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Abstract— This paper represents an extension to the kine-
matic bicycle model for beveled-tip needle motion in soft tissue,
which accounts for non-constant curvature paths for the needle
tip. For a tissue that is not stiff relative to the needle, the tissue
deformation caused by needle insertion deviates the needle
tip position from a constant curvature path. The proposed
model is obtained by replacing the bicycle wheels with omni-
directional wheels that move in two orthogonal directions
independently. Such wheels can move sideways, providing a
means for modeling the deviations of the needle tip from a
constant curvature path by incorporating new parameters in
the model. Using an experimental setup, the needle is inserted
into soft phantom tissue at different constant velocities and
model parameters are fitted to experimental data. The model
is verified by comparing the results from the model to empirical
data.

I. INTRODUCTION

Needle insertion is an effective technique used in min-
imally invasive procedures such as brachytherapy, biopsies
and neurosurgery for diagnosis, delivery of treatments or
sample removal. The efficiency of these methods is highly
dependent on the accurate control and positioning of the
needle tip since poor needle placement can cause undesirable
side effects on neighboring tissues or organs. In order to
improve the accuracy of the procedure, intelligent assistant
robots can be employed to compensate for the targeting
errors caused by needle deflection and tissue deformation.
To this end, physical modelling of needle-tissue interaction
provides a means to estimate needle deflection and provides
an opportunity to minimize needle placement errors.

Several needle-tissue interaction models have been devel-
oped. This includes energy-based methods [1], [2], finite
elements modelling [3], [4], [5], and flexible beam modelling
[6], [7]. A Kinematic nonholonomic model has been pro-
posed as an empirical parameter-identifiable model that can
estimate needle deflection based only on limited knowledge
about tissue-needle interaction. This model describes the
kinematics of the needle tip based on constraints imposed
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by tissue and has been widely used for path planning and
needle steering [8], [9], [10]. The main assumption made in
this model is that the tissue is stiff relative to needle. Inserting
the needle into stiff tissue causes negligible deformation in
tissue as the needle bends. Thus, it is assumed that the
needle tip moves on a circular path with a constant curvature.
Approximating the path followed by the needle tip with a
circle makes the path planing procedure simple as the radius
and center of the circular path can be analytically derived.
However, if the tissue is not stiff relative to the needle, as the
needle bends during insertion the tissue is compressed and
in turn displaces the needle tip from a constant curvature
circle, thus producing non-circular paths [11], [1]. Ignoring
the tissue motion may lead to inaccurate path planning and
control of needle steering in soft tissue.

In this paper, we propose an extension to the kinematic
bicycle model that will account for needle tip deflection
with non-constant curvature. Using experimental data
from needle insertion into different phantom tissues, we
show that the radius of curvature of the needle tip path is
influenced by the tissue stiffness. The kinematic bicycle
model is modified to have new parameters enabling one to
account for path variations caused by tissue deformation.
Experimental validation of the extended model is reported
for different needle-tissue combinations.

This paper is organized as follow. Section II presents a
brief review of the bicycle model and its 3-DOF formulation
for needle steering. In Section III the proposed extended
bicycle model is presented and modifications made to the
bicycle model are presented. In Section IV, the proposed
model is experimentally validated and the results are com-
pared to the bicycle model’s results.

II. BACKGROUND

A. General Bicycle Model
The kinematics of a bicycle moving in the y − z plane is

shown in Figure 1. The fixed frame and the body moving
frame are denoted by {A} and {B}, respectively. The origin
of the moving frame is attached to the body at point P ,
somewhere between the two wheels. The posture of the body
with respect to the fixed frame {A} is described by the
Cartesian position of point P and the rotation angle θ of
frame {B}. The position and orientation of the wheels in
the moving frame are characterized by `i(i = f, b) being the
distances between the front and back wheels and point P ,
and βi(i = f, b) being the orientations of the wheels with
respect to body frame {B}. For the general bicycle shown
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Fig. 1. General bicycle posture coordinates

in Figure 1, the velocity components of wheel centers along
the z and y axis can be expressed in frame {B} as

Bvzi = cos(θ + βi)ż + sin(θ + βi)ẏ + `isinβiθ̇ (1)
Bvyi = sin(θ + βi)ż − cos(θ + βi)ẏ − `icosβiθ̇ (2)

in which i = f, b and
[
y z θ

]T
and

[
ẏ ż θ̇

]T
represent

the 3×1 posture vector of the bicycle and its time derivative
in the fixed frame, respectively. The typical wheels used in a
bicycle satisfy the pure rolling and non-slipping constraints.
Rolling occurs on the wheel plane, thus

Bvzi − ωwi = 0 (3)

Also, there is no slipping orthogonal to wheel plane, thus
Bvyi = 0 (4)

In (3), ωwi is the rolling speed of the wheels.
Placing the moving frame {B} at the center of the back

wheel leads to `b = 0. If the front wheel angle is constant,
by redefining the bicycle parameters as `f = ` and β1 = β,
the constraints (3) and (4) can be converted into the form of
control system with the forward velocity input u1 = ωwb asżẏ

θ̇

 =

 cosθ
sinθ

`(tanβ)
−1

u1. (5)

Solving (5) for a constant forward velocity input u1 results
in the position of point P following a circle in Y −Z plane
with radius `(tanβ)

−1.

B. Bicycle Model for Needle

A bevel tip needle inserted into soft tissue is usually
driven with two inputs, namely longitudinal insertion and
axial rotation. During insertion, as a result of tissue reaction
forces, the needle bends in 3-D space. In [10], it is shown
that the needle tip posture i.e., position and orientation,
resembles the posture of a bicycle moving on circular planar
path with the insertion velocity acting as the riding speed.
Figure 2 illustrates this model of a bevel tip needle with
the associated bicycle wheels. In this figure, frames {B}
and {C} represent the moving body frames attached to
the wheels. The parameters `1 and `2 denote the distance
between the two wheels and the distance between the back
wheel and the needle tip, respectively. In this model, the
insertion velocity is equal to wheel rolling velocity vz in the

Needle tip

Fig. 2. Bicycle of a bevel tip needle

body frame {B}. Due to the planar motion of the bicycle,
the velocity of frame {B} along its x axis is zero. Writing
in body frame this constraint can be expressed as

eT1 v
b
ab = 0 (6)

From (4) the velocity of frame {B} does not have any
projections along its y axis which can be written in the body
frame as

eT2 v
b
ab = 0 (7)

Moreover, since the front wheel frame {C} is rigidly con-
nected to the back wheel frame the relative linear and angular
velocity of the frame {C} with respect to frame {B} is
zero. The velocity constraints of the body frame {C} can be
expressed in body frame as

eT1 v
b
ac = eT2 v

b
ac = 0 (8)

in these equations vbab and vbac denote the linear velocity of
the body frames {B} and {C} with respect to the fixed frame
{A} expressed in body frames, respectively and the vectors
ei, i = 1, 2, 3, represent the standard basis vectors in R3.
Equations (6)-(8) can be simplified to

1 0 0 0 0 0
0 1 0 0 0
0 0 1 − 1

k 0 0
0 0 0 0 1 0

V b
ab = 0 (9)

in which k = tanβ`1
−1 denote the constant curvature

of the needle tip path. V b
ab =

[
vbab ωb

ab

]T
is the 6-DOF

representation of linear and angular velocities of the moving
frame {B}. For `1 6= 0 and β ∈ [0, π/2], solving for the null
space of the matrix in (9) leads to the following kinematic
model:

ġab(t) = gab(t)

(
u1

[
e3
ke1

]
+ u2

[
0
e3

])
(10)

In (10), u1 and u2 denote the insertion velocity and the
shaft rotation velocity, respectively, and gab is given by

gab =

[
Rab pab
0T 1

]
with pab and Rab being the position and

orientation of the moving frame {B} with respect to the fixed
frame {A}.

III. EXTENDED BICYCLE MODEL

In this section, we extend the bicycle model for a needle
that follows a non-constant curvature path in tissue. The
modified model incorporates new parameters to the bicycle’s
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Fig. 4. Modified bicycle model of a bevel tip needle. The frames {C}
and {B} are attached to front and back wheels. The back wheel is located
at needle tip

kinematic equations to account for deviations of the needle
path from a circle. The effect of tissue deformation can be
interpreted as letting the needle have sideways movements
orthogonal to the insertion direction. These movements are
modeled by slippage of the bicycle wheels. As explained
in the previous section, the original kinematic bicycle equa-
tions were derived by imposing the pure roll and non-slip
constraints on the wheels.

In order to allow for sideways motion of the needle, we
replace the back wheel of the bicycle with a wheel that
is able to move in two directions. Omni-directional wheels
shown in Figure 3 can move independently in two orthogonal
directions. Such wheels satisfy the wheel plane constraint
(3) but violate the non-slip constraint (4). Orthogonal to the
wheel plane, the motion constraint will be

Bvy − ωR = 0 (11)

in which ωR denotes the rotation velocity of the rollers. This
is the degree of freedom added to the system allowing the
wheel to have lateral movements.

Here, we replace the back wheel of the bicycle with the
omni-directional wheel of Figure 3, as shown in Figure 4. In
this Figure, β, ` and α denote the fixed front wheel angle, the
distance between the two wheels and the rotation angle of the
needle tip in body frame {B}, respectively. This rotation of
the needle tip from the insertion direction by angle α is due

to the lateral movement of the back wheel causing the needle
to be tangent to the non-circular path. The inputs u1 and u2

denote the insertion velocity along the z axis of frame {B}
(which equals Bvz) and the rotation velocity of the needle
about its axis, respectively.

The lateral movements of the back wheel enables us to
model the deviations of the needle tip trajectory from a
circular path predicted by the conventional bicycle model.
While the front wheel satisfies the pure rolling and non-
slipping constraints of conventional wheels (3) and (4), the
back wheel satisfies the roll and slip constraints (3) and (11).
Therefore, the kinematic constraints on the front and back
wheels are different.

The non-zero slip velocity is our modification to the
conventional bicycle model. This value simulates the tissue
deformation that deviates the needle tip position from a cir-
cular path. Since the amount of tissue compression depends
on needle deflection, and the tip deflection and tip angle
are related through trigonometric functions, we will consider
Bvy as a function of needle tip angle. Moreover, the lateral
movements can only happen when the needle is moving
forward into tissue. In other words, when the insertion
velocity Bvz is zero there will be no lateral movements.
Accordingly, let us define the slippage equation of the back
wheel as

Bvy = f(γ, λ)Bvz (12)

in which λ is a tissue specific parameter (related to its
mechanical properties) and f is an arbitrary function that
we will define later that relates λ to the amount of lateral
movements. The angle γ is the needle tip rotation in the
fixed frame {A} and is equal to θ + α. For a stiff tissue, λ
equals zero and the needle tip travels on a circular path with
Bvy = 0, which implies f(θ, 0) = 0. Using (12) and the
constraints on the front and back wheels, the time variations
of the back wheel angle is obtained as

θ̇ =
1

l
[tanβ + f(γ, λ)]Bvz (13)

The difference between (5) and (13) is that in (13), θ̇
is composed of two terms. The latter term represents the
correction done to the original constant curvature solution
using slippage of the back wheel. Using (12), the needle tip
angle in body frame {B} is found as

α = tan−1

(
Bvy
Bvz

)
= tan−1(f(γ, λ)). (14)

Using (12) and (14), the kinematics of the modified bicycle
can be written as

ẏ =

(
sinγ

cosα

)
Bvz (15)

ż =
( cosγ

cosα

)
Bvz (16)

γ̇ =
θ̇

1− ∂α/∂γ
(17)
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in which ∂α/∂γ is the partial derivative of α with respect
to γ and θ̇ is defined in (13). Similar to equations (6) and
(8), (15)-(17) can be written in the body frame {B} as

eT1 v
b
ab = 0 (18)

eT2 v
b
ab = f(γ, λ)eT3 v

b
ab (19)

eT1 ω
b
ab =

1

`
(tanβ − f(γ, λ))eT3 v

b
ab (20)

eT2 ω
b
ab = 0 (21)

The equations (18)-(20) can be simplified to
1 0 0 0 0 0
0 1 −f(γ, λ) 0 0 0
0 0 1 − `

`k−f(γ,λ) 0 0

0 0 0 0 1 0

V b
ab = 0 (22)

in which k = tanβ`−1. As expected for λ = 0, (22)
is equivalent to (9). Thus, the kinematic model (10) is
found as ġab(t) = gab(t)(u1V1 + u2V2) with V1 =[
0 f(γ, λ) 1 k − f(γ,λ)

` 0 0
]T

and V2 =
[
0 eT3

]T
.

A. Constraints on the Slippage Equation

In this section, we determine the constraints on the param-
eters of (12) for which the kinematics equations (15), (16),
and (17) can be solved. Assuming that the needle tip angle
relative to the fixed and the body frames take values in the
range [−π/2, π/2], the kinematic equations of the modified
bicycle model can only be solved if the following conditions
are satisfied:

cos(α) 6= 0 → α 6= ±π

2
(23)

1− ∂α

∂γ
6= 0 (24)

in which ± is selected depending on whether the needle
tip points upward or downward.To derive these conditions
and in order to keep the analysis traceable and avoiding
complexities, the angle α that gives the slippage of the back
wheel through (14) is defined as

α = λ1γ
2 + λ2γ. (25)

To simplify the equation, we will assume the needle path
points toward the negative y axis and γ, α ∈ [−π/2, 0]. In
this case, (23) simplifies to

λ1 >
λ2
2

2π
. (26)

Using this inequality, (24) can be written as

(1− λ2)− 2λ1γ > −λ2
2γ/π + (1− λ2). (27)

For the right hand side of this inequality to be non-zero
requires γ > −π/4, which for γ ∈ [−π/2, 0] is acceptable
and the right hand side will always be positive satisfying
(24). From (26), if λ1 = 0 then λ2 = 0 and λ2 6= 1, which
satisfies (24) for γ = 0. Although this condition seems to
be restrictive, one can see that the absolute value of needle
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Fig. 5. Needle deflection calculated from extended model for different
values of λ1 and λ2

angle obtained from experiments for soft tissues is usually
less than π/4. Figure 5 shows the needle path obtained by
solving equations (15)-(17) numerically for different values
of λ1 and λ2. As we can see for non-zero λ1 and λ2, the
needle path deviates from the constant curvature circular path
corresponding to λ1 = λ2 = 0.

IV. EXPERIMENTAL VERIFICATION

A. Experimental Setup

In order to study the effect of tissue stiffness on the
needle path, experiments are performed on different types of
tissues samples with different stiffnesses. The experimental
setup used for conducting experiments is a 2-DOF prismatic-
revolute robotic system shown in Figure 6. The base of the
needle is connected to a step motor for axial needle rotation
(not used in the experiments). The motor is assembled on
a carriage for translational motion which is performed by
another step motor through a belt and pulley mechanism. A
webcam operating at 30 Hz is mounted above the tissue to
capture images of the needle inside tissue and measure the
needle deflection during insertion. The needle bevel angle is
such that needle deflection happens in a plane parallel to the
imaging plane. The detailed needle tip tracking procedure
can be found in [11]. The needle used in the experiments
is a standard 18 gauge brachytherapy needle with a bevel
angle of 20◦. The insertions are performed at different
constant velocities to 130 mm insertion depth. Three trials
are performed for each insertion velocity.

To assess the accuracy of the proposed model (15)-(17),
the experiments are performed in two different transparent
phantom tissues of two different types. The first tissue is
made of plastisol gel (M-F Manufactoring Co., Fort Worth,
USA) for which the amount of added plastic softener de-
termines the stiffness of the tissue. The needle is inserted
at 2 different velocities of 20 and 40 mm/sec. The second
tissue is made of agar of type A360-500 (Fisher Scientific
International Inc., Hampton, NH, USA) for which the ratio of
agar to water used adjusts the stiffness of the tissue sample.
The needle is inserted with constant insertion velocities of 20
and 60 mm/sec. In these experiments the insertion depth and
needle tip deflection, are calculated from recorded images.
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Fig. 6. Experimental setup used for collecting data. The needle is inserted
into a phantom tissue using a 2-DOF prismatic-revolute robot. Images of
the needle inside the tissue are recorded from above using a camera.

TABLE I
IDENTIFIED MODEL PARAMETERS AND MAXIMUM ERROR IN NEEDLE TIP

ESTIMATION

Insertion parameters Fitted model parameters Maximum Error [mm]
Velocity

λ1 λ2
Extended Bicycle

Tissue [mm/sec] model model

Agar 20 0.49 0.22 0.66 3.79
60 0.33 3.49

Plastisol 20 0.144 0.032 0.43 1.46
40 0.63 0.76

From (25), the unknown constant parameters λ1 and λ2 are
to be found by using experimental data. These parameters are
found by fitting (17) to time variations of needle tip angle,
γ̇, calculated from the experimental data. To this end, third
order time dependent polynomials are fitted to the depth and
deflection data and the needle tip angle is approximated by

γ = sin−1(
∆y

∆d
) (28)

in which ∆y and ∆d denote the variations of the deflection
and depth between two sample times, respectively. Using the
approximated γ, its time variations is fitted to (17) using the
lsqcurvefit function in Matlab. The obtained values for
λ1 and λ2 are imported to the model equations (15), (16),
(17) and the model is simulated for the same velocities as
experiments.

For comparison, the experimental data is also fitted to
standard bicycle model in which the needle path is estimated
by a constant curvature path (circle). The results from both
methods are shown in Figures 7 and 8. In these figures, the
simulated deflection is compared to the average of three
trials. For the agar tissue, the maximum prediction error
obtained is 0.66 mm and 3.79 for the extended bicycle model
and the original bicycle model, respectively. For plastisol
tissue, the maximum prediction error is 0.43 mm and 1.46
mm for the extended bicycle model and the original bicycle
model, respectively. The results are summarized in Table
I. Comparing the maximum errors, we can conclude that
for these combination of needle and tissue, the modified
bicycle model generates smaller errors which is obtained by
introducing new parameters to the kinematic equations of
bicycle.

V. CONCLUSION

In this work, a modified kinematic bicycle model is
developed for better estimating the needle tip deflection in
soft tissue. The proposed model adds new parameters to the
conventional bicycle model to account for the effect of tissue
stiffness on the needle path. This alleviates the assumption
made in the bicycle model that the tissue is stiff relative to
needle. When this assumption is violated, however, the tissue
compression forces caused by needle deflection deviate the
needle path from a constant curvature path as predicted by
the conventional bicycle model. To account for this, the back
wheel of the bicycle is replaced with an omni-directional
wheel enabling us to add correction terms to the bicycle
equations. After fitting the experimental data to the model
a maximum error of 0.66 mm in predicting the needle tip
deflection is obtained, which is much smaller than 3.97 mm
as the maximum error of the original bicycle model.

In this work, the modification to the bicycle model was
done using polynomial functions in (25); however, it is
possible to define other functions to relate the unknown
parameters to physical properties of tissues. Besides, the
experiments are performed for pure insertion case without
any axial rotation of the needle. Further developments are
required to verify the proposed model for case involving both
insertion and rotation.
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Fig. 7. Experimental results for needle insertion in plastisol tissue for different velocities. (a),(b): Needle deflection estimated from the modified bicycle
model and the original bicycle model compared to experimental data for 20 mm/sec and 40 mm/sec, respectively (c),(d): Comparison of needle tip deflection
estimation error for the modified bicycle model and the original bicycle model for 20 mm/sec and 40 mm/sec, respectively.
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Fig. 8. Experimental results for needle insertion in agar tissue for different velocities. (a),(b): Needle deflection estimated from the modified bicycle model
and the original bicycle model compared to experimental data for 20 mm/sec and 60 mm/sec, respectively (c),(d): Comparison of needle tip deflection
estimation error for the modified bicycle model and the original bicycle model for 20 mm/sec and 60 mm/sec, respectively.
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