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This paper is concerned with deriving a dynamic model of a moderately flexible needle
inserted into soft tissue, where the model’s output is the needle deflection. The main
advantages of the proposed dynamic modeling approach are that the presented model
structure involves parameters that are all measurable or identifiable by simple exper-
iments and that it considers the same inputs that are currently used in the clinical
practice of manual needle insertion. Conventional manual needle insertion suffers from
the fact that flexible needles bend during insertion and their trajectories often vary from
those planned, resulting in positioning errors. Enhancement of needle insertion accuracy
via robot-assisted needle steering has received significant attention in the past decade.
A common assumption in previous research has been that the needle behavior during
insertion can be adequately described by static models relating the needle’s forces and
torques to its deflection. For closed-loop control purposes, however, a dynamic model of
the flexible needle in soft tissue is desired. In this paper, we propose a Lagrangian-based
dynamic model for the coupled needle/tissue system, and analyze the response of the
dynamic system. Steerability (controllability) analysis is also performed, which is only
possible with a dynamic model. The proposed dynamic model can serve as a cornerstone
of future research into designing dynamics-based control strategies for closed-loop needle
steering in soft tissue aimed at minimizing position error.
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1. Introduction

Among several prostate cancer treatment options, permanent implant brachyther-
apy is considered to be a patient-friendly and minimally invasive surgery with faster
recovery time. Brachytherapy involves using needles loaded with radioactive seeds
for eliminating cancerous tissue. Once these seed-carrying needles are inserted, they
must be steered to reach planned locations in the prostate. After the needle tip
reaches the target location, the seeds must be deployed inside the tumor during the
process of retracting the needle.

Presently, brachytherapy has emerged as an efficient treatment option for men
with localized prostate cancer. Despite good clinical outcomes, brachytherapy’s
performance is still less than ideal and has room for improvement. In brachytherapy,
seed placement is not always done accurately due to various parameters that may
change from one patient to the next.

Current practice is that surgeons use a template grid to manually guide needles
into the prostate while 2D ultrasound images provide visual feedback about the
depth of insertion and if the needle tip is within an acceptable neighborhood of a
target position; if not, the surgeon normally retracts the needle partially and re-
inserts it for a better result. This procedure assumes that needles remain parallel
inside the tissue as they are inserted at different positions in the template grid.
However, this is not necessarily the case in reality, causing somewhat significant
needle tip positioning errors. Previous work has shown that seeds can be placed
at a target position with an average precision of about 5mm, which is substantial
given that the average prostate is only 5 cm in diameter. What is important is that
inaccurate needle insertion leads to inaccurate seed placement, which in turn results
in delivery of a different radiation dose to the prostate than planned1,2 and possibly
inferior outcomes.3,4

With regards to unwanted needle tip misplacement, there are plenty of factors
contributing to it. These include the nonlinear behavior of tissue, interaction forces
between needle and tissue in directions other than insertion, needle flexibility,
prostate deformation and swelling, etc. The most significant factors leading to nee-
dle tip misplacement are needle deflection and tissue deformation. Needle deflection
is due to the flexibility of the thin needles (clinically popular 18-gauge needles are
only 1.27mm in diameter) used in brachytherapy. There is a coupled relationship
between needle deflection and tissue deformation.

A dynamic modeling approach studying the needle/tissue system behavior can
help implement computerized needle control strategies for better results in terms
of seed placement error. Surveying the literature, the lack of generalized strategies
for needle steering using available feedback signals that ensure minimized needle
deflection and tissue deformation is evident. It is expected that such strategies
yield smaller seed implantation errors than those in manual insertion, meaning
that they improve the quality and effectiveness of brachytherapy. For this purpose,
i.e., closed-loop control of the needle, real-time feedback of needle deflection and
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tissue deformation are necessary besides possibly the estimation of forces/torques
acting on the needle.

2. Literature Survey

When a needle is inserted into tissue, modeling needle deflection and tissue defor-
mation is not easy due to the coupling caused by the interaction forces at the
interface of the needle and tissue. Needle deflection and tissue deformation are cou-
pled effects. Thus, ideally, needle deflection and tissue deformation modeling should
be done with due consideration for this coupling.

2.1. Rigid needle in soft tissue

Alterovitz et al.5 assumed a rigid needle and studied the effects of needle tip forces
and frictional forces in their simulations. In their research, soft tissue was modeled
using a 2D dynamic finite element method. In addition, Dimaio and Salcudean6

considered a 2D linear elastic model of tissue penetrated by a rigid needle and, based
on tissue deformation, calculated needle forces during insertion. Also, Dehghan and
Salcudean7 proposed a new method of path planning for rigid needle insertion into
soft tissue. Another soft tissue modeling can be found in Ref. 8.

2.2. Flexible needle in rigid tissue

Flexible needles can be categorized into two subgroups, namely highly flexible nee-
dles and moderately flexible needles. Webster et al.9 used nonholonomic bicycle and
unicycle modeling for steering highly flexible needles. Alterovitz et al.10 steered a
flexible needle with a new motion-planning algorithm. Similar to Alterovitz et al.,11

Park et al.12 have also addressed the problem of steering a highly flexible needle
through a firm tissue.

2.3. Flexible needle in soft tissue

Common needles in brachytherapy are neither completely rigid nor highly flexible.
The most common method of modeling this type of needle is the finite element
(FE) method.13 Another approach to model flexible needles is the linear beam
theory.14 Yan et al.15 modeled a needle using linear beam elements. Dehghan et al.16

compared three different models of needle bending including two FE methods, with
tetrahedral elements and nonlinear beam elements, as well as an angular spring
model.

The aforementioned studies stop short of fully accounting for the coupling
between tissue deformation and needle deflection when a flexible needle is inserted
into soft tissue. The interaction between a flexible needle and soft tissue during
needle insertion is a bilateral phenomenon. The more the tissue is deformed, the
more the needle is deflected and vice versa. A few papers have studied this coupled
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interaction between needle and tissue during insertion which is difficult to model
meticulously although it is important for accurate modeling of the seed placement
process.17 For modeling the soft tissue, a Cauchy strain model was assumed, which
leads to a linear relationship between force and displacement. A Green–Lagrange
strain model was also studied as a nonlinear model for the force versus displacement
relationship.

2.4. Needle deflection and tissue deformation feedback

As mentioned before, needle deflection and tissue deformation are known as the
two main factors contributing to seed misplacement. There are many ways for
measuring these two quantities. The following are methods used in the context of
brachytherapy.

For needle deflection measurement, one way is to measure the position of the
needle tip directly using a sensor. This method of calculating needle deflection is
straightforward and does not need any calculations. However, the cost of this system
along with its clinical usability in brachytherapy are causes for concern.

Another technique for needle deflection measurement is to take advantage of
image analysis. Among a variety of algorithms, a popular algorithm is the general-
ized Hough transform,18 which is a feature extraction technique.

Another existing idea for finding the needle deflection is to use a model of nee-
dle deflection in order to relate input variables such as needle base force to needle
deflection (i.e., tip position). In general, among these three methods for needle
deflection measurement, the image-based algorithm will take the longest and the
tracking sensor-based solution will take the shortest time. In addition, image-based
algorithms will be less accurate due to imaging limitations but are relatively inex-
pensive from a hardware perspective.

Similar to the needle deflection measurement, there are different ways to calcu-
late tissue deformation. This quantity can be estimated directly using sensors or
indirectly via image processing or tissue modeling. Template matching and mor-
phological methods are common image processing algorithms.

3. Fully Robotic Needle Insertion: Mathematical Modeling

A common assumption in previous research has been that needle behavior during
insertion can be adequately described by static models relating the needle’s forces
and torques to its deflection. We hypothesize that the needle flexibility in soft tissue
should also be studied in terms of its transients for closed-loop control purposes.
In fact, we hypothesize that enhancing needle insertion accuracy via robot-assisted
needle steering may require the knowledge of the dynamical relationship between
what causes the deflection and the deflection itself. Therefore, the results in this
paper can be regarded as a first step for future research on closed-loop control of
flexible needles in soft tissue.
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In the following, a Lagrangian-based dynamic model for the coupled needle-
tissue system is proposed. Afterwards, steerability (controllability) and observabil-
ity analyses are performed, which are only possible with a dynamic model. Although
inevitably more involved, the proposed dynamic model is expected to be more accu-
rate than static models and to more fully capture the rich dynamics of needle/tissue
interaction. To avoid over-complication, we ignore the effect of different tip types
(e.g., beveled or trocar) for brachytherapy needles in our modeling. In this paper, we
also present system identification for both tissue model and needle/tissue friction
model. Simulation results are reported at the end.

3.1. Previously reported models

In the literature, there are several studies on modeling of the needle-tissue system
using various assumptions. These studies are founded either on the Euler–Bernoulli
static beam model or on the dynamic beam model derived from Euler–Lagrange
theory.

In Ref. 19, Haddadi et al. modeled a needle in soft tissue by considering three
external forces at three discrete points. Another model is presented by Lindsey
et al.,20 which is derived from Euler–Bernoulli theory.

In Ref. 21, needle deflection is modeled after considering the needle length as
consisting of two parts: a part that is inside the tissue and another part that is
outside of the tissue.

3.2. The proposed dynamic model

In this section, we aim to derive dynamic equations governing a system comprised
of a moderately flexible needle inserted in a soft tissue. The proposed dynamic
model can serve as a cornerstone of future research into designing dynamics-based
control strategies for closed-loop needle steering in soft tissue aimed at minimizing
position error.

3.2.1. Lagrangian formulation

A general dynamic modeling approach is based on the extended Hamilton’s prin-
ciple. The extended Hamilton’s principle for rigid and deformable bodies can be
written as the following22:∫ t2

t1

(δT − δP )dt +
∫ t2

t1

r∑
k=1

Qkδskdt = 0, (1)

where [t1, t2] is the time interval of motion, δ shows the variation in a parameter,
and T and P are the kinetic and potential energies of the system, respectively. In
the above, Qk is the external force in generalized coordinates, δsk is the vector of
corresponding displacements in the same coordinates, and r is the dimension of
displacements.
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In a conservative system, work done by a force is independent of path, equal to
the difference between the final and initial values of an energy function, and com-
pletely reversible. If the system we would like to model is conservative, Hamilton’s
principle will be invariant under coordinate transformations and therefore can be
written as ∫ t2

t1

δ(T − P )dt =
∫ t2

t1

δLdt = 0. (2)

In (2), the Lagrangian is defined as the difference between the kinetic and potential
energies23: L = T − P . Applying the variation principle to (2), one can derive the
most common representation of Lagrangian-based dynamics as24

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= F, (3)

in which q is the vector of generalized coordinates and F is the vector of corre-
sponding generalized conservative forces.

In the needle and tissue system, we define an inertial and a noninertial coordi-
nate frame (Fig. 1). A noninertial frame has acceleration with respect to an inertial
frame. Writing the Lagrangian dynamics in an inertial reference frame is preferable
because, if we use a noninertial reference frame, the laws vary from frame to frame
depending on the acceleration. For instance, to explain the motion of bodies in a
noninertial reference frame, the so-called fictitious forces, which do not arise from
any physical interaction, need to be defined in such a way that the motion observed
in the noninertial frame is the same as that in the inertial frame. Although some-
times stating a modeling problem in an inertial frame is inconvenient, dealing with
fictitious forces in a noninertial frame can be harder. Given the difficulties with
noninertial frames, we will use the inertial frame in our system when writing the
Lagrangian dynamics of a needle-tissue system.

Fig. 1. Schematic of a flexible needle in soft tissue. The origin of the {yz} coordinate frame

(inertial frame) is the needle entry point into tissue while that of the {YZ} frame (noninertial
frame) is fixed to the needle base and moves forward as the needle is inserted.
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In the needle-tissue system, there are friction forces between the needle and
tissue that cannot be neglected in the interaction force. These friction forces make
the system nonconservative, and the resulting Hamilton’s principle-based equations
will be complicated. To avoid this complexity, one can first consider only conser-
vative forces and their corresponding energy equations for writing the Lagrangian
dynamics, and then add friction forces directly in the final equations. This approach
is used for deriving dynamic models of robots as well.25

Disregarding the friction forces, to derive the dynamics of the coupled needle-
tissue system, we need to find all of the kinetic and potential energies in the system.
Suppose that the flexible needle’s base rotates by δθ about an axis perpendicular to
the plane of needle deflection and moves forward by a distance δd in the insertion
direction — see Fig. 1. For simplicity, we assume that needle deflection and tissue
deformation happen only in 2D space, although the following procedure is easily
extendable to the case of 3D space.

In Fig. 1, consider the two coordinate frames {YZ} and {yz} While the former
has its origin fixed to the needle base, the latter has its origin at the point of entry
of the needle into the tissue, having its y-axis aligned with the unbent needle’s axis.
Therefore, the {yz} frame, which is in inertial motion, is considered as the reference
frame in this study. In Fig. 1, w(y, t) denotes the needle’s deflection as a function
of time and space. Also, fy and τ are the force and torque (applied by the robot or
manually) along the y-axis and around the x-axis (found from completing the {yz}
frame using the right-hand rule), respectively.

Assumptions. The following is a list of simplifying assumptions used in this mod-
eling:

(1) Needle insertion and deflection are in a 2D plane that is perpendicular to the
gravity vector.

(2) Needle bending outside the tissue is negligible in comparison with that inside
the tissue.

(3) Torsional deflection of the needle can be neglected.
(4) The effects of needle bevel tip on needle deflection can be neglected.
(5) A model of tissue is homogeneous without considering swelling phenomena.
(6) Flexible needle has a constant linear density ρA, a constant Young’s modulus

E, and constant area moments of inertia Iy and Ix.

Generally, the kinetic energy of a body is found as

T (t) =
∫

along body

T̂ (y, t)dy,

where T̂ is the kinetic energy density. Using the predefined generalized coordi-
nate system, any point on the needle can be specified in the {yz} frame by three
variables d, w(t, y) and y, which are the length of needle outside of tissue, the nee-
dle’s deflection along its length, and the needle point’s coordinate along the y-axis,

1350031-7

In
t. 

J.
 M

od
el

. S
im

ul
. S

ci
. C

om
pu

t. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 W

SP
C

 o
n 

02
/0

3/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

December 31, 2013 12:0 WSPC/262-IJMSSC/S1793-9623 1350031

A. Boroomand et al.

respectively. The quadratic form of the needle’s kinetic energy is

T =
1
2

∫ l−d

−d

ρAṡT ṡdy, (4)

where ρ is the density, A is the effective cross-sectional area, and l is the total needle
length (comprised of the needle segments inside and outside the tissue). Also, s is
the position vector of any point on the needle, which is split into s1 (for needle
points outside the tissue) and s2 (for needle points inside the tissue).

Given the above-mentioned assumptions, the coordinates of a point on the nee-
dle can be written as follows. For the sake of brevity, we have denoted the needle’s
deflection w(t, y) by w.

s =




s1 =
[
y

0

]
; −d < y � 0

s2 =
[
y

w

]
; 0 < y < l − d

,

ṡ =




s1 =
[
ẏ

0

]
; −d < y � 0

s2 =
[
ẏ

ẇ

]
; 0 < y < l − d

,

where from Fig. 1, d is the length of the needle outside of the tissue. Substituting
the above ṡ in (4) leads to the following linear kinetic energy for the needle:

TL =
1
2

∫ 0

−d

ρAṡT
1 ṡ1dy +

1
2

∫ l−d

0

ρAṡT
2 ṡ2dy

=
1
2

∫ 0

−d

ρAẏ2dy +
1
2

∫ l−d

0

ρA(ẏ2 + ẇ2)dy. (5)

We can split the above kinetic energy into two terms, namely TL1, the kinetic energy
related to the axial and rotational movements of the needle’s rigid body, and TL2,
the kinetic energy corresponding to the needle’s flexibility. It is easy to show that

TL1 =
1
2

∫ l−d

−d

ρA(ẏ2)dy =
1
2
ρAlẏ2,

TL2 =
1
2

∫ l−d

0

ρA(ẇ2)dy.

In addition to TL, the rotational kinetic energy of the needle is calculated by

TR =
1
2

∫ θ̇

0

Ixθ̇dθ̇ =
1
4
Ixθ̇2.

The potential energy of the needle/tissue system changes as the tissue deforms. This
energy generally varies due to three effects: gravity, needle elasticity, and tissue
deformability. In our system, gravity does not have any effect on the potential
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energy of the system since the plane of needle insertion and deflection is assumed
to be parallel to the ground. The potential energy stored in needle elasticity is26:

Pne =
1
2

∫ l−d

0

EI y

(
∂2w

∂y2

)2

dy. (6)

where E is the Young’s modulus and Iy is the cross-sectional moment of inertia
of the needle. Also, one can write the potential energy stored in the deformed
tissue as

Ptd =
∫ l−d

0

(∫
k(d, t)w(y, t)dw

)
dy, (7)

in which k(d, t) is the stiffness coefficient of the spring mesh that models the soft
tissue. The dependence of k on d accounts for tissue non-homogeneities, and its
variation with time t allows simulation of in vivo reaction (such as swelling) of
sensitive tissues in response to the applied forces. Considering fifth assumption,

k(d, t) = ka = const. (8)

In (7), the tissue model will become even simpler after considering one equivalent
spring connected at the needle’s tip.

Overall, the Lagrangian can be calculated from (5)–(8) as

L =
1
2
ρAlẏ2 +

1
2

∫ l−d

0

ρA(ẇ2)dy +
1
4
Ixθ̇2

− 1
2

∫ l−d

0

EI y

(
∂2w

∂y2

)2

dy − 1
2
(ka)

∫ l−d

0

(∫
wdw

)
dy. (9)

For tractability of the derivation of the coupled needle-tissue Lagrangian dynamic
model, we make two additional common assumptions. With respect to assumption 6,
ρA and EI y can be moved outside the integrals. It is generally agreed that this
assumption is not far from reality.

Second, in (9), the Lagrangian depends on the deflection w(y, t), which is a
function of two variables: time and space. The well-known assumed mode method
makes the assumption that two-variable deflection function can be approximated
by separable one-variable functions of time and space. See Ref. 27 for more details.
Using assumed mode method, deflection can be expressed as,

w(y, t) = lim
n→∞

n∑
i=1

qi(t)ϕi(y) ≈ q1(t)ϕ1(y) + q2(t)ϕ2(y), (10)

where ϕi(y) is a vector of n “shape modes” and qi(t) is the corresponding vector of
generalized coordinates. This means that a continuous deflection is approximated
by an infinite series composed of products of time-dependent and space-dependent
functions.
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In this study, to limit the complexity and dimension, two dominant first modes
are considered. The shape mode ϕi(y) has the following general structure obtained
through the Euler–Bernoulli beam equation28:

ϕi(y) = ci[(sin(kiy) − sin h(kiy))]

− sin(kil) + sin h(kil)
cos(kil) + cosh(kil)

(cos(kiy) + cosh(kiy)), (11)

in which ki can be computed by solving cos(kil) cosh(kil) + 1 = 0. Defining µ as

µ =
sin(kil) + sin h(kil)
cos(kil) + cosh(kil)

.

ϕi(y) is reduced to

ϕi(y) = ci[(sin(kiy) − sin h(kiy))] − µ(cos(kiy) + cosh(kiy)),

in which ci is a normalizing constant found such that the equation below is satisfied.∫ l

0

((ϕi(y))2dy = 1.

Simplifying the above for finding coefficients ci leads to
2µ

ki
sin(kil) sinh(kil) +

1
ki

(1 − µ2) cos(kil) sinh(kil)

− 1
ki

(1 + µ2) sin(kil) cosh(kil) +
1

4ki
(1 + µ2) sin h(2kil)

+
1

4ki
(µ2 − 1) sin(2kil) +

µ

2ki
(cos(2kil) − cosh(2kil)) + µ2l =

1
c2
i

.

Consequently, (9) can be rewritten as (12) where a prime denotes differentiation
with respect to the space variable y (whereas a dot denotes differentiation with
respect to the time variable t):

L =
1
2
ρAlẏ2 +

1
2
ρAq̇2

1

∫ l−d

0

ϕ2
1(y)dy +

1
2
ρAq̇2

2

∫ l−d

0

ϕ2
2(y)dy

+ ρAq̇1q̇2

∫ l−d

0

ϕ1(y)ϕ2(y)dy +
1
4
Ixθ̇2 − 1

2
EI yq2

1

∫ l−d

0

(ϕ′′
1 )2dy

− 1
2
EI yq2

2

∫ l−d

0

(ϕ′′
2 )2dy − EI yq1q2

∫ l−d

0

ϕ′′
1ϕ′′

2dy − 1
2
kaq2

1

∫ l−d

0

ϕ2
1(y)dy

− 1
2
kaq2

2

∫ l−d

0

ϕ2
2(y)dy − kaq1q2

∫ l−d

0

ϕ1(y)ϕ2(y)dy. (12)

To substitute the above in (3), we note that q and F are

q =




d

θ

q1

q2


, F =



fy

τ

0
0


,
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where from Fig. 1, d is the length of needle outside of the tissue and θ is the
deflection angle. qi is the vector of generalized coordinates. It is obvious that the
two external forces, fy and τ , are applied along the y-axis and around the x-
axis, respectively. Since no external force is applied along the z-axis (i.e., in the
direction of q1 and q2), the last two rows of F are zero. Also, we note that ẏ =
ḋ. Substituting (12) into (3) followed by simplification and rearrangement of the
resulting terms yields the nonlinear dynamic equation of the needle in the tissue
(excluding nonconservative forces) in the general form of Eq. (13).

M(q)q̈ + N(q, q̇) = F. (13)

Here, M(q) is a 4 × 4 matrix in terms of the vector q only, and N(q, q̇) is a 4 × 1
vector comprised of elements of both q and its first derivative. Compared to the
nonlinear dynamical model of serial robots, the matrix M(q) is known as the iner-
tia matrix and the vector N(q, q̇) is the nonlinear term from Coriolos/centrifugal
effects.

Substituting Eq. (12) into (3) is straightforward but requires significant space to
show all the equations. Due to this reason, not all the details are included here. For
reader’s information, MAPLE software is used for taking derivatives and finding
the matrices M(q) and N(q, q̇):

∂L

∂ḋ
= 0,

∂L

∂θ̇
=

1
2
Ixθ̇,

∂L

∂q̇1
= ρAq̇1

∫ l−d

0

ϕ2
1(y)dy + ρAq̇2

∫ l−d

0

ϕ1(y)ϕ2(y)dy,

∂L

∂q̇2
= ρAq̇2

∫ l−d

0

ϕ2
2(y)dy + ρAq̇1

∫ l−d

0

ϕ1(y)ϕ2(y)dy,

∂L

∂d
=

∂

∂d

(
1
2
ρAq̇2

1

∫ l−d

0

ϕ2
1(y)dy +

1
2
ρAq̇2

2

∫ l−d

0

ϕ2
2(y)dy

+ ρAq̇1q̇2

∫ l−d

0

ϕ1(y)ϕ2(y)dy − 1
2
EI yq2

1

∫ l−d

0

(ϕ′′
1 )2dy

− 1
2
EI yq2

2

∫ l−d

0

(ϕ′′
2 )2dy − EI yq1q2

∫ l−d

0

ϕ′′
1ϕ′′

2dy − 1
2
kaq2

1

∫ l−d

0

ϕ2
1(y)dy

− 1
2
kaq2

2

∫ l−d

0

ϕ2
2(y)dy − kaq1q2

∫ l−d

0

ϕ1(y)ϕ2(y)dy

)
,

∂L

∂θ
= 0,
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∂L

∂q1
= −EI yq1

∫ l−d

0

(ϕ′′
1 )2dy − EI yq2

∫ l−d

0

ϕ′′
1ϕ′′

2dy − kaq1

∫ l−d

0

ϕ2
1(y)dy

− kaq2

∫ l−d

0

ϕ1(y)ϕ2(y)dy,

∂L

∂q2
= −EI yq2

∫ l−d

0

(ϕ′′
2 )2dy − EI yq1

∫ l−d

0

ϕ′′
1ϕ′′

2dy − kaq2

∫ l−d

0

ϕ2
2(y)dy

− kaq1

∫ l−d

0

ϕ1(y)ϕ2(y)dy,

d

dt

(
∂L

∂ḋ

)
= 0,

d

dt

(
∂L

∂ḋ

)
=

1
2
Ixθ̈,

d

dt

(
∂L

∂q̇1

)
= ρAq̈1

∫ l−d

0

ϕ2
1(y)dy + ρAq̈2

∫ l−d

0

ϕ1(y)ϕ2(y)dy,

d

dt

(
∂L

∂q̇2

)
= ρAq̈2

∫ l−d

0

ϕ2
2(y)dy + ρAq̈1

∫ l−d

0

ϕ1(y)ϕ2(y)dy.

Therefore, the Lagrangian equation corresponding to the variable d is as follows:

− ∂

∂d

(
1
2
ρAq̇2

1

∫ l−d

0

ϕ2
1(y)dy +

1
2
ρAq̇2

2

∫ l−d

0

ϕ2
2(y)dy + ρAq̇1q̇2

∫ l−d

0

ϕ1(y)ϕ2(y)dy

− 1
2
EI yq2

1

∫ l−d

0

(ϕ′′
1 )2dy − 1

2
EI yq2

2

∫ l−d

0

(ϕ′′
2 )2dy − EI yq1q2

∫ l−d

0

ϕ′′
1ϕ′′

2dy

− 1
2
kaq2

1

∫ l−d

0

ϕ2
1(y)dy − 1

2
kaq2

2

∫ l−d

0

ϕ2
2(y)dy

− kaq1q2

∫ l−d

0

ϕ1(y)ϕ2(y)dy

)
= f.

Similarly, the second Lagrangian equation is

1
2
Ixθ̈ = τ.

The third and fourth are

ρAq̈1

∫ l−d

0

ϕ2
1(y)dy + ρAq̈2

∫ l−d

0

ϕ1(y)ϕ2(y)dy + EI yq1

∫ l−d

0

(ϕ′′
1 )2dy

+ EI yq2

∫ l−d

0

ϕ′′
1ϕ′′

2dy + kaq1

∫ l−d

0

ϕ2
1(y)dy + kaq2

∫ l−d

0

ϕ1(y)ϕ2(y)dy = 0,
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ρAq̈2

∫ l−d

0

ϕ2
2(y)dy + ρAq̈1

∫ l−d

0

ϕ1(y)ϕ2(y)dy + EI yq2

∫ l−d

0

(ϕ′′
2 )2dy

+ EI yq1

∫ l−d

0

ϕ′′
1ϕ′′

2dy + kaq2

∫ l−d

0

ϕ2
2(y)dy + kaq1

∫ l−d

0

ϕ1(y)ϕ2(y)dy = 0.

It was mentioned previously that the resulting dynamic equations will not include
friction forces. In the flexible needle-soft tissue system, friction plays a signifi-
cant role. In order to make the dynamic equation (13) represent a more accurate
model of the system, it is important to at least approximately model friction and
include it in the dynamics. Therefore, the complete dynamics of the system will be
expressed as

M(q)q̈ + N(q, q̇) = F − Ff . (14)

Due to the fact that friction always acts against the movement, it has appeared with
a negative sign on the right-hand side. Possible models for friction are discussed
later.

Overall, our proposed dynamic model consists of two types of parameters. One
group is related to measurable physical properties such as E, Iy, ρ and A. Thanks to
a physics-based approach to dynamic modeling, which readily incorporates known
(or easily measurable) physical parameters such as Young’s modulus of the needle.
Another group of parameters relate to the tissue model and the needle/tissue fric-
tion force model, which can be estimated by collecting experimental data and using
common system identification methods. This will be discussed later.

In summary, the Lagrangian formulation for a dynamic system comprising a
moderately flexible needle in soft tissue in (12) was rearranged in the form of the
generic dynamics of a robot by defining an appropriate state vector. Similar to
robotic systems, the mass matrix M(q) turns out to be a symmetric matrix in
its dependence on the flexible needle’s physical parameters. The structure of this
matrix is reported below.

M =



M11 0 0 0
0 M22 0 0
0 0 M33 M34

0 0 M43 M44


.

Also, the matrix N(q, q̇) has the following structure:

N(q, q̇) =




0
0

N1(q, q̇)
N2(q, q̇)


.

From the physical behavior of the system, one may expect the state variables d

and θ to evolve in time independently from those states that relate to the needle
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deflection, i.e., q1 and q2. This expectation is reinforced by the vector N(q, q̇) in
which the first two elements are equal to zero. However, in our simulations, we see
a negligible yet nonzero dependence of the trajectory for d on the initial values of
q1 and q2. This deviation may be coming from the approximation of deflection with
only two dominant shape modes.

On the other hand, q1 and q2 are related only to the state d which is in the
direction of needle insertion. This means that the initial needle deflection changes
during needle insertion (even though we have not considered tip effects in the
dynamic model). Simulation results at the end of this paper will provide more
description of this issue.

In the next section, parametric system identification methods used for both
tissue model and needle/tissue friction force are presented.

3.2.2. Parameter identification

3.2.2.1. Least squares parameter estimation

Least squares parameter estimation is an optimization procedure for minimizing
the squared discrepancies (errors) between data obtained by measurement and their
expected values. In the context of a regression problem, the variation in a dependent
variable, X , leads to changes in another variable, Y , where Y = h(X)+ white noise.
The regression function h maps the two sampled data variables to each other, and
is to be estimated from n pairs of data points (Xi, Yi). Assume that the value of the
function h is known in n data points h(Xi), i = 0, 1, . . . , n, and that h(Xi) = xi1β1+
· · ·+ xipβp. The least squares method provides a computationally convenient fit of
this linear regression model to the experimentally obtained data points. The least
squares estimates βi are as follows when the n sampled data points are arranged in
a matrix framework29:

β̂i = (XT X)−1XT Y.

An extension of linear regression is called “weighted least squares”. In this
method, instead of minimizing the sum of squares, a weighted sum of squares of
errors is minimized. An ordinary regression calculates the parameters based on the
assumption that the white noise has a fixed variance. In real experimental data,
various input/output measurements may experience various levels of noise. Such
an inconsistency in the magnitude of noise (heteroskedasticity) makes the estima-
tion no longer optimal. In input/output channels where the noise is not small, that
portion of information should be weakened using a weight matrix W . Parameter
estimation in the weighted least squares method follows

β̂i = (XT W−1X)−1XT W−1Y.

This formulation is used later in this paper for both needle/tissue friction model
estimation and tissue stiffness model identification.
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3.2.2.2. Needle/tissue friction modeling and identification

The needle/tissue friction model is a component of the dynamic model that needs
to be identified and incorporated into the Lagrangian dynamics (14). Recently,
various studies have tried to model the friction force in percutaneous procedures.30

Given the complex nature of friction, it is common to only consider its dominant
terms. In the analysis of a dynamic system, a complex model of friction is rather
uninformative. A simple model is viscous friction in which the friction force fv is
proportional to the needle insertion velocity ḋ as fv = µv ḋ where µv is the viscous
friction constant. Another simple model is Coulomb friction fs, which is constant
except for a sign dependence on the insertion velocity as fs = µs sign(ḋ) where µs

is the Coulomb friction constant. A reasonable and simple model is to include both
of these terms as

ff = µs sign(ḋ) + µvḋ = fs + fv. (15)

Thus, the vector form of friction term in (15) can be added to the other dynamic
terms derived from the energy equations as

M(q)q̈ + N(q, q̇) = F −



µs sign(ḋ)

0
0
0


−



µv ḋ

0
0
0


. (16)

To further complete the dynamic model of the flexible needle in soft tissue, the
friction coefficients µs and µv need to be estimated. To do so, an experiment is set
up as described in the following. It is clear that during the time that the needle is
moving through tissue, a cutting force exists at the tip of the needle in addition
to the friction along the needle’s length. In our modeling, this cutting force is
neglected. To be able to ignore this cutting force and deal only with the friction
force in (15), we collect experimental data when the needle tip has completely
passed through the tissue. Then, we begin to apply an insertion force fy, starting
from zero and increasing it by small increments, until the needle starts to move;
at this point, the force at the needle’s base has just passed the Coulomb friction
level. The needle’s base force measurement data stored after this point corresponds
to the sum of Coulomb friction and viscous friction. Meanwhile, the position and
velocity of the needle’s base, which is fixed to the robot, are read from the robot
while a JR3 force sensor (JR3, Inc., Woodland, CA, USA) records the needle base
forces. This data is collected from several experiments. Applying linear regression
estimation to this data will give us an estimation of µs and µv.

Following the procedure stated above and by repeating the experiment 20 times,
average values and standard deviations (STD) of Coulomb and viscous friction coef-
ficients for a prostate implant needle (Model number 102482, World Wide Medical
Technologies) were obtained. These are reported in Table 1. Figure 2 shows a sample
profile of the needle base force measurement in the needle insertion experiment.
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Table 1. Friction coefficient estimation.

Standard deviation and typical values for friction coefficients
in 20 experiments

Mean ± STD for µs Mean ± STD for µv

0.56 ± 0.0374 0.3 ± 0.0447

1 1.2 1.4 1.6 1.8 2 2.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

position (mm)

fo
rc

e 
 (

N
)

measured force versus position of needles base

Fig. 2. Needle base force profile recorded for friction model identification. Needle was initially
passed through the tissue to eliminate cutting forces.

3.2.2.3. Tissue model identification

The tissue model that we will be identifying later based on certain force/
displacement measurements is in the form of a stiffness matrix. An important
question that arises is, are our experimentally obtained force/displacement mea-
surements describing a spring? A significant characteristic of a linear spring is
that it stores elastic energy; the time integral of force times displacement is zero
over a closed contour. In a general spring, force is an explicit function of position
as F = F (x). Therefore, the potential function related to the elastic energy is
defined as

Ep(x) =
∫

−FT dx

or

F(x) = −gradxEp(x),

where gradx represents the gradient with respect to x and the bold symbols denote
vectors. In Cartesian coordinates, the position and force vectors are

x =
[
x

y

]
, F =

[
Fx(x, y)
Fy(x, y)

]
, −gradxEp(x, y) �



−∂Ep

∂x

−∂Ep

∂y


 =

[
Fx(x, y)
Fy(x, y)

]
.
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The curl of the vector field F is defined as

curlF(x, y) =
∂Fx

∂y
− ∂Fy

∂x
,

which is directly related to the mechanical work required for movement. A sufficient
and necessary condition for spring-like behavior of a system is to have a vector field
with zero curl, which is equivalent to having a conservative force field.30

If a vector field is nonlinear but differentiable around an operating point, then
a Taylor series expansion might be used for it. For sufficiently small displacements,
high order terms in the series can be neglected, resulting in the following first-order
relation between the force and displacement vectors:[

Fx

Fy

]
=
[−kxx −kxy

−kyx −kyy

] [
dx

dy

]
,

−kxx =
∂Fx

∂x
, −kxy =

∂Fx

∂y
,

−kyx =
∂Fy

∂x
, −kyy =

∂Fy

∂y
.

The above relationship defines a stiffness matrix. In a pure spring, the stiffness
matrix is symmetric:

−kxy =
∂Fx

∂y
=

∂Fy

∂x
= −kyx.

Otherwise, the stiffness matrix is not symmetric.
We are interested in a metric that determines how closely a given 2D stiffness

matrix resembles an actual spring. The 2D stiffness matrix can be decomposed into
two parts: a symmetric matrix and an anti-symmetric (skew-symmetric) matrix.
This decomposition is formulated as

k2×2 =
1
2
(k + kT )︸ ︷︷ ︸

symmetric term

+
1
2
(k − kT )︸ ︷︷ ︸

anti-symmetric term

.

The symmetric matrix represents forces that correspond to the elastic energy func-
tion. Since the force–displacement relation is a vector field, the curl of this field
is a vector operator that describes the infinitesimal rotation of a field. The sym-
metric component of the stiffness matrix has a zero curl while the anti-symmetric
component possesses a nonzero curl. If the curl of the anti-symmetric part is small
enough, the total stiffness matrix can be assumed to describe an actual spring; this
will speak to the validity (or lack thereof) of an identified spring model.

To test the validity of the spring model for our soft tissue, it is only necessary to
make a small displacement around an equilibrium point by applying a small force
using an indenter (e.g., a robot end-effector) to the tissue. For this small displace-
ment, the force–displacement relation of the tissue can be considered linear. To find
the tissue stiffness coefficient denoted by ka in (8), we apply forces to the tissue in
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Fig. 3. (Left) Eight directions of applied force in the tissue identification experiment. (Right)
Experimental test-bed for tissue identification.

eight directions as depicted in Fig. 3. We place the robot end-effector in the center
of our phantom tissuea to avoid inaccuracies introduced by boundary conditions
between the tissue edges and the container that holds the tissue. The stiffness coef-
ficient of tissue, which is assumed to be homogeneous, can be estimated by the
least squares method using measurements of applied forces and their corresponding
tissue displacements. Forces are applied in two dimensions (in the plane of needle
deflection), which lead to a 2 × 2 stiffness matrix. However, in the needle/tissue
dynamics, we need only one element of this matrix, corresponding to the stiffness
along the needle deflection direction, kzz (see Fig. 1).

Having identified the tissue stiffness coefficient as described above, the mean
and standard deviation of measured values of the tissue stiffness are reported in
Table 2. This experiment was run 20 times in different tissue locations. From this
table, the consistency of estimated stiffness is evident from the small values of STD
for both kxx and kzz . From these experiments, ka was found to be 0.52 kN/m2 when
the applied force was 1.5N in magnitude. Our results confirm the reliability of this

Table 2. Tissue stiffness identification statistical numbers.

Applied forces are in Newton

f = 1.1 f = 1.2 f = 1.3 f = 1.4 f = 1.5

mean STD mean STD mean STD mean STD mean STD

kxx 1.26 0.08 0.82 0.54 1.10 0.11 1.03 0.12 0.96 0.12
kzz 1.01 0.11 0.81 0.15 0.69 0.18 0.60 0.19 0.52 0.18
kxz 0.04 0.08 0.04 0.07 0.01 0.09 0.001 0.08 −0.005 0.08
kzx −0.10 0.06 −0.10 0.10 −0.11 0.09 −0.11 0.09 −0.11 0.09

aThis phantom tissue is made of 75% liquid plastic with 25% plastic softener from M-F manufac-
turing Co.
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spring model for the phantom tissue under consideration. As expected, the anti-
symmetric part has small curl with the average values of kxy and kyx reported in
Table 2. This means that the spring model does capture the input–output behavior
of the tissue well. Due to some off-plane movements of the robot’s end effector in
the x-direction, for the bigger applied forces, kxx values are not close to the kzz

values, as expected for a homogeneous tissue.
In both identification procedures for the tissue model and the friction model,

data were first low-pass filtered to attenuate high frequency noise coming from the
force sensor.

3.2.3. Analysis of the dynamical system

Before designing a controller for an open-loop system, the system controllability
must be investigated to determine whether there exists an input signal that can
force the system from an initial state into a particular desired state. To look at
the controllability of the needle/tissue system with the dynamics given in (16),
the state space representation of the system is required. Let us rewrite the system
equation as

q̈ = M−1(q)(F − N ′(q, q̇)), (17)

where N ′(q, q̇) = Fv + N(q, q̇) + Fs. By defining the state vector

X = [X1 X2]T = [x1 x2 x3 x4 x5 x6 x7 x8]T

= [d θ q1 q2 ḋ θ̇ q̇1 q̇2]T ,

the state space representation of the flexible needle-soft tissue system is given as

Ẋ =




x5

x6

x7

x8

−M−1(X1)Ń(X1, X2)


+




0
0
0
0

M−1(X1)(F )


. (18)

The output equation for the deflection of the needle’s tip is

Y = w(l − d, t) = q1(t)ϕ1(l − d) + q2(t)ϕ2(l − d).

3.2.4. Linearization of the nonlinear system

In needle insertion, it is quite reasonable to assume that the surgeon or the robotic
system applies small changes in inputs. Thus, we only need to study the control-
lability of the linearized system around an operating point instead of that of the
nonlinear system. The linearization of the general nonlinear system

Ẋ = f(X) +
m∑

i=1

gi(X)ui, Y = h(X, U),
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(where X, Y and U are the state, the output and the input vectors, respectively)
around X0 and U0 is {

Ẋ = AX + BU

Y = CX + DU
. (19)

In the above,

A =
∂f(X)

∂X

∣∣∣∣
X0

+
m∑

i=1

∂gi(X)
∂X

ui

∣∣∣∣∣
X0,U0

, B =
m∑

i=1

∂gi(X)ui

∂ui

∣∣∣∣∣
X0

,

C =
∂h(X, U)

∂X

∣∣∣∣
X0

, D =
∂h(X, U)

∂U

∣∣∣∣
X0

.

For a nonlinear system, the linearized system relates to a nominal input as well
as nominal states. Therefore, verification of the controllability, observability and
other possible features of the nonlinear system are only valid around the particular
operating point of the states and the input.

Based on (18) and (19) and for the operating point [d0 θ0 0 0 ḋ0 θ̇0 0 0]T ,
the linearized model is given by

A =


 04×4 I4×4

∂(−M−1(X1)N ′(X1,X2))
∂X1

+ ∂M−1(X1)F
∂X1

∣∣∣
X0

∂(−M−1(X1)N
′(X1,X2))

∂X2

∣∣∣
X0




8×8

,

B =




04×2

M−1(X1) ×



1 0
0 1
0 0
0 0



∣∣∣∣∣∣∣∣
X0




8×2

,

C =
[
∂(x3ϕ1(l − x1) + x4ϕ2(l − x1))

∂X

∣∣∣∣
X0

]
1×8

, D = 01×2,

in which I4×4 is the identity matrix.
We can now study the behavior of the linearized system around a couple of

operating points for the state vector X .

3.2.5. Controllability analysis

Definition. A system is output controllable in a period (t0, tl) if for any given
t0 and tl, any final output at tl can be achieved starting with arbitrary initial
conditions in the system at t0. A system is state controllable in a period (t0, tl) if
for any given t0 and tl, any final state at tl can be achieved starting with arbitrary
initial conditions in the system at t0.
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It has been shown that a linear system described by matrices A, B, C and D is
output controllable if and only if the output controllability matrix Qm×mn

Q = [CB CAB . . . CAn−1B D],

has rank m where m is the number of inputs and n is the number of the state
variables. Similar to the output controllability, state controllability is satisfied if
and only if the controllability matrix µn×mn

µn×mn = [B AB A2B · · · An−1B],

is full rank. A state controllable system is not necessarily output controllable and
vice versa.

For the linearized system (19), it is found that the needle-tissue system is fully
controllable around some of the operating points while for some others there is a
deficiency in the rank of the controllability matrix. In contrast, the output control-
lability condition is not satisfied for most of the operating points, which means that
the inputs defined for the system are not able to influence the needle’s tip deflection
in a desired way. This result was expected as in manual needle insertion it is nor-
mally observed that fy and τ in Fig. 1 are inadequate for maneuvering the needle;
in practice, the surgeon needs to apply a lateral force as well or rotate the needle
around the y-axis to use the bevel-tip angle for properly controlling the needle.

3.2.6. Observability analysis

For designing a state feedback controller, the states of the system are assumed to
be available. Aside from a control point of view, the knowledge of the states of
the system is required for fault monitoring and detection purposes. In practice, the
entire vector of states is rarely available because having each state is equivalent
to having a physical sensor. In addition to the fact that sensors increase the cost
of the control system, in some cases a sensor cannot be mounted in the proper
location and some of the states may not even correspond to physical signals. For
these reasons, we need to reconstruct the state information from other measurable
input and output data. In this case, under some conditions — namely when the
system is observable — an observer can be used to estimate the states. Although
designing an observer for linear time-invariant systems is well formulated, the same
problem for nonlinear systems is challenging.

Definition. A system is said to be observable if for any initial state X0 and fixed
time t1 > 0, the knowledge of the input u and output Y over [0, t1] suffices to
determine the initial state X0 uniquely. Once the initial state is determined, any
state at time t1 can be reconstructed from the dynamic equation of the system.
The linear time-invariant system with state, input and output matrices A, B and
C is observable if and only if the observability matrix

On×mn = [C CA CA2 · · · CAn−1]T ,

has a full rank.
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Analyzing the linearized needle-tissue system in (19), it is found that while
there is a rank deficiency of 2 in the observability matrix, those states that are not
physically measurable, q1 and q2, are observable.

3.2.7. Controller design

3.2.7.1. Inverse dynamic control

If the dynamics of a system is fully given as in (17), an inverse dynamics controller
becomes an option. For the dynamic system in (17), the inverse dynamics controller
is given by

Fc = M(q)(q̈d + kv q̇e + kpqe) + Ń(q, q̇),

q̇e � q̇d − q̇,

qe = qd − q,

where Fc is the controller output vector, qd is the desired state vector, and kv and
kp are the controller gain matrices related to the velocity and position, respectively.
The controller matrix gain kv and kp should be chosen as positive definite matrices
for the sake of stability of the closed-loop system. The closed-loop system dynamics
will be

q̈ = q̈d + kv q̇e+kpqe.

By choosing positive definite matrices for kv and kp, the state error qe and its
derivative q̇e will converge to zero. Later, the simulation results for this inverse
dynamics controller are reported.

3.2.7.2. Proportional-Integral-Derivative (PID) control

Among non-model-based controllers, PID is famous for its reliable and robust
results. Here, we optimize the proportional, integral and derivative terms of the
controller by trial and error to get minimum needle deflection. Understandably, the
main issue with this controller is that adjusting its gains does not follow a general
rule and it varies from one dynamic model to another.

The next session compares the simulation results for the PID and inverse
dynamic controllers.

3.2.8. Simulation results

In the following, let us consider a reduced dynamic model of the system in order to
verify the effect of the insertion force fy on the needle tip deflection. To this end, the
input torque (needle rotation around its length axis) is not applied and therefore,
the second state variable θ and its corresponding torque input τ are not considered.
Accordingly, all matrix dimensions in (14) reduce from order 4 to order 3. For all
simulation results, the desired vector qd is set to zero (ideally zero deflection) when
the needle is fully inserted into soft tissue.
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Table 3. Physical system parameters.

Parameter Values are for an 18
gauge flexible needlea

Value Unit

E Young’s modulus 200 Gpa
Iy Cross-sectional moment of inertia 1.28 × 10−13 m4

Ix Cross-sectional moment of inertia 1.0626 × 10−9 m4

ρ Density 8000 kg/m3

A Effective cross-sectional area 1.27 × 10−6 m2

l Needle’s effective length 0.2 m
g Gravity constant 9.89 m/s2

aModel number 102482, World Wide Medical Technologies.
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Fig. 4. Needle tip’s deflection in the open-loop model.

Table 3 shows the physical parameter values corresponding to the 18-gauge
needle in our setup.

Figures 4 and 5 are the simulated responses to an input force equal to 3N with
the needle initially inserted 2 cm in the tissue with an initial deflection of 0.5mm.
For the simulation, the average values reported in Table 1 are used for the friction
model. Also, the stiffness coefficient of the phantom tissue is set to 0.52 kN/m2 as
calculated. From Fig. 4, it is concluded that the needle tip’s deflection varies as the
needle passes through the tissue.

Figures 6 and 7 show the needle tip’s deflection and the states of the closed-
loop system under the inverse dynamic controller, respectively. For inverse dynamic
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Fig. 5. State variables of the open-loop system.
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Fig. 6. State variables in the closed-loop system under inverse dynamics control.

controller, the matrix gains are chosen diagonal as

kp = diag{[1 10 10]},
kv = 0.1 kp.
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Fig. 7. Needle tip’s deflection in the closed-loop system under inverse dynamics control.
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Fig. 8. Needle tip’s deflection in the closed-loop system under PID control.

Also, the PID controller’s results are depicted in Fig. 8. For this controller,
minimum needle deflection is resulted by applying the following gain matrices:

kp = 103 × diag{[1 1 1]},
kv = 10 kp.
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In general, closed loop controlled system provides smoother response in needle
tip deflection. A comparison between the results of the inverse dynamic controller
with the PID controller reveals that the former leads to zero deflection as time
grows whereas the PID controller results in a nonzero position error, which is not
desired. Therefore, as we expected, the controller which is informed by the dynamic
model of the system, can better make the needle tip follow a desired trajectory.
Nonetheless, it must be noted that in reality we will not have a zero tip positioning
error due to the existence of noise and inevitable open-loop model identification
inaccuracies.

3.2.9. Conclusion and future study

Recent studies on steering flexible needles in soft tissue attempt to employ
computer-controlled steering in order to achieve more precise needle positioning.
This aim may not be achievable without a complete understanding of the dynamic
behavior of the needle/tissue system. This motivates deriving dynamical equations
governing a flexible needle in soft tissue. This paper explained the derivation of
the dynamic model of a coupled needle/tissue system based on the Lagrangian for-
mulation. The significance of this model is that it is physics-based and includes
both the needle’s elasticity parameters such as Young’s modulus and the model of
tissue deformation. This model does not consider unbalanced forces coming from
the needle’s bevel tip. We considered the effect of needle/tissue friction in the
dynamic model. The least squares estimation method was used for identifying the
parameters of tissue and friction models. Steerability (controllability) and observ-
ability analyses of the linearized system was done; the results for selected operating
points confirm the controllability of this dynamic system. Simulation results show
that the initial needle deflection can be a cause of further needle deflection dur-
ing insertion. Moving forward, having a dynamic model of the flexible needle in
soft tissue, we implemented two controllers: an inverse dynamics controller and a
PID controller. Simulation results confirmed that knowing the dynamical proper-
ties of an open-loop system helps to get a better performance in the closed-loop
system.

For future study, one can consider the effect of needle tip type (bevel, trocar) in
the dynamic model. An alternative approach for the model-based control strategy
would be to design an adaptive controller, given that the tissue and the needle
cannot be modeled precisely. In fact, control methodologies that ensure robustness
are welcome additions as there will always be uncertainties in the modeling due to
variations in tissue structures and needle parameters.
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