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Abstract—This paper proposes a method to predict the de-
flection of a flexible needle inserted into soft tissue based on
the observation of deflection at a single point along the needle
shaft. We model the needle-tissue as a discretized structure
composed of several virtual, weightless, rigid links connected
by virtual helical springs whose stiffness coefficient are found
using a pattern search algorithm that only requires the force
applied at the needle tip during insertion and the needle deflection
measured at an arbitrary insertion depth. Needle tip deflections
can then be predicted for different insertion depths. Verification
of the proposed method in synthetic and biological tissue show
a deflection estimation error of less than 2 mm for images
acquired at 35% or more of the maximum insertion depth, and
decreases to 1 mm for images acquired closer to the final insertion
depth. We also demonstrate the utility of the model for prostate
brachytherapy, where in-vivo needle deflection measurements
obtained during early stages of insertion are used to predict
the needle deflection further along the insertion process. The
method can predict needle deflection based on the observation
of deflection at a single point. The ultrasound probe can be
maintained at the same position during insertion of the needle,
which avoids complications of tissue deformation caused by the
motion of the ultrasound probe.

I. INTRODUCTION

Needle insertion is a minimally invasive procedure used
for purposes such as biopsy, brachytherapy, neurosurgery
and radio-frequency ablation. The outcomes of needle-based
procedures generally depend on the accuracy with which the
needles reach intended target locations [2]. Inaccurate needle
placement may limit the effectiveness of the procedure or lead
to undesirable side effects [4]. In needle-based procedures,
a critical assumption typically made is that the needle will
remain unbent across the entire length of its insertion in tissue.
However, in practice this assumption does not hold true as
needle deflection occurs due to needle-tissue interaction.

Needle insertion is often performed under ultrasound image
guidance [22] [24] [18]. The primary limitation in using
ultrasound (US) images for assessment of needle position is
the low quality of images that often contain artifacts that
are hard to interpret and distinguish from targets [5] [6]. In
addition, the field of view of the US transducer is often very
narrow and thereby only a small portion of the needle can be
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Fig. 1. Schematic representation of the lumped model of a needle in free
space. In this example, the needle is discretized into 4 weightless bars of
length l connected by helical springs of stiffness K. Angle θ(i) denotes how
much the bar i rotates which respect to the bar i− 1. A force F is applied
vertically at the tip.

imaged at once. For instance, in prostate brachytherapy, long
needles are inserted to about 140 to 160 mm depth through the
patient’s perineum in order to deliver radioactive seeds within
the prostate [21]. Given the limited field of the view of the
US image, typically only 25% of the inserted needle length
can be longitudinally imaged at once.

Longitudinal US imaging shows a plane parallel to the
needle’s shaft, and is typically used for rapid visualization
of needles in tissue. However, depending on how the needle
deflects during insertion, aligning the US probe with this lon-
gitudinal plane that contains the needle is not always possible
given the limited dexterity of transrectal probes. Alternatively,
transverse images obtained in planes perpendicular to the
needle shaft eliminate complications of probe alignment at
the cost of only seeing a single cross section of the needle
shaft along each transverse slice (image) [28]. Despite this
limitation, transverse images are widely used for pre-implant
treatment planning in brachytherapy, since they provide a
consistent view of cross sections of the prostate.

Tracking the needle tip during insertion in transverse images
requires the US probe to move in synchrony with the needle,
such that the needle tip is always visible in the images. Recent
techniques make use of motorized US probes that move with
the needle tip [27], or translate along the shaft of an inserted
needle [29].

Although moving the probe with the needle can provide an
accurate assessment of needle position, probe motion during
the clinical procedure can result in unwanted deformation of
the surrounding tissues [13]. This is a critical concern in
prostate brachytherapy where deformation of the prostate dur-
ing the intra-operative procedure results in anatomic variations
of the preoperative-planned needle target location [16] [25].
As a result, limiting the motion of the ultrasound probe is
desirable in order to minimize discrepancies between pre-and
intra-perative position of the prostate.

In this paper we propose a method for needle deflection
estimation based on the observation of the needle in a sin-
gle transverse US image obtained during insertion. Using
this method, the path that the needle tip follows can be
reconstructed without issues of probe alignment and tissue
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deformation present in sagittal imaging. The US probe can
either be maintained at the same position throughout the needle
insertion process, or be moved along with the needle during
the initial stages of insertion and stopped at an appropriate
position. A single image is fed into a lumped needle-tissue in-
teraction model that estimates the needle tip deflection further
along the insertion process. We extend an available discrete
needle model model [7] where the needle is modelled by a
discrete structure composed of several rigid bars connected in
series by helical springs to capture needle-tissue interaction.
The reaction of tissue is modelled as a modification of the
stiffness of virtual joints that are inside the tissue which are
identified using an adaptive optimization algorithm.

The paper is organized as follows. We first introduce a
lumped model for a needle in free space, which is then
further extended to capture needle-tissue interaction. Section
IV introduces the adaptive algorithm that identifies the model
parameters. Reported experimental results in Section VI in two
synthetic phantom and two biological tissue samples, show
that needle deflection can be predicted within an average error
of less than 0.8 mm as long the image used as input to
the model is acquired at a depth of 35% or higher of the
maximum needle insertion depth. Finally, an application to
prostate brachytherapy is proposed. In-vivo needle data from
prostate brachytherapy procedures are used to predict needle
deflection for different insertion attempts and insertion depths
into the prostate of actual human patients.

II. LUMPED NEEDLE MODEL IN FREE SPACE

The proposed method for needle tip path estimation makes
use of a single measurement of needle deflection, which is
used in a needle-tissue model along with the force applied at
the needle tip during insertion. In this section, we introduce a
lumped model for the needle in free space.

The proposed lumped model considers the needle as a
discrete structure composed of several rigid bars connected
in series by helical springs, referred to as virtual joints.
As a result, the partial differential equations of the infinite
dimensional time-space model of the needle-tissue system [14]
are reduced to ordinary differential equations with only a few
parameters. A similar model was introduced in [7] and [10].
These papers only concerned a needle in free space and not
in contact with tissue. Here the model will be extended to
capture needle-tissue interaction. Also, we propose an online
identification method of the needle-tissue model parameters
using a pattern search algorithm based on a single US image
acquired during insertion.

A schematic representation of the lumped needle model
when the needle is in free space is shown in Fig. 1. The needle
of length L is discretized into n undeformable weightless bars,
each of which has the length ` so that ` = Ln−1. In Fig. 1,
n = 4. Let us denote by θi the angle by which the bar i rotates
relative to the bar i−1 along an axis perpendicular to the plane.
A force Fr is applied to the needle tip (endpoint of the last bar)
along an axis normal to the unbent needle (corresponding to all
θi = 0). At each joint, two neighbouring bars are connected
through a helical spring. All helical springs have the same
stiffness of K.

(a) Single virtual link (b) Beam model

Fig. 2. A virtual link and the equivalent cantilever beam model. In (a), a
torque τ is applied to the virtual link of length ` connected to a fixed wall
through a spring of stiffness K. The resultant deflection angle is is τ/K. In
(b), the torque τb bends the beam to an angle of θb.

A. Forward Kinematics

In the four-link example shown in Fig. 1, the torque τi
generated at each joint i by a force F = [Fu Fv]

T , where
Fu and Fv are the horizontal and vertical components of F ,
respectively, is [26]

τ4 =Fv`[cos(θ1 +θ2 +θ3 +θ4︸ ︷︷ ︸
Θ4

)]−Fu`[sinΘ4)],

τ3 =Fv`[cosΘ4 + cos(θ1 +θ2 +θ3︸ ︷︷ ︸
Θ3

)]−Fu`[sinΘ4 + cosΘ3],

τ2 =Fv`[cosΘ4 + cosΘ3 + cos(θ1 +θ2︸ ︷︷ ︸
Θ2

)]

−Fu`[sinΘ4 + sinΘ3 + sinΘ2],

τ1 =Fv`[cosΘ4 + cosΘ3 + cosΘ2 + cos(θ1)]

−Fu`[sinΘ4 + sinΘ3 + sinΘ2 + sin(θ1)].
(1)

For a needle model composed of n links, the torque at the
joint i is

τi = Gi

[
Fu
Fv

]
(2)

where 1≤ i≤ n and Gi is the Jacobian matrix given by:

Gi =

 −`∑
n
j=i sin

(
∑

j
p=1 θp

)
0

0 `∑
n
j=i cos

(
∑

j
p=1 θp

)  .
(3)

The torques found through (2) are divided by the joint stiffness
K to find the angular displacements of the joints, i.e., θi =
τi/K. The Cartesian position of joint i (the endpoint of link
i− 1) in the normal and axial directions with respect to the
straight needle, called vi and ui respectively, can be obtained
as

vi = vi−1 + `sin

(
i

∑
p=1

θp

)
, ui = ui−1 + `cos

(
i

∑
p=1

θp

)
. (4)

The reason for the summation is that θi is defined to be the
rotation angle of link i relative to link i−1. Equations (3)-(4)
simply state that the Cartesian position of joint i is that of
joint i−1 plus the displacement caused by link i. The normal
displacement (deflection) of the needle tip will be vn.
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Fig. 3. Needle tip deflection in free space as a function of the load applied at
the tip. The needle is discretized into 50 virtual joints. Different masses are
hung at the tip and the tip deflection is recorded experimentally and calculated
theoretically.

B. Determining the Joint Stiffness

In order to determine the stiffness K of the joints that are
used in the lumped needle model, consider the single virtual
link shown in Fig. 2(a). A torque τ is applied at the end point
of this rigid link of length `, which is connected to a fixed wall
through a helical spring of stiffness K. The reaction torque Kθ

at the clamping point, where θ is the deflection angle, is equal
and opposed to τ [3]. This means

θ

τ
=

1
K
. (5)

Now, consider the equivalent beam model in Fig. 2(b). At
its neutral axis shown by the dotted line and located at a radius
of ρ , the short beam has the length `b = `, which is the same
as that of the virtual link in Fig. 2(a). Let us denote by c the
radial distance between the neutral axis and the outer radius
and by `+ δ the outer arc length. If the beam is under a
constant bending moment τb, then the resultant bending angle
is θb, which is equal to its angle of curvature φ [10]. The
strain ε(y), defined as the amount of elongation divided by
the initial length, at a radial distance y to the neutral axis is
ε(y) = τby(EI)−1 where E is the beam Young’s modulus and
I is its second moment of inertia. At the outer arc, where the
strain is ε(c) = δ`−1 by definition, it yields

δ

`
=

τb

EI
c. (6)

From similarity of the arcs, we have [7]:

`b +δ

`b
=

ρ + c
ρ

=⇒ δ

`b
=

c
ρ

(7)

Replacing (7) in (6) and knowing that ρ = `θ−1, the relation
between the bending moment and the resultant bending angle
can be written as

θb

τb
=

`

EI
. (8)

Therefore, if the moments applied on the virtual link in Fig.
2(a) and on the beam model in Fig. 2(b) are the same (τb = τ),
then the stiffness of the equivalent lumped model that gives
the same bending angle (θb = θ ) in the two models, for a
beam of length ` = Ln−1, is obtained by combining (8) and
(5) as

K =
EI
L

n (9)

The stiffness found in (9) corresponds to the stiffness of all
the n−1 springs that compose the needle lumped model.

C. Experimental Verification

Two different needles are used to validate the proposed
lumped model for the needle in free space. The first needle is
a standard 18-gauge brachytherapy needle (Eckert & Ziegler
GmbH, Berlin, Germany). The needle has a length of L =
210 mm and a Young’s modulus of E = 200 GPa. The inner
and outer needle radii are r1 = 0.5 mm and r2 = 0.635
mm, respectively. Its second moment of inertia can then be
calculated as I = π(r4

2− r4
1)/4 = 7.86×10−14 m4. The second

needle used in the experiment is a 226 mm long, solid stainless
steel wire with a Young’s modulus of 200 GPa. The wire has
an outer radius of 0.5 mm which gives a second moment of
inertia of 4.91×10−14. Both needles are modelled with n = 50
virtual joints. Thus, the stiffness K given by (9) for the needle
and for the wire are 3.93 and 2.45 Nm rad−1, respectively.

Different masses m are hung at tip of each needle and the tip
normal deflections vn are recorded. The vertical force applied
at the needle tip then yields Fu = 0 and Fv = −mg, where g
is the gravity constant. The needle tip deflection is calculated
interactively from (1)-(3). The observed predicted needle tip
deflection values for different masses hung at the needle tip are
presented in Fig. 3. The results show that the proposed model
can satisfactorily predict the deflection of the needles subjected
to external loads. The obtained needle tip deflection in free
space is not sensitive to the number of virtual joints. However,
in order to reconstruct the needle shaft, it is recommended
to discretize the needle with at least 50 virtual joints. In the
following section, this model is extended to a needle inserted
into soft tissue.

III. LUMPED MODEL FOR NEEDLE-TISSUE INTERACTION

Needle-tissue interaction forces have been previously mod-
elled as a combination of lateral springs distributed along the
needle and friction forces [9]. Local deformation of the springs
was calculated using FEM [12]. In our work, the reaction of
tissue is modelled by increasing the stiffness of the virtual
joints in the needle model that act against the deflection of
the needle. We introduce an adaptive algorithm that updates
the stiffness of the virtual joints that are inside the tissue as
the needle is inserted. The model inputs are an estimate of the
force applied at the needle tip and the deflection measured at
one arbitrary point during insertion.

Needle insertion into tissue results in a force F applied
perpendicularly to the needle beveled tip as shown in Fig.
4(a). The force F can be decomposed into a transverse force
Q, perpendicular to the last bar of the last virtual joint of
the needle, and a force P parallel to the last virtual joint
of the needle, which depend on the tip bevel angle β . The
transverse force Q causes the needle to bend. Assuming that
the needle will not substantially deviate from a straight line,
the effect of P on deflection will be neglected as it mostly
causes longitudinal compression of the needle. These forces
are typically assumed constant during the insertion and are
insensitive to the overall bending of the needle [23]. The force
applied at the needle tip in (2) is

F(Q) =

[
Fu
Fv

]
= Q

[
sin(∑n

p=1 θp)

−cos(∑n
p=1 θp)

]
. (10)
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Having modelled the needle, the tissue reaction needs to be
modelled.

Consider a needle inserted into tissue as in Fig. 4(a). As the
needle is advanced into the tissue, it bends and increasingly
compresses the part of tissue shown under the needle. The
compressed tissue acts as a support and applies reaction forces
against the needle [17] [2] that, for an elastic tissue, are
proportional to the tissue compression. Due to the increasing
tissue compression forces as the needle advances into the
tissue, it is reasonable to assume that the tissue applies the
highest reaction forces at the needle entry point and the least
reaction force at the needle tip. Therefore, Fig. 4(a) shows the
tissue reaction force to be at its maximum at the needle entry
point and at its minimum at the needle tip.

In the proposed model, the above-discussed tissue reaction
forces act as helical springs of stiffness Ti added to the initial
nominal joint stiffness K representing the needle alone and
found in (9). Together, these two sources of virtual joint
stiffness resist against the deflection of the needle. The joints
that are inside the tissue have stiffness K +Ti. For a joint i
outside the tissue, Ti = 0. For simplicity, in the rest of this
paper, we assume the needle bending outside the tissue to be
negligible by considering the stiffness of the joints outside the
tissue to be very large.

In order to follow the proposed load distribution in Fig.
4(a), the stiffness Ti describing the contribution of the tissue
reaction to the stiffness of the joint i is modelled as

Ti = k0[`(n− i+1)]k1 (11)

where k0 and k1 depend on the mechanical properties of the
needle and tissue. From (11), the angular displacements of the
joints become

θi =
Gi

K +Ti
F(Q) (12)

Then, the deflection of the needle at a given insertion depth
can be calculated using (4). The radius of curvature ρ of the
needle shape at the joint i is

ρi =

[
1+
(

vi− vi−1

ui−ui−1

)2
] 3

2 ∣∣∣∣vi+1−2vi + vi−1

(ui−ui−1)2

∣∣∣∣−1

(13)

In (11), k0 depends on the stiffness of the tissue. It deter-
mines the amount of needle deflection for a given load applied
at the tip: the higher k0 is, the less the needle deflection is;
k1 can be tuned to obtain a specific radius of curvature. Since
`(n− i+ 1) < L ∀n and L < 1, the stiffness of the tissue is
inversely proportional to k1. Therefore, the radius of curvature
is proportional to k1. In other words, for low values of k1,
the shape of the needle is highly curved. This means that the
needle tip can reach different deflections at the same depth by
following different paths. The influence of k0 and k1 in (11)
on the needle deflection is shown in Fig. 5. A load of Q = 1
N is applied at the needle tip of 18-gauge needle when it is
inserted to a depth of 140 mm. The figure shows the average
radius of curvature (bottom) and the final needle tip deflection
vn (top).

tissue

(a) Forces acting on the needle during insertion into tissue

tissue

(b) Equivalent lumped model.

Fig. 4. Needle-tissue interaction lumped model. In (a) the forces acting on the
needle tip during insertion. F is the cutting force, P and Q are the transverse
and axial components of F . In (b) the reaction of the tissue is modelled as
springs of stiffness Ti. Joints inside the tissue have stiffness K+Ti and joints
outiside the tissue have stiffness K.
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Fig. 5. Influence of tissue model parameters on the needle tip deflection and
average radius of curvature. The simulation show the tip deflection (top) at an
insertion depth of 140 mm and mean radius of curvature of the needle shape
(bottom), for Q = 1 N.

IV. ADAPTIVE IDENTIFICATION OF MODEL PARAMETERS

To predict the needle deflection, the proposed model re-
quires knowledge of the tip load Q and the mechanical
properties of the needle and the stiffness Ti. For a given pair of
tissue and needle, we will directly measure Q and empirically
identify by model fitting the other unknown model parameter,
i.e., k0 and k1 in (11) needed to find Ti.

The tip load Q is measured using an experimental procedure
detailed in Section V-C. We will perform needle insertion
in the same tissue to measure the deflection v j of a single
point j of the needle at a given insertion depth. Knowledge
of Q and the single deflection measurement are combined
in an interactive simulation where we will update k0 and k1
until the simulated deflection matches the measured deflection.
The procedure to find the model parameters in Fig. 6(a)
is composed of two loops, i.e., needle insertion simulation
and numerical search loop. A simplified pseudocode used for
parameter identification is presented in Algorithm 1.

Simulation insertion loop: This loop simulates the needle
insertion for a given set of Q, k0 and k1. The insertion begins
with the straight needle placed outside the tissue, thus θi = 0
and iin = 0, where iin is the number of virtual joints that are
inside the tissue (see 1© in Fig. 6(a)). The needle is pushed
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Fig. 6. Procedure to identify the model parameters. In (a) iin and iend are the
number of links inside the tissue and the number of links that needs to be
inserted to reach a desired depth. The objective function is defined in (14).
The needle insertion sequence is shown in (b).

by ` units of length into the tissue (iin = iin + 1). At each
increment of iin, the joint i that is inside the tissue acquires a
stiffness of K +Ti (see 3©). The needle insertion sequence is
detailed in Algorithm 1, and depicted in Fig. 6(b). The load Q
is subsequently applied at the end of the last virtual joint and
the Cartesian position of the virtual joints is calculated through
the forward kinematics (see 4© in Fig. 6(a)). The process is
repeated until iin ≥ iend where iend = d`−1 is the number of
joints that need to be inserted to reach a desired insertion depth
d. Once the needle reaches d, the insertion loop is finished and
another interaction of the numerical search loop begins.

Numerical search loop: The numerical search loop inter-
actively updates k0 and k1 to match the measured deflection
v j from the single US image with the simulated deflection
v̂n. It does so by making use of a Pattern Search Algorithm
(PSA) implemented using the psoptimset in Matlab function.
PSA is a class of optimization method that carries out a
coordinate search to minimize a non-linear objective function.
It is characterized by a sequence of iterates h with non-
increasing objective function values. Each iteration comprises
two steps, i.e., global search and local pull steps. In the global
search step, the objective function C(x) is evaluated at a finite
number of trial points xh in an attempt to find new points
xh+1, called the incumbent, which will give a lower objective
function value than the current trial points xh. The current
incumbent is only updated if a lower value of C(x) is found.
The pull step is executed if the global step fails to find a
lower value for C(x). In this case, the objective function is
evaluated at a set of points close to xh. The algorithm stops
when a convergence criterion is reached, which means that no

Algorithm 1 Identify Model Parameters
1: procedure NUMERICALSEARCHLOOP
2: Q,v j← From experiments
3: k0,k1← Initialize
4: while Convergence criteria not reached do
5: v̂n← InsertionLoop
6: C(k0,k1) = |v̂n− v j|/|v̂n|
7: k0,k1← psoptimset
8: end while
9: end procedure

10: procedure INSERTIONLOOP
11: θi = vi = 0 ∀i, iin = 0
12: for iend < iin do
13: iin = iin +1
14: θi = F(Q)Gi/(K +Ti(k0,k1))
15: vi = vi−1 + `sin(∑i

0 θp)
16: end for
17: return(v j)
18: end procedure

improved iterate (i.e., lower value for C(x)) can be found or
the variation of the cost function between two iterations is less
than a predefined value.

In our case, the trial points in the PSA are the values of k0
and k1 (x = [k0,k1]). We define the objective function as the
difference between the simulated tip deflection (at the joint
n), called v̂n(k0) j, found when j joints are inserted into tissue,
and the measured deflection v j at the same depth obtained
from experiments. The objective function C(k0,k1) is defined
as (see 5© in Fig. 6(a)):

C(k0,k1) =

∣∣∣∣ |v̂n(k0,k1) j|− |v j|
v̂n(k0,k1) j

∣∣∣∣ (14)

Based on the current value of the objective function, the
PSA updates k0 and k1 (see Algorithm 1). Then, the needle
insertion loop is performed again to allow the cost function
to be re-evaluated with the new set of parameters. When the
convergence criterion is reached, k0 and k1 represent the values
that best fit the measured and the simulated deflection. For a
given combination of needle and tissue, once k0 and k1 are
identified, the needle shape (position of the entire needle’s
axis at a given depth) and further needle tip deflections (path
followed by the needle tip) can be predicted for different
insertion depths.

V. EXPERIMENTAL SETUP

The 2-DOF prismatic-revolute robotic system used for con-
ducting the experiments is shown in Fig. 7. The needle is
connected to a 6-DOF force/torque sensor (JR3, Inc. Wood-
land, USA) that measures the axial insertion force (the other
5-DOF are not used). This assembly is mounted on a carriage
that slides on a linear stage. The carriage’s translational motion
is actuated by a Maxon motor RE-40 through a belt and pulley
mechanism.

For assessment of the model performance in phantom tis-
sues, a camera placed 300 mm behind the tissue container
records at 30 Hz longitudinal images of the needle inside
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Fig. 7. Needle insertion robot. A motor provides the linear motion to insert
the needle into the phantom tissue. The axial force (along Z) at the needle
base is measured by a force sensor. Images of the needle inside tissue are
recorded from the side by a camera in the (Y,Z) plane and by an ultrasound
probe in the (X ,Y ) plane.

a semitransparent tissue (in the (Y,Z) plane defined in the
upper left corner of Fig. 7). The needle is steered such that its
deflection plane is parallel to the image plane. For validation
of the model in biological tissue, a 4DL14-5/38 Linear 4D
ultrasound transducer connected to a SonixTouch ultrasound
machine (Ultrasonix, Richmond, Canada) is placed above the
tissue to acquire 2D axial images of the needle in the (X ,Y )
plane in Fig. 7. The ultrasound probe is connected to a second
linear stage whose horizontal position is measured by a linear
potentiometer (Midori Precisions, Tokyo, Japan). In order to
follow the needle tip as the needle is inserted, the imaging
plane is initially placed at the needle tip, and both linear stages
are connected so that the probe moves with the same velocity
as the needle’s base. Note that probe motion is only used for
validation of the model. In fact, the probe can be held at a
fixed insertion depth as the needle is inserted.

A. Image Processing

For experiments involving Tissues 1 and 2, camera images
are used as ground truth. To segment the needle shape in
each camera image, the images are first pre-conditioned by
contrast enhancement and noise filtering via a Wiener lowpass
filter [11]. A Sobel operator is then applied to the filtered
images to detect the needle edges. All obtained pixels are
candidate points for the needle contour; however, only some
of them correspond to the actual needle. The Random Sample
Consensus (RANSAC) algorithm [8] is then used to determine
the image pixels that better correspond to the needle shape.
This is done by fitting the candidate points to a second-
order polynomial that fits the needle shape. By interactively
evaluating the distance between the candidate points and the
polynomial, pixels that do not represent the needle can be
identified and discarded. An example of the original camera
image overlaid on the polynomial curve is shown in Fig.
8(a). This procedure outputs the needle shape from which the
position of the needle tip can be calculated. Light refraction
effects in the tissue are neglected.

The needle appears in each 2D US image as a bright spot
along with extraneous background objects. To remove the
majority of these objects, we first define a region of interest

2nd order 
polynomial fit

candidate pixels

needle tip

(a) Longitudinal image from the camera

candidate 
points

tissue 
base

US 
transducer

85 mm

needle
distance of the needle's 
base to the US probe

position of  the
needle's base

(b) Axial image from the ultrasound transducer

Fig. 8. Example of camera (a) and ultrasound images (b). In camera
images, the obtained points after image processing are fit to a polynomial.
In ultrasound images, the needle deflection is the distance along Y from the
closest candidate point to the needle’s base. In (b) the image is rotated by
90◦ with respect to Fig. 7.

(ROI) that limits the search for the needle to a small section
of the image. The ROI consists of a square with a width of 10
times the needle radius. In frame j, the ROI is centred around
the position of the needle found in frame j− 1. Therefore,
as the position of the needle moves in successive ultrasound
images, the ROI moves accordingly such that the needle will
always be located in the ROI. The Matlab function imadjust
applies an intensity transformation to the image to improve the
visibility of bright points. Next, we use an intensity threshold
to obtain an average of candidate pixels for the needle shaft
location within the axial image as shown in Fig. 8(b).

B. Tissue Samples

The needle insertion experiments are performed using four
different tissue samples shown in Fig. 9. First, for validation
and assessment of the method, we use two different semitrans-
parent phantom tissues with different mechanical properties.
Homogeneous tissues and access to measurements of deflec-
tion with low noise provide an ideal scenario for validation
of the proposed method. To demonstrate the feasibility of
the proposed method using US images and non homogeneous
tissue, we also use two different biological tissues.

Tissue 1 (see Fig. 9(a)) is made of industrial gelatin of
porcine skin derived from acid-cured tissue (gel strength
300 from Sigma-Aldrich Corporation, Saint Louis, USA). A
gelatin-based tissue is typically used due to its stable mechan-
ical properties and similarity to human tissue characteristics.
The concentration of the mixture is 127 grams of gelatin per
litter of water that resulted in a Young’s modulus of 55 kPa,
measuring using indentation tests.

Tissue 2 (see Fig. 9(b)) is prepared with plastisol gel (M-
F Manufacturing Co., Fort Worth, TX, USA). We use this
plastisol tissue to test the proposed method in a tissue with
high friction coefficient, as insertion velocity is not accounted
for in our model. The viscous friction coefficient in Tissue 2
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160 mm

(a) Tissue 1 - Industrial gelatin (b) Tissue 2 - Plastisol gel

(c) Tissue 3 - Biological tissue

120 mm40 mm
gelatin beef

(d) Tissue 4 - Gelatin-bio.

Fig. 9. Tissue samples used to validate the proposed method: (a) industrial
gelatin, (b) high friction plastisol gel, (c) beef tenderloin, and (c) a two-layer
tissue made of gelatin and beef.

is four times higher than in Tissue 1. We use a concentration
ratio of 80% of liquid plastic and 20% of softener that yields
a Young’s modulus of 25.5 kPa, which is similar to the elastic
modulus of human glandular tissue [15].

Tissue 3 (see Fig. 9(c)) is prepared by embedding a piece
of beef tenderloin in the same gelatin preparation used for
making Tissue 1. This biological tissue presents several layers
of fat and some muscles, making it highly non homogeneous.
The gelatin is meant to create a flat surface to ensure good
acoustic contact between the US probe and the tissue. The
needle is only inserted in the beef and never goes through the
gelatin.

Tissue 4 (see Fig. 9(d)) is made of two different layers.
The first layer is 40 mm wide and is made of the same gelatin
used in Tissue 1. The second layer (roughly 120 mm wide) is a
piece of beef tenderloin. The needle enters the tissue from the
gelatin side and moves towards the biological tissue. To test
the robustness of the proposed method, we will introduce an
error in the model by assuming that Tissue 4 is homogeneous).

C. Transverse Tip Load Identification

One can estimate the forces applied at the needle tip during
insertion (i.e., F , Q, and P) by measuring the necessary force
for the needle to slice through the tissue [23]. This experiment
is depicted schematically in Fig. 10. In order to minimize the
needle bending during insertion, the needles are shortened for
this particular experiment to a 90 mm length.

The needle is inserted throughout a thin tissue sample of
thickness d1 as shown in Fig. 10(a). During this phase, the
measured axial insertion force at the needle’s base increases
with the insertion depth d since the measured force F1 corre-
sponds to the axial component P of the cutting force F plus
the frictional force Fr generated along the shaft. Inertial effects
are neglected since the needle is driven at a constant velocity.
The insertion is carried on until the needle tip sticks out of
the tissue. As soon as d > d1, the force applied at the tip
becomes zero (see Fig. 10(b)). Therefore, the measured force
F2 corresponds to friction only. The friction force per unit

tissueforce 
sensor

needle

(a) Friction plus axial tip force

tissue

(b) Friction force

Fig. 10. Identification of the transverse load. A short needle is inserted in a
thin tissue and the horizontal insertion force is measured. In (a) the measured
force F1 is the axial component P of the cutting force F plus friction. In (b),
the force F2 corresponds to frictional effects only.

TABLE I
MEASURED FORCE APPLIED TO THE NEEDLE TIP DURING INSERTION.

Parameter Tissue 1 Tissue 2 Tissue 3 Tissue 4
(gelatin) (plastisol) (biological) (2 layers)

Axial force P [N] 1.141 0.413 0.536 0.513
Transverse load Q [N] 3.136 1.369 1.473 1.409
Q Standard dev. σ [N] ± 0.234 ±0.079 ± 0.248 ± 0.318

length is then obtained as b = F2d−1
1 . The axial component

P of the cutting force F can be isolated by subtracting the
measured friction from the total force F1 as follows:

P = F1(d)−
F2

d1
d (15)

The transverse load Q is then calculated as Q = P[tan(β )]−1

where β = 20◦ is the tip bevel angle. The forces acting at the
tip are assumed constant and, therefore, are unrelated to the
insertion depth and the needle bending. Four different trials
are performed for each tissue at 3 different constant insertion
velocities, namely 5, 15, and 30 mm s−1. The average value
of the estimated tip forces and the standard deviation σ for
the transverse load are summarized in Table I.

In this paper, we used insertion experiments to measure
tip forces. In an in vivo interventional procedure, the tis-
sue Young’s modulus can be estimated using an US-based
Acoustic Radiation Force Impulse (ARFI) imaging that relates
the shear wave propagation speed of the US signal and the
mechanical properties of the tissue [20]. Finally, the tissue
stiffness can be related to the tip forces (i.e., F , P and Q) as
proposed in [19]. Alternatively, tip forces can be estimated if
images of the inserted needle are available for several different
insertion depths. As we will see in the experimental results,
the tissue parameter k1 is constant for a given tissue. It is
then possible to turn the optimization problem as a function
of Q and k0, and find the parameters that gives the same
the simulated and measured deflections at several different
insertion depths. The obtained Q can be used to estimate the
needle deflection for other insertions with a single image.

VI. VERIFICATION IN PHANTOM AND EX-VIVO
BIOLOGICAL TISSUE

In these experiments the needle is inserted five times to a
depth of 140 mm into a tissue sample at two different constant
insertion velocities of 5 and 30 mm s−1. The US probe moves
along with the needle such that the needle tip is always visible
in the US image. Note that the US probe moves with the needle
tip only for validation purposes. In fact, only a single image
from this data is required. We will select a random insertion
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depth and tip position pair, called sampled data point, to serve
as input to calibrate the proposed model. The algorithm is
then used to estimate the past deflection and to predict future
deflections for the insertion process.

Fig. 11 shows the predicted and measured needle tip de-
flection for the different tissues. For this set of experiments,
the depth of the sampled data point is randomly fixed at 80
mm. The first plot of each image shows the results for a
single insertion in each tissue. The second row shows the
identified needle-tissue stiffness K+T . The error in predicting
the tip position is shown in the third row. The fourth and fifth
rows of plots show the average error obtained from all of
the ten insertions in each tissue and its standard deviation,
respectively.

Now, we will evaluate the performance of the model as the
depth of the sampled data point varies from 0 mm (at the
needle base) to 140 mm (maximum insertion depth). Fig. 12
shows the results as a function of the depth of the sampled
data point. The proposed method does not work satisfactorily
when the depth of the sampled data point is less then 30 mm,
and therefore only the results for the sampled data points with
depths between 30-140 mm are shown. The first row is the
maximum error observed along the entire insertion depth. For
a given sampled data point, we compute the maximum error as
given in the third row of Fig 11. Then, we compute the average
maximum error for this particular sampled data point over the
ten insertions which is given by εv =

1
10 ∑

10
t=1 max|v̂n j − vn j |t .

The second row of Fig. 12 shows the standard deviation of
the maximum error. The third and fourth rows are the average
error given by εd = 1

10 ∑
10
t=1

(
1

n−iend
∑

m
j=n−iend

|v̂n j − vn j |
)

t
and

its standard deviation. The error at the maximum insertion
depth is shown in the fifth row.

As shown in Fig. 12, the proposed method works well
when the depth of the sampled data point is more than 30
mm regardless of the tissue sample. An acceptable error in
predicting needle deflection is 2 mm, as it corresponds to the
diameter of the smallest detectable tumour in US images [1].
For the synthetic tissue samples, the average mean error and
average maximum error remains bellow 2 mm as long as the
depth of the sampled data point is more than 40 mm. For the
biological tissue (Tissue 3) the minimum depth increases to 45
mm and for Tissue 4 (composed of two layers), it corresponds
to 50 mm. For comparison purposes, the identified models
parameters and the estimation error for all tissue samples for
a depth higher than 50 mm are summarized in Table II.

A. Discussion

We tested the proposed model in four different tissue
samples at two different needle insertion velocities.

Tissue 1 is the stiffest tissue sample. It resulted in the
lowest standard deviation in identifying k0 and k1. The model
prediction error is less than 2 mm as long as the depth of
the sampled data point is larger than 40 mm. Given the low
standard deviation, the results suggest that a single insertion
attempt can be used to identify the model parameters to predict
deflection in different insertion attempts.

In Tissue 2, the friction coefficient is four times higher
than in Tissue 1. One can conclude that the performance of
the model does not depend on the insertion velocity. Forces
applied to the needle by the tissue as a result of increased
needle insertion velocity will be accounted for in the calculated
model parameter k0. As for Tissue 1, the error remains bellow
2 mm for sampled data points acquired at an insertion depth
higher than 40 mm.

Tissue 3 is ex-vivo biological and showed the highest radius
of curvature among the samples. This is reflected in the
obtained parameter value k1 that is twice as high as for Tissue
1. For the error in estimating needle tip deflection to be less
than 2 mm, the sampled data point must be acquired at a depth
higher than 45 mm. This represents 32% of the maximum
insertion depth.

Tissue 4 is composed of two distinct layers. The first one
(40 mm width) is the same gelatin as in Tissue 1, and the
second one (120 mm width) is a biological tissue similar to
Tissue 4. Exepriment in this tissue presented the lowest model
accuracy, since we considered in the model that the needle is
inserted in a homogeneous tissue. The cutting force in the first
40 mm is almost three times higher than that in the subsequent
120 mm, resulting in a radius of curvature in the first layer
higher than that in the second layer. Despite these differences,
the model works satisfactorily as long as the insertion depth
of the sampled data point is greater than 50 mm.

Two reasons contributed to the lower accuracy in the bio-
logical tissue when compared to the synthetic tissue: 1) We
used cameras to measure the deflection in synthetic tissues
and US images in biological tissues. US images often contain
more noise compared to cameras images. Small uncertainties
in localizing the needle shaft will result in high estimation
errors. This explains why the minimum sampled data point
must be acquired at a higher depth in the biological tissues
compared to the synthetic tissues. 2) The proposed model
assumes that the tissue is homogeneous and does not account
for different layers as observed in biological tissues. It might
result in deviations of the needle tip path from the previous
radius of curvature followed by the tip.

The error in predicting the deflection is less than 2 mm
and 1 mm when the input image is acquired at 35% and
50% or higher of the maximum insertion depth, respectively.
This means that the US probe can be maintained at the same
position throughout the insertion process.

VII. VERIFICATION IN IN-VIVO BIOLOGICAL TISSUE

In current prostate brachytherapy the probe is mounted on
a stepper-stabilizer allowing the surgeon to take US images
of the prostate at precise insertion depths. Although axial
ultrasound images can be acquired at several depths, the
surgeon does not have any means to predict the deeper
deflection of the needle as it is further inserted in tissue. In
this section, the utility of the proposed method for prostate
brachytherapy applications is considered. We show that in-
vivo needle deflection measurements obtained from ultrasound
images during early stages of insertion can be used to predict
the needle deflection further along the insertion process.
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Fig. 11. Experimental results for each tissue sample. The needle tip deflection measured at 80 mm insertion depth is used as an input in the proposed method
(sampled data point in the first row). The needle tip deflection is then predicted for all insertion depths. The first row shows the measured and predicted tip
deflection for each tissue. The second and third row correspond respectively to the identified stiffness of the needle-tissue model and to the error in predicting
needle tip deflection. The first there rows represent a single insertion. The average and the standard deviation of the error for all ten insertions performed into
each tissue is shown in the fourth and fifth rows of graphs, respectively.
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Fig. 12. Error in predicting needle deflection as a function of the depth of the sampled data point used for model parameters identification. The first and
second rows show the average of the maximum error over ten insertion in each tissue sample and the standard deviation, respectivelly. The third and fouth
rows present the average mean error and standard deviation, and the fihth row shows the error observed at the maximum insertion depth i.e. 140 mm.

TABLE II
IDENTIFIED MODEL PARAMETERS, AVARAGE AND MAXIMUM ERROR FOR NEEDLE DEFLECTION ESTIMATION

Tissue samples
Gelatin Plastisol Biological Gelatin-biological

Average Deviation Average Deviation Average Deviation Average Deviation
k0 0.2181 0.0070 0.3558 0.0327 0.8434 0.2927 0.8272 0.1183
k1 1.5 0 1.2654 0.0446 3.1723 0.4635 3.0259 0.1970
Max error (mm) 1.0463 0.5119 0.8363 0.6228 1.2580 0.4950 1.8919 0.7461
Mean error (mm) 0.2895 0.1143 0.2380 0.1236 0.5363 0.1343 0.7246 0.3709
Error at 140 mm 0.3566 0.3295 0.3079 0.3281 0.6411 0.6389 0.9977 0.8101
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Fig. 13. Prediction of needle deflection during prostate brachytherapy. The
deflection is obtained at an insertion depth of 40 mm from ultrasound images.
The insertion depth is measured with respect to the patient’s skin and images
are only aquired after 40 mm.

Ultrasound images for prostate cancer patients undergoing
permanent prostate brachytherapy were recorded during the
procedure in the operating room. Axial images of the prostate
with 5 mm incremental depths were acquired for two 18-
gauges needles inserted at different depths. The insertion
depth is measured with respect to the patient’s skin. Image
processing is used to determine the tip deflection at each
insertion depth. We use the proposed method to estimate the
needle deflection assuming that the deflection can only be
measured at early stages of the insertion (i.e., the first visible
point within the prostate at 40 mm depth). We assume that
the normal load Q applied at the needle during in-vivo needle
insertion is the same as the force measured in biological tissue
in the previous section. We also assume that the location of
the needle (i.e. in this example at 40 mm) has not changed
from the time of needle insertion to the time of capture.

Fig. 13 shows the measured and predicted deflection for the
first and second needles. Note that before 40 mm the needle is
in contact with non-prostate tissue (transperineal fat). Usually,
the complete brachytherapy procedure involves the insertion of
about 20 needles. Hence, this model can be utilized to predict
the needle deflection of subsequent needles, using the first or
second needles to collect data for this model. The estimated
error in predicting the needle deflection remains below 0.3
mm.

VIII. CONCLUSION

In this paper we proposed a new method to estimate
the planar deflection of a needle based on the observation
of deflection in a single transverse US image. To do so,
we combined partial image observation with a needle-tissue
interaction model. The needle model is composed of several
rigid virtual links connected by virtual springs. We have shown
that the stiffness of these virtual joints can be calculated using
the mechanical properties of the needle. When the needle is

inserted in the tissue, the reaction of the tissue is modelled as
a modification of the stiffness of the virtual joints for those
joints that are inside the tissue.

The proposed method was validated in two synthetic tissues
and two ex-vivo biological tissues. The proposed model can
predict the needle deflection with an error of less than 2 mm as
long as the image used in the model is acquired at a depth that
corresponds to 35% or more of the maximum insertion depth.
This is done by combining a single US image and the needle-
tissue model. To solve the model adaptively as the needle
is inserted, we proposed an optimization method based on a
pattern search algorithm that calculates the model parameters
and allows us to predict the needle deflection further along
the insertion process. The US probe can be maintained at the
same position during the insertion of the needle; therefore,
complications of tissue deformation caused by the motion of
the US probe are avoided.

Application of the proposed method to in-vivo brachyther-
apy showed that needle deflection can be estimated with an
average error of less than 0.3 mm. The deflection measured
at the early stages of insertion can be use to collect data and
predict the deflection across different insertion attempts.

The current processing time of 0.7 sec allows the method
to be integrated in US images to display the path followed by
the needle tip and future deflection of the needle in real time,
which provides valuable information to surgeons performing
US image-guided needle insertion.
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