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Abstract—In this paper, a new adaptive control design 

method for nonlinear telerobotic systems with varying 

asymmetric time delays is presented. Using the proposed 

controller, it is possible to synchronize the state behavior 

of the local and the remote robots. While prior art on 

adaptive teleoperation has addressed stability in such 

systems only for constant delays, we guarantee 

asymptotic stability in the presence of delays that may be 

time-varying and/or unequal in the forward and 

backward directions. Using the proposed controller, 

asymptotic stability of the bilateral teleoperation system 

subject to any bounded varying delay with a bounded 

rate of variation can be guaranteed. The proposed 

controller also has the ability to cope with parameter 

variations in the dynamics of the local and the remote 

robots. To study the transparency of the closed-loop 

teleoperation system, we prove that the position and 

velocity errors between the local and the remote 

manipulators converge to zero asymptotically. To show 

the efficiency of the proposed controller, simulation 

results on a pair of two-degree-of-freedom manipulators 

with varying time delays in the communication channel 

are presented. 

I. INTRODUCTION  

 SING a telerobotic system, a human operator can carry 

out tasks in a remote environment. Different 

applications of telerobotic systems vary from tele-surgery to 

space manipulation. Teleoperation performance is greatly 

enhanced if haptic feedback about interaction occurring 

between the remote robot and the remote environment is 

provided to the human operator through the local robot [1]. 

Such systems are called “bilateral” because information 

flows in two directions between the operator and the remote 

environment [2]. On the other hand, in telerobotic 

applications with a distance between local and remote 

robots, there will be a time delay in the communication 

channel of the system [3]. The time delay in the closed-loop 

system can destabilize the telerobotic systems [3].  

Control schemes have been developed to compensate for 

the time delay, most of which are based on the passivity 
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theory. Passivity based control schemes [4] are inspired 

from energy interaction between interconnected systems [6]. 

To this end, Anderson and Spong [4] proposed scattering 

schemes based on the passivity theory. Another prominent 
passivity-based scheme is the wave variable formulation for 

a two port networks proposed by Neimeyer and Slotine [9]. 

These passivity based approaches can guarantee the 

passivity of bilateral teleoperation systems just for constant 

time delay and cannot preserve the passivity for varying time 

delays [7].  

In most passivity based bilateral teleoperation 

architectures, only velocity and force information is 

transmitted between the local and the remote sides [8]. This 

means that only force and velocity tracking can be ensured 

in such architectures, leaving the possibility that any initial 

position mismatch between the local and the remote robots 

would lead to a position drift between the robots. To solve 

this problem, [9] transmit position information along with 

the velocity information through the communication 

channel. The Scattering and the wave variable approaches 

are the best known methods in the passivity approach, and 

have been the subject of recent studies concerning 

teleoperation under varying delays. An extension of the 

scattering approach to the case of varying time delays is 

reported in [5], in which a small positive gain is added in 

communication channel to dissipate the extra energy 

generated due to the distorted scattered signals caused by 

varying time delay. The gain should be less than     , 
where T is the instantaneous value of the varying time delay, 

such that communication channel remains passive. Also, an 

extended version of the wave variable approach with varying 

time delay was reported in [10], in which besides the wave 

variables, extra variables are transmitted in the 

communication channel to preserve passivity. Another 

interesting and recent method in passivity-based analysis of 

telerobotic systems is the synchronization-based approach 

[11]. Compared to the wave variable approach, in the 

synchronization-based methods power signals continue to be 

transmitted in the communication channel while the stability 

(rather than the passivity) of the overall telerobotic system is 

analyzed. The wave variable scheme, however, only 

analyzes the passivity of the communication channel in 

isolation, which is overly conservative, and in terms of 

performance suffers from unwanted wave reflection effects 

particularly for larger time delays. In synchronization-based 

schemes, all states including positions and velocities of local 

and remote robots act synchronously. The methods in 

adaptive synchronization-based schemes reported so far can 

only guarantee the stability for a constant time delay in the 
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communication channel (this is not to be confused with 

considerable amount of previous work on non-adaptive state 

synchronization under varying time delay). In other words, 

in the presence of varying time delays, stability of the 

bilateral teleoperation systems cannot be preserved using the 

methods available so far. 

In this paper, a new controlling scheme is proposed to 

guarantee stability of the bilateral teleoperation system and 

to synchronize the behavior of the local and the remote 

robots in the presence of varying time delays in 

communication channel. This paper is organized as follows. 

Section II concerns that telemanipulator dynamic model 

while the controller design method is presented in Section 

III. In Section IV, simulation results demonstrate the 

efficiency of the proposed method followed by the 

conclusion n presented in Section V. 

II.  TELE-MANIPULATOR DYNAMIC MODEL 

The local and the remote manipulators can be modeled by 

the following nonlinear equations: 

                                       
                                         (1) 
where   ,     and     for         are the joint positions, 

velocities and accelerations of the local and the remote 

robots, respectively. Also,       ,            and        are 

the inertia matrix, the Coriolis and centrifugal term and the 

gravitational force respectively, τl and τr are control torques 

for the local and the remote robots, and τh and τe are applied 

torques from the human operator and the environment sides 

respectively.   

Some important properties of the above nonlinear 

dynamic model are [12, 13]: 

For a manipulator with revolute joints, the inertia matrix 

       is symmetric positive definite and has the following 

upper and lower bounds: 

                               

I. For a manipulator, the relation between the 

Coriolis/centrifugal and the inertia matrixes is as 

follows:  

                       
          

II. For a manipulator with revolute joints, there  exists a 

positive number η  bounding the Coriolis/centrifugal 

term as follows:  

                      
   

III. The nonlinear manipulator dynamics could be linearly 

parameterized as follows [13]: 

                                                
where Yi is a matrix of known functions of the generalized 

coordinates and their higher derivatives and    is a vector of 

the manipulator dynamic parameters. 

III. CONTROL DESIGN 
In this part, the proposed controller design method to cope 

with varying time delays in a telerobotic system is presented. 

It is assumed that the dynamics of the system is not exact. 

So, the estimates of the robots’ dynamics are employed in 

the controllers τl and τr. The controllers τl and τr in (1), are 

defined as follows 

                                           

                                              (2) 

where ^ represents estimates of the remote and the local 

manipulators parameters and     for         are the new 

control signals. Also, epl and epr, which are position errors in 

local and remote sides, are defined as 

                      

                                 (3) 

where       is the delay in the feedforward path and       is 

the delay in the feedback path. The overall scheme of 

teleoperation with varying time delay is shown in Figure 1. 

We propose to define the new control signals, i.e., τl and τr, 

as follows: 

 
Fig. 1. The closed-loop teleoperation system under varying time delays 

     
     

 

 
     

 

 
    

   
               

      
           

                                                                                        

  

where Ki for         is a positive definite matrix and       

denotes Euclidean norm. Also,      is the time derivative of 

position error    , and evi (velocity error) and εi for         

are defined as follows: 

 
 
                                                 

                                   (5) 

                          

Note that because of the variation of time delays, the 

velocity error     and the derivative of the position error      

are not the same. Combining (2) and (1), the closed-loop 

system equations are found as 

                                    

                                

     
     

 

 
     

 

 
    

   
               

      
           

                                                                                           

  (4) 
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                              (6) 
where   represents the estimation error in the manipulator 

parameters., e.g.,           ,           , and     
       for        . Using the fact that the equations of robot 

motions are linear in their parameters (Property IV), let us 

define the regressor matrix Yi and the parameter vector   

such that the nominal robot dynamics can be written as 
                                        (7) 

Equation (7) can be achieved from Property IV via 

replacing    with    and the exterior    in           with   and 

then negating  . Using the above linearity property, we have 

                        

                                                      (8) 

where            and the regressor                     is a 

matrix whose elements are known functions of the 

generalized coordinates, derivatives of generalized 

coordinates, position errors and velocity errors. It is possible 

to find the following closed-loop dynamical equations from 

the above.  
                        

                                            

                        

                                        (9) 

Now, we introduce the following adaptive update law for 

manipulators parameter estimation to be used in conjunction 

with the controllers (2): 

        
                                            (10) 

In the following, we analyze the stability of the system. 

Theorem I: In free motion (τh = τe = 0), the bilateral tele-

manipulator (1) with the controller (2)-(5) is asymptotically 

stable. Also,    converges to a constant value, and the 

position error     and the velocity error     converge to zero 

for any bounded varying time delay with a bounded time 

derivative. Here,        . 
Proof: To study the asymptotic stability under varying time 

delays in the communication channel, we use the following 

Lyapunov-Krasovskii functional: 
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where   is a positive definite matrix. The time derivative of 

  is 

     
 

 
  
        

         
 
        

 

 
   

      

       

 

 
 

 
      

        
 

 
                   

 
             

Using equation (9), we can simplify    as 

     
 

 
  
        

                      
 
       

       

 

 
 

 
   

       
 

 
      

        

 
 

 
                   

 
             

 

 
      

        

Using the following skew-symmetry property, which is 

equivalent to the property II, 

                                             (14) 

and after some simplifications, we get 
 

 
  
        

                      
 
        

    
 
   

               
              (15) 

To simplify the right-hand side of (15), we introduce the 

following adaptive rule  

         
                    (16) 

With the assumption that the variation of unknown 

parameters   is low, we get         , and the above adaptive 

rule for parameter updates becomes 

        
                    (17) 

which is same as (1). Using the above, it is possible to 

simplify   , as follows: 

        
     

 

 
   

      

       

 
 

 
      

        

 
 

 
                   

 
             

 

 
      

        

Using the definition of     in (4) and after some 

manipulations, we get 

        
      

 

 
  
      

 

 
  
    

       

 

 
 

 
   
                

 

 
   

       

 
 

 
      

        
 

 
                   

 
             

Applying the following relationships 
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    ,         (21) 

it is found that 
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Considering the time derivatives of the position errors,      

and      as 
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                ,                (23) 

we get the following relationships between      and    : 

                                     

 (24) 

                                    (25) 

Applying (24)-(25) to (22),   could be simplified as 

becomes 

        
      

 

 
  
      

 

 
  
    

       

 

 
 

 
   
                

 

 
   

      
 

 
   
           

      

Considering that 

                                 

 (27) 

                                 

 (28) 

   is further simplified to 

        
      

 

 
  
      

 

 
  
    

       

 

 
 

 
   
                

 

 
   

      
 

 
   
           

     

More simplification gives 

        
      

 

 
   
     

 

 
               

 
    

       

 

 
 

 
               

 
                 

 (30) 

Using the definition of    in (5), negative semi-

definiteness of    is seen as 

        
      

 

 
   

                     (31) 

Integrating (31), it is easy to see that           

   
 

 
       

      
 

 
   

     
 

 
   , i.e.,          .  

Using the fact that       ,           and        , it 

is possible to say that      is positive bounded decreasing 

function. Thus, it is concluded that all terms in      are 

bounded. Now let us proceed to the analysis of transparency 

of the system by proving                           

  . We will also show that             is bounded to 

establish closed-loop stability. Previously, it is shown that 

     is bounded, so all terms in      including   ,        and 

      . Using        and integrating equation (31), 

    
       

 

 

 

 
     

     
 

 
               , it 

follows that   ,       . It is easy to see from (5) that, since 

      , we have       . Combining these with (24)-(25) 

and the assumption that     is bounded, it is seen that        . 

All these bounded signals result in the boundedness of the 

regressor matrix    , i.e.,       . Using the boundedness of 

  ,    ,     and    and Properties I and III in (9), it is seen that 

      . Using Barbalat’s lemma, given that       and        

, it is concluded that           . Using              , it 

is determined that      . Invoking the time derivative of    , 

e.g.,                          , it is concluded that 

       . Therefore, using Barbalat's lemma again, since 

       and        , it is resulted that            . 

Replacing                       in  
 
         and 

using the fact that  
 
→0, stability of the system        

                  can be analyzed with calculating the 

response of       to the            . Homogenous 

response of stable differential equation              

            is                        . Similar 

result could be achieved for       as                  
      . If                is bounded then     , which 

implies that     ,     and     0. If                be 

unbounded then       would be indeterminate which could 

be evaluated using Hopital's rule as             
 

  
                

 

  
    

            , i.e.,     0. Similar 

results could be achieved for     0. Using the definition of 

 
 

 in (5) and using the fact that        
 
      and 

              , it is easy to see from (5) that  

               and, in other words,              

Constant. Thus, it was proved that             Constant 

and                                  

□ 
Thus, in free motion of the bilateral telemanipulation 

system (1), state synchronization is satisfied under time 

varying communication delays. Also, the closed-loop 

telemanipulator is input-to-state stable from the human and 

environment input forces to the local and remote 

manipulator states. 

IV. SIMULATION RESULTS 

To verify the theoretical results of this paper, the local and 

remote manipulators are considered to be a pair of two-

degree-of-freedom serial robots with revolute joints. The 

local and remote manipulator dynamics (1) have the 

following elements of inertia, Coriolis/centrifugal and 

gravity matrixes: 

 
 

 
            

           

 
 

 
            

            
(26) 
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 ,              
        
        

  and 

         
   
   

  where for        ,         
     

   
                               ,                

     

                   ,          
    ,                              , 

                            ,                            ,      

 ,                                               , 

                       . Here,     and     are the 

positions of the first and the second revolute joints,     and 

    are the link lengths and     and     are the masses of the 

first and the second links for each robot. For both 

manipulators, we used the same linear parameterization (see 

Property IV) as in [11]: 

                      
                    

                    
 ,     

                         

where,             ,                                     

                                  ,             ,      

              ,                ,       ,      

                                ,                   ,      

               ,       and          
          

            , 

       
 
   
 
      ,        

 
  
     ,               ,        

 
        

  2,    , . 

Using the above definitions for the elements of the matrix 

   , it is possible to estimate matrixes   ,    and    based on  

the elements of     that will be estimated online. In 

simulations, the physical parameters of the manipulators are 

set to         ,           ,          ,          , 

          ,            ,          ,           

and the controller gain    is set to   . In the following, three 

simulation scenarios are considered involving constant time 

delays, random time delays and sinusoidal time delays 

(scenarios A, B and C, respectively). A human torque, which 

is shown in Figure 2, is applied to the local manipulator and 

the tracking performance of the first and the second joints of 

the local and remote manipulators are considered. 

A)   Simulation with constant time delays 

In Figure 3, simulation results for a constant time delay 

similar to that used in [11], T1=0.4 and T2=0.4 seconds, in 

terms of joint positions of the remote manipulator and 

delayed joint positions of the local manipulator in the 

presences of the exerted human torque are shown. 

Comparing the results, it can be seen that the results of the 

proposed method is exactly the same as that of the method in 

[11]. This similarity is because of the fact that in this 

simulation time delays are constant. 

 
Fig. 2. Exerted human torque 

B) Simulation with random time delays 

In this part, simulation results of the proposed method 

compared with [11] for random time delays with Gaussian 

distribution with mean 0.48 second and standard deviation 

of 0.022, are shown. In this simulation, again the positions 

of the first and the second joints of the remote manipulator 

compared with delayed joint positions of the local 

manipulator in the presences of exerted human torque are 

shown. As it can be seen from Figure 4, the proposed 

method has better tracking performance and less fluctuations 

and settling time than the method in [11]. 

 
Fig. 3a. Positions of the first joints of the local and remote  manipulator in 

telemanipulation with constant time delay. 

 
Fig. 3b. Positions of the second joints of the local and remote manipulator 

in telemanipulation with constant time delay 

 
Fig. 4a. Positions of the first joints of the local and remote manipulators in 

telemanipulation with random time delay 

 
Fig. 4b. Positions of the second joints of the local and remote manipulators 

in telemanipulation with random time delay 

C) Simulation with sinusoidal time delays 

Let us verify the telemanipulator’s free motion tracking 

performance under sinusoidal time varying delays. The 

feedforward and feedback delays in the communication 

channel are assumed to be changing as sinusoids with a 

mean of 1 second and frequencies of 0.5027 and 0.4714 
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rad/sec – see Figure 5. Joint positions of the local and the 

remote manipulators in the presences of the exerted human 

torque of Figure 2 are shown in Figure 6. It is remarkable 

that state synchronization of the bilateral teleoperation 

system is satisfied in the presence of the fast varying 

communication delays. In Figure 7, tracking errors in the 

first and the second joints of the local and remote 

manipulators are shown, which are asymptotically 

converging to zero as predicted by the theory. 

 
Fig. 5. Time varying delays in communication channel 

 
Fig. 6a. Positions of the first joints of the local and remote manipulators in 

telemanipulation with sinusoidal time varying delay 

 
Fig. 6b. Positions of the second joints of the local and remote manipulators 

in telemanipulation with sinusidal time varying delay 

 
Fig. 7. Tracking errors of the positions of the first and second joints 

between the local and remote manipulators 

V. CONCLUSION AND FUTURE WORKS 

In this paper a new state synchronizing controller for 

bilateral teleoperation systems with varying time delays in 

the communication channel is proposed. Lyapunov stability 

of the closed-loop system in the presence of time varying 

delays is established. Besides, it is proved and also shown 

via simulations that, using the proposed controller, 

asymptotic synchronization between the local and the remote 

robots occurs. The proposed controller entails an adaptive 

tuning rule in the local and remote sides to estimate the 

unknown/uncertain dynamic parameters of the manipulators. 

Thus, in this paper, only the estimated values of the robots’ 

parameters are used in the controller, when providing the 

asymptotic state synchronization between the local and the 

remote robots under varying time delays. As future work, 

state synchronization under varying time delays in with 

hard-contact telemanipulation with consideration for force 

tracking to obtain full transparency will be studied. 
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