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Abstract— Stability of a haptic teleoperation system is in-
fluenced by the typically uncertain, time-varying and/or un-
known dynamics of the operator and the environment. For a
stability analysis that is independent of the operator and the
environment dynamics, Llewellyn’s absolute stability criterion
proposes certain conditions on the two-port network repre-
senting the teleoperator (comprising the master, the controller
and communication channel, and the slave) assuming that the
terminations (i.e., the operator and the environment) are passive.
These are less-than-accurate assumptions. It is desirable to
extend Llewellyn’s result to the cases where the operator or
the environment is non-passive. This paper revisits Llewellyn’s
criterion and relaxes the assumption of passivity for one
of the terminations. The possibly non-passive termination is
realistically assumed to have a complex impedance with an
upper or lower bound on its amplitude or real part, respectively.
Although the proposed stability criteria are useful for any
application of two-port network systems, we specifically apply
them on bilateral teleoperation systems and find the stability
conditions when the operator or the environment is not passive;
this is a result that Llewellyn’s absolute stability criterion
cannot afford.

I. INTRODUCTION

Absolute stability of a two-port network guarantees sta-

bility of the network when the two ports are terminated to

passive but otherwise arbitrary one-port networks. An equiv-

alent definition of absolute stability of a two-port network

requires seeing a passive input impedance (i.e., driving-point

impedance) from one of the ports when the other port is

terminated to a passive one-port network (i.e., termination);

see Fig. 1 [1]. The notion of absolute stability has been

applied to two-port network systems with limited information

about the impedance of the terminations. For instance, in

a bilateral teleoperation system, the models of the human

operator and the environment are typically unknown. If the

models of the human operator and the environment are

assumed passive but otherwise arbitrary, absolute stability

criteria will impose conditions on the teleoperator model

parameters for stability of the overall teleoperation system

– the teleoperator consists of the master, the communication

channel and the slave (Fig. 2).

A well-known absolute stability criterion for two-port

networks has been proposed by Llewellyn [1], [2], [3].

Llewellyn’s absolute stability criterion gives closed-form

conditions on the immittance parameters (impedance, ad-

mittance, hybrid [4]) of the two-port network for it to
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Fig. 1. Absolute stability of a two-port network is equivalent to passivity
of the input impedance seen from a port when the other port is terminated
to a passive one-port network.
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Fig. 2. The teleoperation system versus the teleoperator.

be absolutely stable. Llewellyn’s absolute stability condi-

tions require the assumption of passivity of both of the

terminations of the two-port network. Yet, they allow the

terminations’ impedances to take on any amplitude and

phase. On the other hand, in practical systems, a two-port

network’s termination may be non-passive (i.e., active) but

with an upper bound on the amplitude of its impedance or

a lower bound on the real part of its impedance; later in the

paper, we will discuss specific examples of such non-passive

terminations for bilateral teleoperation systems. Therefore, in

this paper, stability analysis of a two-port network coupled

to a possibly non-passive termination with certain constraints

on its impedance is considered.

Past work has modeled the bounded impedance of a

termination as a shunt impedance in parallel to a very

large impedance in order to utilize the existing absolute

stability criteria [3]. In another work, the minimum and

maximum impedances of a termination are modelled as

series and shunt impedances and the remaining part of the

termination is assumed to be passive [5]. In an interesting

recent work, the range of stabilizing terminations for a two-

port network has been derived using scattering parameters

and reflection coefficient with the aid of a 3-dimensional

graphical approach [6]. This analysis determines bounds on

the reflection coefficient of the termination to guarantee the

stability of the coupled system.

Passivity of an LTI one-port network is equivalent to the

positive-realness of its driving-point impedance [7]. Deviat-

ing from the assumption of passivity, the one-port network’s

complex impedance may be allowed to have a real part

that stays greater than a negative number (i.e., the right-

half plane (RHP) is shifted by a finite amount to the left in

the complex impedance plane). This shift accounts for the
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difference between a passive and a non-passive (i.e., positive-

real and non-positive-real) one-port network.

Interestingly, to have a stable coupled system, it suffices

if, after terminating the two-port network to a passive or

non-passive one-port network, the driving-point impedance

at the remaining port (which is currently open) is passive.

Connecting a passive termination at the currently open port

of this two-port network will inevitably result in a passive

and thus stable system even though the opposite port might

have been connected to a non-passive termination.

In this paper, using Mobius transformation on regions of

the complex impedance plane, a powerful stability analysis

tool has been developed that is appropriate for control system

analysis and design. Similar to Llewellyn’s criterion, the

developed absolute stability condition has a closed form, and

consequently can be explicitly used for theoretical as well

as graphical controller design. In this paper, the analysis is

framed in two categories in order to answer two specific

questions:

• Find the largest region in the complex impedance plane

such that any termination with an impedance in that

region – regardless of being passive or non-passive –

when coupled to a two-port network will result in a

passive driving-point impedance at the other port of the

two-port network. We will show that this region is a

disc in the complex plane.

• Find a strip in the complex impedance plane such

that any termination with an impedance in that strip

– regardless of being passive or non-passive – when

coupled to a two-port network will result in a passive

driving-point impedance at the other port of the two-

port network.

Needless to say, in both of the above cases, the impedance

parameters of the two-port network will appear in the stabil-

ity conditions. It is interesting to note that, as described later,

lines and circles are mapped to one another via the transfor-

mation that describes the input versus load impedance of a

two-port network; that is why we have considered discs and

strips in the above two general cases.

The paper is organized as follows. First, Llewellyn’s

absolute stability criterion has been discussed and a proof

has been provided in Section II. This is followed, in Sections

III and IV, by our two main theorems to ensure the passivity

of the driving-point impedance of the open port of a two-

port network that has been terminated to a potentially non-

passive (i.e., passive or non-passive) one-port network at

its opposite port. Concluding remarks and future work have

been presented in Section VI.

II. LLEWELLYN’S ABSOLUTE STABILITY CRITERION

FOR PASSIVE TERMINATIONS

Before looking into our new absolute stability condition,

since Llewellyn’s absolute stability criterion has an explicit

relationship with both the disc-like and the crescent-like

absolute stability in Sections III and IV, let us consider

Llewellyn’s absolute stability criterion.

Assuming an LTI model, a two-port network (shown in

3-a) is expressed by the impedance (Z) parameters as
[

V1

V2

]

=

[

Z11 Z12

Z21 Z22

] [

I1
I2

]

(1)

Theorem 1: [1] A two-port network is absolutely stable if

and only if

(i) Z11 and Z22 have no poles in the RHP,

(ii) Pure imaginary poles of Z11 and Z22 are simple and

have positive residues, and

(iii) For all real positive frequencies ω,

ReZ11(jω) ≥ 0,ReZ22(jω) ≥ 0

2ReZ11(jω)ReZ22(jω),−ReZ12(jω)Z21(jω)

−|Z12(jω)Z21(jω)| ≥ 0 (2)

where Zij are the two-port network impedance parameters

and may be replaced by any immitance parameters Pij .

Proof: [8] Conditions (i) and (ii) of Theorem 1 are

necessary conditions for ensuring positive realness of Z11

and Z22 in zero-impedance conditions for ports 2 and 1,

respectively [1]. Let us consider the third condition of

Theorem 1. As shown in Fig. 3-b, the two-port network is

connected to a passive impedance z2 and the input impedance

seen from the other port is assumed to be Za1. The two-port

network will be absolutely stable if Za1 is passive as well.

It is easy to show that Za1 can be expressed as

Za1 = Z11 −
Z12Z21

Z22 + z2
(3)

or as a Mobius transformation as

Za1 =
z2(Z11) + (Z11Z22 − Z12Z21)

z2 + (Z22)
(4)

The Mobius transformation maps circles and lines from one

complex plane to lines and circles in another complex plane

[9]. The borderline of passivity in the z2 complex plane is

a vertical line coincident with the jω-axis; any impedance

to the right of this line (i.e., with a positive real value) is

passive. As shown in Lemma 1 in Appendix, if ReZ22 ≥ 0
(and for a similar reason ReZ11 ≥ 0), then the Mobius

transformation of the line can be shown to be a circle with

a radius ro and a centre at ωo where

ro =
|Z12Z21|
2R22

, ωo = Z11 −
Z12Z21

2R22

(5)

where R22 = ReZ22. Consequently, the right half plane

in the z2-plane (i.e., class of positive-real impedances) is

mapped to a disc as depicted in Fig. 4. Now, the condition

for passivity of the resulting mapped impedance, i.e. Za1, is

that it entirely lies in the right half plane. In other words,

Reωo − ro ≥ 0 (6)

Substituting (5) in the above leads to

2ReZ11 ReZ22 − Re(Z12Z21)− |Z12Z21|
2R22

≥ 0 (7)

This completes the proof.
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Fig. 3. (a)Two-port network and (b) driving point impedance Za1 = V1/I1
when port 2 is terminated to a passive impedance z2.
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Fig. 4. Mobius transformation maps the right half of the impedance plane
of z2-plane (a) to a disc in the Za1-plane (b).

III. STABILITY OF SYSTEMS COMPRISING A

NON-PASSIVE “DISC-LIKE” IMPEDANCE

Llewellyn’s absolute stability criterion is valid only for

the case where the connecting termination z2 is passive,

which is not a practical assumption in some applications.

For instance, in a bilateral teleoperation system, the human

operator is not necessarily passive but will have a limited

impedance determined by physical properties of his/her arm.

While human operator behaves passive in a grasping task

[10], he/she is non-passive during manipulation of the master

robot. Non-passivity of the human operator is happening for

example when the teleoperator is designed to be passive and

the environment is also energy-distilling, thus the human

operator must be the source of energy. Also, instead of

commonly used second order model for the human operator,

it is assumed that the impedance is arbitrary with a limited

amplitude in its impedance. The following analysis finds

all passive and non-passive impedances z2 such that the

resulting input impedance Za1 is passive.

Theorem 2: Consider a two-port network system mod-

elled in (1). Assume that port 2 of the two-port network

is terminated to an impedance z2 and the driving-point

impedance seen from port 1 is Za1. Assume that z2 has a

maximum impedance of Z2,max, and that port 1 of the two-

port network is terminated to another passive impedance.

Then, the necessary and sufficient condition for stability of

the overall system (comprising the two-port network and the

terminations at ports 1 and 2) is

(i) Z11 and Z22 have no poles in the right half of the

complex plane,

(ii) Pure imaginary poles of Z11 and Z22 are simple and

have positive residues, and

(iii) For all real positive frequencies ω,

R11 ≥ 0, R22 ≥ 0

Z2,max ≤ |Z12Z21|−2|Z22R11+Z12Z21|
2R11

(8)

where R11 and R22 are the real part of Z11 and Z22,

respectively. The argument jω has been omitted for brevity.

Proof: Similar to Theorem 1, conditions (i) and (ii) are

necessary for stability of the two-port network. Condition

(iii) has the following proof.

• Step 1: To find the mapping from Za1-plane to z2-plane,

the Mobius transformation (3) is rearranged to find the

inverse transformation as

z2 = −Z22 −
Z12Z21

−Z11 + Za1
(9)

The inverse transformation is another Mobius transfor-

mation, which can be seen as the transformation for a

two-port network with the following impedance matrix:
[

−Z22 Z12

Z21 −Z11

]

(10)

• Step 2: Using Lemma 1 of Appendix, the Mobius

transformation (9) maps the right half plane ReZa1 ≥ 0
onto a disc z2 in the z2-plane, with a centre at ωo and

a radius of ro given by

ro =
|Z12Z21|
2R11

, ωo = −Z22 −
Z12Z21

2R11

(11)

The impedance that terminates port 2 should be entirely

placed in the disc defined by z2 to guarantee passivity

of the Za1.

• Step 3: Although the result in Step 2 determines bounds

for all passive and non-passive terminations, this general

result can be customized for applications where the

termination’s impedance has known shape and ampli-

tude. For instance, consider the human operator in a

bilateral teleoperation system. When the master robot

is released by the operator, this is equivalent to zero

impedance for the operator. At the other extreme, the

operator’s impedance reaches a maximum amplitude

Z2,max if the operator pushes as hard as possible against

the master robot. As shown in Fig. 5-b, the disc with

radius of Z2,max centered at the origin should be inside

the stability disc given by the mapping found in Step 3.

Therefore, the condition for passivity of Za1 becomes

ro > |ωo|+ Z2,max (12)

substituting ro and ωo from (11), the condition becomes

Z2,max ≤ Z12Z21

2R11

− |Z22 +
Z12Z21

R11

| (13)

which can be rearranged as (8) and completes the proof.

IV. STABILITY OF SYSTEMS COMPRISING A

NON-PASSIVE “STRIP-LIKE” IMPEDANCE

In this section, it is assumed that the impedance z2 that

terminates port 2 of the two-port network has a potentially

negative real part (i.e., z2 may be non-passive). Specifically,

it is assumed that z2 covers a strip in the complex plane as

depicted in Fig. 6-a. Using this strip is a generalization of

termination impedance considered in Llewellyn’s absolute
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impedance (a) remains passive. The impedance of port 2’s termination with
maximum amplitude of Z2,max should be entirely in the stability disc.
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Fig. 6. In analysis of the strip-like impedances the strip in the z2-plane
(a) is mapped to a rotated crescent in the Za1-plane (b).

Theorem 3: Consider a two-port network system mod-

elled in (1). As shown in Fig. 3-b, assume that port 2 of

the two-port network is terminated to an impedance z2 and

the driving-point impedance seen from port 1 is Za1. Assume

that z2 satisfies −a ≤ Re z2 ≤ b, where a and b are positive

and real numbers, and that port 1 of the two-port network is

terminated to another passive impedance. Then, the necessary

and sufficient condition for stability of the overall system

(comprising the two-port network and two terminations) is

(i) Z11 and Z22 have no poles in the RHP,

(ii) Pure imaginary poles of Z11 and Z22 are simple and

have positive residues, and

(iii) For all real positive frequencies ω,

2R11R22 − Re{Z12Z21} − |Z12Z21| − 2R11a ≥ 0

R11 ≥ 0, R22 ≥ a (14)

Proof: Similar to the proof of Theorem 1, conditions (i)

and (ii) are necessary condition for stability of the two port

network. Condition (iii) is derived in the following steps.

• Step 1: The transformation from z2 into Za1 is ex-

pressed based on the two-port network’s impedance

Za1 = Z11 −
Z12Z21

Z22 + z2
(15)

which can be expressed as a Mobius transformation

from z2 into Za1 consistent with (4).

• Step 2: The strip −a ≤ Re z2 ≤ b is mapped to a

crescent in Za1-plane as explained in the following. The

borderlines of the strip are the vertical lines at Re z2 =
−a and Re z2 = b for the lower and the upper bounds,

respectively. These two lines are transformed to two

circles in the Za1-plane. Using a similar transformation

as in Lemma 1 in Appendix, it is easy to show that the

radii and centers of the two circles are

aro =
|Z12Z21|

2(R22 − a)
, aωo = Z11 −

Z12Z21

2(R22 − a)
(16)

for the line defined by Re z2 = −a (provided that

R22 ≥ a), and

bro =
|Z12Z21|
2(R22 + b)

, bωo = Z11 −
Z12Z21

2(R22 + b)
(17)

for the line defined by Re z2 = b.
In the following, we will prove that the circle cor-

responding to Re z2 = b is entirely inside the circle

corresponding to Re z2 = −a. As it is described in the

third step of the proof of Lemma 1 in Appendix, the

two circles result from an expansion/contraction term

Z12Z21 followed by a translation by the amount Z11

in the Za1-plane. Consequently, as depicted in Fig. 7-

a, the line connecting the centres of these two circles

(tatb) will go through the origin. Another conclusion

from Lemma 1 in Appendix is that the length of the

line segment between the centres of the two circles (i.e.,

|tatb|) is identical to the differences between to the radii

of the two circles (i.e., |aro−bro|). Therefore, as shown

in Fig. 7-a, the two circles must be tangent at their

farthest points from the origin. Additionally, changing

the bounds on the real part of z2 will result in the circles

shown in Fig. 7-b. As the real value of z2 is allowed

to increase, the radius of the smaller circles decreases.

Also, as the real value of z2 is allowed to decrease

further into the negative values, the radius of the larger

circles increases (not shown in Fig. 7-b).

Im

Re

(b)

Za1-plane

Im

Re

(a)

Za1-plane

ta

tb

Fig. 7. The vertical lines in the z2-plane are mapped to circles in the
Za1-plane. The vertical line at Re z2 = −a is mapped to the larger circle
in the Za1-plane while the vertical line at Re z2 = b is mapped to the
smaller circle (a). As the real value of z2 is allowed to increase (i.e., larger
b), the radius of the smaller circle decreases while the circles still share the
same tangent point.

• Step 3: The crescent found in Step 2 needs to be in the

right half the complex Za1-plane for passivity of the

driving-point impedance at port 1. Because the outer

circle corresponding to Re z2 = −a contains the inner

circle corresponding to Re z2 = b and two circles

overlap each other in a region farthest possible from

the origin, the necessary and sufficient condition for
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passivity of the driving-point impedance at port 1 is

Re aωo − aro ≥ 0 (18)

Substituting aro and aωo from (16) and (18) yields

Re{Z11 −
Z12Z21

2(R22 − a)
} − |Z12Z21|

2(R22 − a)
≥ 0 (19)

which can be rearranged as (14). This completes the

proof.

Remarks:

• The value of the upper limit of the impedance b does not

appear in the stability condition (14) due to the fact that

the inner circle is not the source of any constraint when

ensuring the passivity of the driving-point impedance

Za1. In other words, stability depends on the lower limit

of the real part of the impedance connected to port 2 of

the two-port network.

• The difference between the new stability condition (14)

for strip-like termination impedances and Llewellyn’s

absolute stability criterion is in the last term of (14).

• Unlike Llewellyn’s absolute stability criterion, the new

stability conditions in Theorems 2 and 3 are not sym-

metric with respect to the network parameters. In other

words, swapping the terminations at ports 1 and 2 of a

two-port network does not change Llewellyn’s absolute

stability conditions but it may affect the new conditions

in Theorems 2 and 3.

• The regions in z2-plane and Za1-plane found for strip-

like impedances (Fig. 6) and the same regions for disc-

like impedances (Fig. 4) might demonstrate an overlap

but one is not a subset of the other. Whether to use the

stability condition for a strip-like impedance or a disc-

like impedance depends on the application at hand; this

will be discussed further in the next section.

V. APPLICATION TO BILATERAL TELEOPERATION

The stability conditions derived in Sections III and IV

can be used to relax the assumption of passivity for one of

the (one-port network) terminations for a two-port network

while preserving the stability of the overall system. An

important application of these new criteria is in bilateral

teleoperation systems if one of the terminations (human

operator and environment) is non-passive. For a non-passive

human operator, the stability criterion presented in Section

III is most appropriate because the impedance of the human

operator’s hand has a limited amplitude and can be modeled

as a disc with finite radius in the complex impedance

plane. On the other hand, for a non-passive environment, the

stability criterion in Section IV is useful because stiff envi-

ronment (very large impedance amplitude) and non-passive

environments (negative real impedance) can be covered. In

practice, the operator is in most cases non-passive (at least

during manipulation tasks if not during sensing and grasp

tasks [10]), and the environment might demonstrate non-

passive behaviour, e.g., when gravity forces are acting on it.

Another example of non-passive environment is in beating-

heart telesurgical systems where the slave is interacting with

an environment that emits energy. In the following, our new

stability conditions will be applied to the position error based

teleoperation control architecture for either of non-passive

human operator and non-passive environments.

A position error based (PEB) architecture for a bilateral

teleoperation system is discussed in [11].

The hybrid matrix representing the system is [11]

H =

[

Zm + Cm
Zs

Zts

Cm

Zts

− Cs

Zts

1

Zts

]

(20)

where Zts = Zs + Cs and Ztm = Zm + Cm, where the

master and the slave robots are modelled as Zm = Mms
and Zs = Mss and the local position controllers are Cm =
Kvm

+ Kpm
/s and Cs = Kvs

+ Kps
/s. The impedance

matrix (1) can be found from the hybrid matrix as

Z =

[

Ztm Cm

Cs Zts

]

(21)

In the following two subsections, the new stability con-

ditions found in Theorem 2 and Theorem 3 will be applied

to the bilateral teleoperation system described by (21). Note

that in these stability conditions, port 2’s termination (z2)

is the non-passive termination. Thus, in the case where the

human operator is non-passive, z2 is the human operator’s

impedance and port 1 is terminated by the passive environ-

ment. On the other hand, when the environment is non-

passive, z2 is the environment impedance and port 1 is

terminated by the passive operator.

A. Non-passive human operator with known bounds on the

amplitude of the impedance

A non-passive human operator’s impedance has a disc

shape in the complex plane. With this assumption, the

results of Section III are applied to the teleoperation system

described above. The stability conditions (8) become

• Kvm
≥ 0

• Kvs
≥ a

• Z2,max ≤ |M1−jM2|
2Kvm

− |M3 − M1

Kvm

|
where M1 = KvmKvs

− Kpm
Kps

/ω2, M2 =
(KvmKps

+Kvs
Kpm

)/ω and M3 = Kvs
− jKps

/ω +
jωMs.

B. An environment with a non-passive strip-like impedance

The non-passive impedance of the environment is assumed

to have a strip-like shape with a lower bound of −a and an

upper bound of b for its real part in the complex plane. The

stability condition in Theorem 3 is applied to the system and

the results are as follows. The conditions in (14) yield

• Kvm
≥ 0

• Kvs
≥ a

• a2 − a(
K2

vs
+K2

ps

ω2Kvs

) ≥ 0 and a ≤ KvmKvs+KpmKps/ω
2

2Kvm

where the solution of the above inequalities becomes

Kps
/Kvs

= Kpm
/Kvm

and a = 0, meaning that the

termination has to be passive to satisfy the stability of

the closed-loop system.
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VI. CONCLUSIONS AND FUTURE WORK

Llewellyn’s absolute stability analysis for a two-port net-

work assumes the passivity of both of its terminations. This

is not a realistic assumption in the context of bilateral

teleoperation systems. To extend the result of Llewellyn,

in this paper a powerful stability analysis tool has been

developed based on Mobius transformations between the

impedance of the termination coupled to a port of the two-

port network and the driving-point impedance seen at the

opposite port. The new stability criteria have been applied

to a position-error-based bilateral teleoperation system for

non-passive operator and environment models.

APPENDIX

In this appendix, the lemma related to the Mobius trans-

formation is presented and the proof is given.

Lemma 1: Let us consider the following conformal map-

ping:
Za1 = Z11 −

Z12Z21

Z22 + z2
(22)

The right half plane in the z2-plane is transformed to a disc

in the Za1-plane with radius of

ro =
|Z12Z21|
2R22

(23)

and centre at

ωo = Z11 −
Z12Z21

2R22

(24)

Proof: A Mobius transformation can be split to a

set of three transformation, namely a linear transformation

(ζ1 = z2+Z22), an inversion (ζ2 = 1/ζ1) and another linear

transformation (ζ3 = Z11 − Z12Z21ζ2) [12]. As a result of

these three transformation the vertical line passing the origin

in the z2-plane is transformed to the Za1-plane.

It should be noted that a line or a circle can be expressed

as the following unified equation in the complex plane:

Azz̄ + B̄z +Bz̄ + C = 0 (25)

where A, B and C are the parameters of the circle or line

in the plane. Also, A = 0 reduces (25) to a line equation.

The three transformations are as follow:

1) The first transformation is a linear transformation as

ζ1 = z2 + Z22 that translates the left half plane to the

right side by the real part of Z22, i.e. R22 (Fig. 8-b). The

resulting line is expressed as Re{ζ1} = R22, which can

be converted to the general circle and line equation (25)

as ζ1+ζ̄1 = 2R22 (i.e. A = 0, B = 1 and C = −2R22).

2) The second transformation is an inversion ζ2 = 1/ζ1.

Substitution of the definition of the new transformation

into result of step 1 reads as 1/ζ2+1/ζ̄2 = 2R22, which

can be expressed in the general form of −2R22ζ2ζ̄2 +
ζ2 + ζ̄2 = 0(i.e. A = −2R22, B = 1 and C = 0).

This is an equation for a circle centered at ω2 = −B/A

and with radius of r2 =

√
|B|2−AC

|A| [12]. The centre and

radius will be found as ω2 = 1/2R22 and r2 = 1/2R22,

respectively (Fig. 8-c). It should be noted that R22 has

to be positive.

3) The third tansformation is ζ3 = Z11−Z12Z21ζ2. Similar

to the first transformation, the third transformation is a

linear transformation (Fig. 8-d). For this transformation

the magnifying factor is Z12Z21 and translation is Z11.

Therefore, the circle will be expanded or contracted by

factor of and Z12Z21 and the radius becomes ro =
|Z12Z21|
2R22

and the centre of the circle will be translated

to ωo = Z11 − Z12Z21

2R22

. This completes the proof of the

lemma.
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Fig. 8. The Mobius transformation has been split into three transformations:
from (a) to (b) is a linear transformation (horizontal translation), from (b)
to (c) is an inversion, and from (c) to (d) is another linear transformation
with expansion/contraction in addition to a translation.
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