion capability of the robot,
which may be needed during the execution of the object
manipulation tasks if the object is heavy. For heavy object
manipulation, the redundancy of the WMM system also has
the potential to be implemented to enhance the system’s force
exertion capability in a required direction.

This study aims to present an approach to teaching a
WMM from demonstrations to execute heavy object ma-
nipulation through the HRC framework. Large forces are
prerequisites for manipulating a heavy object. Thus, in
this study, we improve the WMM force exertion capabil-
ity in a predefined direction by kinematic reconfiguration.
The main contributions of the paper are as follows: (1)
An HRC method for realizing heavy object manipulation
(lifting, carrying, and lowering) with a WMM using the
combination of Cartesian space motion learning and null-
space optimization control is proposed; (2) for end-effector
motion imitation, a stiffness estimation method based on the
learned GMM to reproduce the demonstrator’s impedance-
based behavior to achieve the high-rigidity requirement in
the vertical direction, and GMR to realize the compliant
motion demand in the horizontal plane are adopted; and (3) a
null-space reconfiguration optimization approach is provided
to enhance the end-effector’s force exertion capability in a
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Fig. 1: Illustration of LfD procedure for object manipulation
via HRC.

predefined direction with consideration of the manipulator’s
gravity.

Fig. 1 shows the general diagram of manipulating an object
using LfD in this paper, which can be divided into three
stages: lifting, carrying, and lowering. Fig. 1a shows the
demonstration phase, where a demonstrator/helper teaches
the WMM how to handle the task with the user. The
WMM will then learn the demonstrator’s task skills and
can subsequently complete the task independently with the
user, as shown in Fig. 1b. The lifting and lowering stages
contain sizeable force output in the vertical direction during
movement. Thus, the interaction force between the human
and the object should be learned in addition to the motion
between them. The carrying phase involves only the desirable
compliant movement in the horizontal plane. Therefore, only
the kinematic motion will be learned and reproduced.

The remainder of this paper is organized as follows.
Section II provides the kinematic modeling and compliance
control method of WMMs. In Section III, the learning and
reproduction approaches from human demonstration with
HRC are presented. Experiments that illustrate the validity
and advantages of the proposed approach are shown in
Section IV. Section V summarizes the approach and its
outcomes.

II. KINEMATIC MODELING AND COMPLIANCE CONTROL
OF WMMS

In this section, the forward kinematics at the velocity level
for WMMs are presented. A Cartesian space admittance
control scheme to achieve compliance and a null-space
optimization algorithm to realize force exertion capability
enhancement are also provided.

A. Kinematic Modeling of WMMs

The WMM in this study is composed of a manipulator arm
mounted on a mobile platform. Thus, the kinematic model
for the entire WMM system is derived based on the two
subsystems’ kinematic models – the mobile platform and the
manipulator. With the assumption that there is no slippage
or skidding between the wheels of the mobile platform and
the ground (i.e., pure rolling), we can express the kinematic
model of the mobile platform as q̇p = G(qp)vp, where
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q̇p ∈ Rnp represents the generalized coordinate vector of
the mobile platform and vp ∈ Rp is the input velocity vector
of the wheels. G(qp) ∈ Rnp×p denotes the constraint matrix
of the platform (holonomic or nonholonomic) that transfers
the wheel velocities to the generalized platform velocities.
The manipulator is usually subject to holonomic constraints,
i.e., its generalized velocity vector q̇m ∈ Rm can be assigned
arbitrarily at any manipulator configuration. Here, we specify
q̇m = vm, where vm ∈ Rm denotes the joint velocity input
vector for the manipulator.

The generalized coordinate vector and velocity input
vector for the entire WMM system are defined as q =
[qTp , q

T
m]T ∈ Rnp+m and v = [vTp , v

T
m]T ∈ Rn, respectively,

where n = p+m. Then, the forward kinematics at velocity
level for the entire WMM can be calculated as

ẋ = Ju(q)q̇ = [Jp(q) Jm(q)]

[
q̇p
q̇m

]
= [Jb(q)G(qp) Jm(q)]

[
vp
vm

]
= J(q)v,

(1)

where ẋ ∈ Rr is the Cartesian space velocity vector of the
end-effector with its dimension being r, Jp(q) ∈ Rr×np and
Jm(q) ∈ Rr×m denote the Jacobians of the mobile plat-
form and the manipulator, respectively, Ju(q) ∈ Rr×(np+m)

represents the Jacobian of the unconstrained WMM, and
J(q) ∈ Rr×n represents the Jacobian of the WMM. It is
noteworthy that there are two Jacobians for a WMM because
the generalized velocity vector q̇p for the mobile platform is
not its wheel velocity inputs vp.

B. Compliance Rendered by an Admittance Control Scheme

To achieve robot learning by human demonstration, the
WMM should be compliant with the human or environment’s
external force. One approach is utilizing impedance control
for a torque-controlled robotic system [10], [12], in which an
accurate dynamic model for the system is required. However,
this approach is not applicable for WMM systems since
most of the mobile platforms are velocity-controlled, and
the complex wheel-ground contact is hard to model if not
impossible [20]. Instead, an admittance control scheme is
adopted here with the transfer function at velocity level
expressed as

ẋe(s)

fe(s)
= R(s) =

s

Λs2 + Ψs+ Γ
, (2)

where s denotes the Laplace operator, fe ∈ Rr denotes the
external force vector, and ẋe ∈ Rr represents the resultant
end-effector velocity vector. Λ ∈ Rr×r, Ψ ∈ Rr×r, and
Γ ∈ Rr×r are diagonal matrices representing the desired
Cartesian inertial, damping, and stiffness, respectively. Then,
the desired end-effector velocity is defined as ẋd(t) =
ẋe(t) to realize compliance. It is noteworthy that the end-
effector force fe(t) is estimated by establishing a disturbance
observer for the manipulator.

C. Null-space Control Scheme to Realize Force Enhance-
ment

The WMM is usually a kinematically redundant system
(i.e., r < n). Thus, for a reference end-effector velocity
vector defined as ẋr(t), the kinematic controller for the
WMM with null-space control considered can be expressed
as (the dependence of the variables upon the joint variables
are omitted for brevity)

vr = J†ẋr + (I − J†J)vN , (3)

where vr ∈ Rn represents the reference WMM’s joint
velocity vector, J† = W−1JT(JW−1JT)−1 denotes the
weighted pseudoinverse of J with W being a symmetric and
positive-definite weighting matrix, I represents an n×n iden-
tity matrix, I−J†J is the null-space of J , and vN ∈ Rn is the
null-space velocity vector for configuration optimization. To
track a desired trajectory provided by both the desired end-
effector position xd(t) and the desired end-effector velocity
ẋd(t), a closed-loop controller [2] can be employed to restate
ẋr in (3) as ẋr(t) = ẋd(t) + Kx

(
xd(t) − x(t)

)
, where Kx

is a constant gain scalar.
For heavy object manipulation tasks via HRC, the required

force to counteract the object weight for the robotic system
may be large. Due to the limited manipulator joint torque
output, some heavy objects cannot be lifted. Hence, the null-
space control is implemented in this work to enhance the
end-effector force exertion capability via kinematic recon-
figuration.

With consideration of the joint torque limits of the manip-
ulator, a scalar cost function is defined as [17]

σ1 =
[
uT(JmWτWτJ

T
m)u

]−1
(4)

to maximize the end-effector’s force exertion ability in the
predefined direction, where u ∈ Rr is a unit vector denoting
the optimization direction. Wτ = diag[ 1

τm lim1
· · · 1

τm limm
]

denotes a scaling matrix to normalize the joint torques with
τm limi being the torque limit of the ith joint. However, the
cost function in (4) does not include the manipulator gravity,
which is configuration dependent. Thus, to maximize the
force vector exerted only by the external force, another cost
function is specified as

σ2 = fT
g fg/α, (5)

where fg = J -T
mτg with τg ∈ Rm being the joint torque vector

caused by the manipulator gravity and α is a positive scalar
gain, which makes targets σ1 and σ2 on the same order of
magnitude. Combining (4) and (5), the cost function for the
null-space controller can be defined as σ = w1σ1 − w2σ2,
where w1 and w2 are two constant gains with w1 +w2 = 1.
By calculating the partial derivative of σ to qm, denoting as
Oqmσ, we can obtain the null-space joint velocity vector for
(3) as

vN = kN

[
0p×1

(Oqmσ)T

]
(6)

with kN being a constant gain.
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III. LEARNING AND REPRODUCTION OF
COLLABORATION SKILLS FROM HUMAN

DEMONSTRATIONS

LfD is a method for a robotic system to learn and
reproduce a human’s desired behaviours from demonstration
[12], [21]. In this section, we will focus on how to teach the
WMM with the human’s Cartesian space behaviour for heavy
object manipulation through HRC. Also, the null-space con-
trol for force exertion capacity enhancement is employed
as presented in Section II-C. Here, GMM is employed to
encode the robot trajectory in the demonstration phase. In the
lifting and lowering stages, the trained GMM and stiffness
estimation technique are used to learn the demonstrator’s
impedance-based behavior; and in the carrying stage, the
trained GMM and GMR are adopted to encode and reproduce
the WMM position trajectory taught by the demonstrator.

A. Gaussian Mixture Model for Data Encoding

During the demonstration phase, the WMM and the
demonstrator are holding one end of the heavy object. The
WMM is made compliant via the admittance controller and
completely controlled by the demonstrator. The other end of
the object is grasped by the coagent to achieve the task. All
the recorded data are divided into three portions correspond-
ing to the three stages. For each stage, each demonstration
m ∈ {1, 2, · · · ,M} consists of Ti,m datapoints creating a
dataset of Ni datapoints {ξi,n}Nin=1 with Ni =

∑M
m=1 Ti,m,

where M represents the number of the demonstrations and
i = 1, 2, 3 denotes the manipulation stage. Each ξi,n ∈ RD is
associated with the recorded data, including the end-effector
position, velocity, and external force with D denoting the
datapoint dimensionality.

Based on the demonstrations, the GMM is implemented to
encode the data, presenting a probabilistic representation of
the dynamics required to achieve the task. A GMM of Nk,i
components is expressed by a probability density function

p(ξi,n) =

Nk,i∑
k=1

p(k)p(ξi,n|k) (7)

with p(k) = πi,k being the priors and p(ξi,n|k) being the
conditional density functions. In which, {πi,k, µi,k,Σi,k}
represent the parameters of the kth Gaussian component of
the ith stage, denoting the prior probabilities, mean vectors,
and covariance matrices, respectively.

The optimal estimation of the mixture parameters
is carried out iteratively implementing the Expectation-
Maximization (EM) algorithm until convergence [22] and k-
means procedure is used to initialize the model parameters.
For the kth Gaussian component of the ith stage, the E-step
(expectation step) is expressed as

wi,n,k =
πi,kN (ξi,n|µi,k,Σi,k)∑Nk,i
k πi,kN (ξi,n|µi,k,Σi,k)

, (8)

which plays an important role in deriving the stiffness of the
virtual springs.

B. Demonstrator’s Impedance-based Behavior Learning in
Lifting and Lowering Stages

During the lifting and lowering stages of the task, the
human and the robot should exert a sizeable force to neu-
tralize the object’s weight in the vertical direction. Here, we
utilize several virtual spring models associated with each
Gaussian component k to simulate the impedance-based
behavior exerted by the demonstrator, which is expressed
as

fs,i,n =

Nk,i∑
k=1

wi,n,k
[
Ki,k(µxi,k − xi,n)

]
, (9)

where i = 1, 3 indicates the lifting and lowering stages, fs,i,n
is the demonstrator’s force at step n, Ki,k is a stiffness con-
stant affiliated with the kth Gaussian model, µxi,k represents
the positional component of the models’ mean vectors µi,k,
and xi,n denotes the current end-effector position at step n.

Estimating the model stiffness in this paper is
performed by implementing Least Squares (LS)
estimation. After encoding the demonstration data
via GMM, the observation matrix is defined as
Φi = [φi,1, φi,2, · · · , φi,Ni ]T with φi,n =

[
wi,n,1(µxi,1 −

xi,n), wi,n,2(µxi,2 − xi,n), · · · , wi,n,Nk,i(µxi,Nk,i − xi,n)
]

using (8), and the demonstrator’s force vector is denoted
as Fs,i = [fs,i,1, fs,i,2, · · · , fs,i,Ni ]T. Then, the unknown
stiffness vector Ki = [Ki,1,Ki,2, · · · ,Ki,Nk,i ]

T for all Nk,i
Gaussian models of the ith stage can be expressed as

Ki = (ΦT
iΦi)

−1ΦT
i Fs,i. (10)

Combined with (10), during the reproduction phase, the
estimated demonstrator’s force fest,i,n can be generated
using (9) with the current end-effector’s position.

C. Gaussian Mixture Regression for Trajectory Learning in
the Carrying Stage

During the carrying stage, the heavy object will be moved
in the horizontal plane to the predefined destination, and no
extra force is required in the plane. Thus, only the kinematic
model of this stage will be learned and reproduced using the
demonstrations. With the GMM representation in Section III-
A, the reproduction of the movement in horizontal plane can
be formulated as a regression problem using GMR [10]. The
GMR model can retrieve the next actions on-the-fly relying
on the Gaussian conditioning theorem and linear combination
properties of Gaussian distributions.

In conventional GMR, the query points are defined as
temporal values ξt, and the corresponding spatial values ξ̂s
can then be estimated via regression. For the kth Gaussian
component in the GMM of the second stage, the mean vector
and covariance matrix with consideration of input and output
parameters are expressed as [23]

µ2,k = {µ2,t,k, µ2,s,k}, Σ2,k =

(
Σ2,t,k Σ2,ts,k

Σ2,st,k Σ2,s,k

)
, (11)

respectively.
In this stage, the query points are defined as the time-

independent end-effector positions, and the corresponding
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Fig. 2: Block diagram of the control system. The blue blocks
denote the training system and the golden blocks represent
the reproduction system.

estimated parameters are the end-effector velocities. Thus,
the demonstrator’s behavior can be effectively imitated. The
block diagram of the control system for object manipulation
is illustrated in Fig. 2.

IV. EXPERIMENTAL SETUP AND RESULTS

Several experiments were conducted to demonstrate the ef-
fectiveness of the proposed approach with a four-wheel om-
nidirectional mobile manipulator. The experimental demon-
stration contains two portions: (A) the verification of the
force exertion capability enhancement approach via null-
space control and (B) the validation of the human-robot col-
laboration for object manipulation using the LfD approach.

A. Experimental Setup

The experimental setup contains an omnidirectional
wheeled mobile manipulator and an Axia80-ZC22 F/T sensor
(ATI Industrial Automation, Apex, NC, USA). The WMM
comprises a custom-built mobile platform and a 7-DOF ultra-
lightweight robotic arm Kinova Gen3 (Kinova Robotics,
Canada). The F/T sensor is employed to obtain the object
weight exerted on the WMM.

The Cartesian space dimension for the mobile manipulator
is defined to be r = 6 considering both the position and
orientation of the end-effector. Yet, only the position compli-
ance is treated, and for the orientation, a simple PD controller
is employed to maintain it fixed. The initial joint position
of the WMM is v0 = [0, 0, 0, 0, 0, 44◦, 0, 101◦, 0,−55◦, 0]T,
where the first four values are the joints’ position for the
mobile platform. Thus, the end-effector’s starting position
is x0 = [0.640,−0.025, 0.332]T m using the system for-
ward kinematics. The joint torque limit vector is defined as
τm lim = [40, 40, 40, 40, 16, 16, 16]T Nm for the manipulator.

B. Experiment on Force Exertion Capability Enhancement
in Vertical Direction

For heavy object manipulation, some weighty items may
not be lifted due to the bounded joint torque output. With the
implementation of a WMM, its redundancy can augment the
system’s force exertion capability in the vertical direction. It
is noteworthy that this procedure is only for the null-space
control to obtain an optimal WMM configuration (without
changing the end-effector pose).

Σw x

y
z

(a) Initial configuration

Σw x

y
z

(b) Final configuration

Fig. 3: Initial and final WMM configurations with null-space
control. Σw denotes the world frame.

The control parameters in this experiment are set as
Kx = 50, Wτ = diag(1, 1, 1, 1, 2.5, 2.5, 2.5), kN = 0.07,
u = [0, 0, 1]T, α = 600, w1 = 0.6, and w2 = 0.4.
The evolution of the WMM configuration is shown in the
attached video, and the initial and final WMM configurations
are shown in Fig. 3. The optimal WMM configuration for
augmenting its load-carrying capability is shown in Fig. 3b.
This is similar to how humans change their configuration to
resist disturbance from the vertical direction.

The load-carrying ability of the WMM is compared in
the two configurations that are depicted in Fig. 3 by adding
known payloads to its end-effector. The results are shown
in Fig. 4. During the experiment, first, a payload of 1 kg
was added; and then, a weight of 3 kg was applied. Fig. 4a
shows the manipulator joint torque output with the initial
WMM configuration. When the 1 kg payload was added
during time 5.40 – 21.05 s, all the joints could normally
work with the maximal joint torque output being 35.31 Nm
(joint 2). However, when the 3 kg weight was applied at time
31.38 s, the task stopped at 32.5 s due to the saturation of
joint 2.

The joint torque output with the final WMM configuration
is shown in Fig. 4b. With the 1 kg weight added during time
3.35 – 22.25 s, the joint with maximal torque output was
joint 2, and the output was 26.24 Nm. When the payload of
3 kg was applied during time 34.70 – 54.90 s, the WMM
with this configuration could also hold it, with the maximal
joint output being 37.22 Nm (joint 2).

The joint torque increment caused by the end-effector
force is investigated with a definition of weighted joint

torque ‖τmw‖2 =

√∑7
i=1Wτi

τ2
ei∑7

i=1Wτi

, where Wτi denotes the ith

diagonal element of Wτ and τei represents the torque of the
ith manipulator joint caused by the external force. When the
payload of 1 kg was applied, with the proposed method, the
weighted joint torque was reduced from 1.182 Nm to 0.869
Nm, about 26.5% of its previous value. And with the 3 kg
weight added on the WMM with the final configuration, the
weighted joint torque was 2.559 Nm. These experimental
results have illustrated the effectiveness of the proposed
method in augmenting the force exertion ability for the end-
effector.
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Fig. 4: Manipulator joint torque with two configurations.

C. Experiment on Human-Robot Collaboration for Object
Manipulation with LfD

The final WMM configuration in Section IV-B is employed
to conduct this section’s experiment, and the null-space
control is also utilized here. It is worth mentioning that the
configuration optimization result in this experiment is not
shown since it is already proved in Section IV-B. In this
experiment, we select three objects with 1 kg, 3 kg, and 5
kg to demonstrate the performance of the LfD method in
object manipulation. Here, two participants were involved,
one human demonstrator and one human user.

During the demonstration phase, the WMM was
admittance-controlled to follow the human demonstrator
to complete the object manipulation task with the user.
The desired Cartesian impedance parameters for the WMM
system were defined as Λ = diag(100, 100, 200) Ns2/m,
Ψ = diag(200, 200, 400) Ns/m, and Γ = diag(0, 0, 0) N/m.
The desired Cartesian impedance parameter Γ was set as
zero to ensure that the robotic system could be led by the
demonstrator smoothly.

For each object, four demonstrations were conducted, and
some pictures of the demonstration phase are shown in
Figs. 5a. The object’s mass could be changed by adding or
removing some known payloads to simulate manipulating
different objects.

Due to the limitation of the paper length, only the WMM
trajectory and demonstrator’s force in the vertical direction in
5 kg scenario are shown in Fig. 6. During the demonstrations,
the average motion distances of the WMM in [x, y, z]
are [0.908, -1.395, 0.167] m, [0.978, -1.412, 0.165] m,
and [1.013, -1.412, 0.157] m for 1 kg, 3 kg, and 5 kg
payloads, where the corresponding stable support forces are
approximately 4.92 N, 12.32 N, and 18.39 N, respectively.

Then, we manually divided each demonstration data into
three stages: lifting, carrying, and lowering to perform data
encoding using GMM. Three models of ten components
(Nk,1 = 10), twelve components (Nk,2 = 12), and ten
components (Nk,3 = 10) were selected to train the three
stages with the obtained demonstrations. Here, we will
present the training results for the 1 kg scenario.

Fig. 7 shows the learning results for the lifting and low-
ering stages. In the lifting stage (Fig. 7a), the demonstrator
force should be big enough to help the WMM lift the object
with the user, while in the lowering stage (Fig. 7b), the force
was smaller due to the object gravity. The bottom row of Fig.
7 presents the corresponding weighting matrices, which play
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Fig. 5: Pictures of demonstration and reproduction phases
for object manipulation via HRC.
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Fig. 6: Human demonstration for object manipulation with a
5 kg payload.

an essential role in imitating the demonstrator’s impedance in
the reproduction phase. The learned models of the x axis and
y axis in the carrying stage are presented in Fig. 8, where
the trained center and covariance matrix of each Gaussian
model will be employed to derive the end-effector’s velocity
according to its corresponding position via GMR.

In the reproduction phase, the WMM cooperates with the
user to conduct the object manipulation task using the learned
demonstrator’s skills. Here, the admittance control is only
implemented in the vertical direction during the lifting and
lowering stages. The moment for stage switching is detected
when the end-effector reaches the corresponding targets, or
the number of iterations outstretches the demonstration sam-
ples’ length. Some snapshots of the reproduction procedure
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Fig. 7: Model learning for lifting and lowering stages in 1 kg
scenario. Top row shows the learned GMM and bottom row
presents the corresponding model weights for demonstrator’s
impedance imitation.
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Fig. 8: Model learning for carrying stage in 1 kg scenario.

are presented in Fig. 5b.
According to the demonstration data, we define the motion

target for the lifting and lowering stages as 16 cm, and
for the x and y in the carrying stage as 0.9 m and -1.35
m, respectively, in all the three scenarios. The end-effector
trajectories for the reproduction experiment are shown in Fig.
9. The learning results of the demonstrator’s impedance in
the lifting and lowering stages are presented in Fig. 10, and
the position-velocity profiles (resulting from GMR) for x and
y in the carrying stage are provided in Fig. 11.

From Fig. 9, it is obvious that in the reproduction phase,
the WMM can cooperate with the user to conduct the object
manipulation task. In scenarios of 1 kg and 3 kg, the object
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Fig. 9: End-effector trajectory in the reproduction phase.
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Fig. 10: Reproduction results of the demonstrator’s
impedance-based behavior.
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Fig. 11: Reproduction of the horizontal trajectory in the
carrying stage using GMR.

could be lifted 16 cm as we expected, and the desired
horizontal displacement in x reached 0.9 m. However, the
displacements in y only arrived at 1.26 m and 1.31 m for l
kg and 3 kg payloads, respectively. In the scenario of 5 kg,
the motion displacement for x and z were 0.848 m and 15.6
cm, but the destination in y was reached.

The reproduction results for the demonstrator’s force and
the horizontal velocity in Figs. 10 and 11 are similar to the
results in the demonstration phase. The maximum of the
mean absolute error (MAE) for the reproduced demonstra-
tor’s force to the mean of those gained in the demonstrations
appears in the lifting stage of the 5 kg scenario, about 2.84
N, accounting for 8.35% of the maximal support force. The
maximum of the MAE for the reproduced horizontal velocity
is found to be approximately 0.57 cm/s in the x direction
of the 1 kg scenario, representing 12.1% of the maximal
commanded velocity in the corresponding direction. Both
the WMM trajectory and the reproduction results illustrate
the effectiveness of the proposed method in helping a user
perform object manipulation tasks.

V. CONCLUSIONS

In this paper, an approach for realizing heavy object
manipulation with human-robot collaboration via learning
from demonstration (LfD) is provided. The redundancy of
the wheeled mobile manipulator (WMM) system is employed
to enhance the end-effector’s force exertion ability along
the vertical direction to facilitate the carrying and transport
of heavy objects. The WMM is first admittance-controlled
to follow the demonstrator to conduct the object manipu-
lation task with the user. The obtained demonstrations are
then manually divided into three stages: lifting, carrying,
and lowering for training. Gaussian mixture model (GMM)
and a stiffness estimation technique are adopted to learn
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the demonstrator’s impedance behavior in the lifting and
lowering stages. GMM and Gaussian mixture regression are
implemented to reproduce the WMM motion in the carrying
stage. The effectiveness of the proposed approach has been
experimentally verified with a 4-wheel mobile manipulator.
For force exertion capability enhancement, the weighted joint
torque for a 1 kg payload was reduced by 26.5% using the
proposed method. For object manipulation, three loads with
different masses have been tested via LfD, and the results
show that the reproduction error is no more than 7% of the
desired value. Our future work will focus on improving the
learning algorithm to establish a unified control framework to
conduct complex tasks, how to detect and react to unexpected
conditions in the reproduction phase, and how to include
vision to determine the goal location.
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