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Abstract

Teleoperation systems are subject to different types of disturbances. Such disturbances, when

unaccounted for, may cause poor performance and even instability of the teleoperation system. This

paper presents a novel nonlinear bilateral control scheme using the concept of disturbance observer

based control for nonlinear teleoperation systems. Lumping the effects of dynamic uncertainties and

external disturbances into a single disturbance term enables us to design a disturbance observer in

order to suppress these disturbances and alleviate their adverse effects on the teleoperation system.

A disturbance observer based control law is proposed for nonlinear teleoperation systems which will

guarantee global asymptotic force tracking and global exponential position and disturbance tracking

when the bilateral teleoperation system is experiencing slow-varying disturbances. In the case of fast-

varying disturbances, the tracking errors are shown to be globally uniformly ultimately bounded, with

an ultimate bound that can be made as small as desired using the design parameters. Simulations are

presented to show the effectiveness of the proposed approach.

Index Terms

Haptic teleoperation, 4-channel control, disturbance observer (DOB), dynamic uncertainties, trans-

parency

I. INTRODUCTION

Teleoperation involves indirect performance of a task in a remote environment and is used to

extend a person’s sensing and manipulation capability to a remote location [1].
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Every teleoperation system consists of a master robot (user interface) and a slave robot, which

exchange different types of information such as force, position, and visual and auditory data via

a communication channel. The master interacts with the human operator and the slave interacts

with the remote environment. The human operator applies position commands to the master

robot. The slave robot responds to the received position commands from the communication

channel and moves to the desired position in the remote environment. If force feedback from

the slave side to the master side is present, the system is called a bilateral teleoperation system

to distinguish it from a unilateral teleoperation system, in which no force is reflected to the user.

A bilateral teleoperation system is said to be transparent if the slave robot follows the position

of the master robot and the master robot faithfully displays the slave-environment contact force

to the human operator.

Considering the master and the slave robots to have linear models, various control schemes

have been suggested for teleoperation systems in the literature [2]. The most successful control

scheme in achieving a fully transparent teleoperation system is the 4-channel architecture [3], [4],

[5]. In spite of its good performance, the 4-channel control scheme is mostly suitable for fixed

linear models. Physical robots, however, are nonlinear systems subject to different uncertainties

and disturbances, such as joint frictions, unknown payloads, etc. [6], [7].

Several solutions, based on nonlinear adaptive control schemes, have been proposed for

nonlinear teleoperation systems subject to uncertainties. Considering the master and the slave

robots to have uncertain nonlinear models, position and force tracking were achieved by ignoring

the remote environment’s and the human operator’s uncertainties in the adaptation laws in [8], [9],

and [10]. Later, adaptive schemes were developed for uncertain nonlinear master and slave robots

and uncertain linear operator and environment models in [11], [12], [13] and [14]. However,

these adaptive schemes suffer from considering the uncertainties to be parametric and assuming

that the model of the uncertainties are available, i.e., they are mainly meant for the control of

teleoperation systems with structured uncertainties.

Lumping the effect of all dynamic uncertainties and external disturbances into a virtual

disturbance term is the key idea behind our disturbance observer based control scheme. Similar

schemes have been used in applications such as control of direct drive motors, mechatronics

system control [15], [16], [17], independent robot joint control [18], robot joint friction

compensation [19], [20], and sensorless torque control of robotic manipulators [21], [22].
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A nonlinear disturbance observer for robotic manipulators subject to disturbances was proposed

in [23]. However, the closed-loop stability of the overall system including the disturbance ob-

server and the controller was not investigated. The investigation of the stability and performance

of a master-slave teleoperation system under disturbance observer based control is even more

challenging and not studied either. A disturbance observer based controller has been designed

for bilateral teleoperation systems in [24]. In this work, however, each joint of the master and

the slave robots is treated as an independent single-input-single-output system and, thus, several

disturbance observer based controllers are designed for these linear time-invariant (LTI) systems.

This is in contrast to the fact that dynamics of robotic systems are highly nonlinear and involve

couplings among the manipulator’s various degrees of freedom. Our proposed approach accounts

for such nonlinear and coupled dynamic characteristics of teleoperators.

This paper for the first time addresses the problem of disturbance observer based control of

nonlinear teleoperation systems subject to dynamic uncertainties and disturbances. A disturbance

observer based control law will be proposed and incorporated into the framework of the 4-channel

teleoperation architecture. Under the proposed control law, full transparency and exponential

disturbance and position tracking are achieved under slow-varying disturbances. In the case

of fast-varying disturbances, the proposed control scheme guarantees global uniform ultimate

boundedness of the tracking errors.

The organization of this paper is as follows. Section II introduces the nonlinear model of

the teleoperation systems and 4-channel bilateral control architecture. Section III introduces the

concept of disturbance observer based control and proposes a novel disturbance observer based

controller for nonlinear teleoperation systems subject to dynamic uncertainties and disturbances.

Stability and transparency of the closed-loop system are discussed in this section and it is shown

that the proposed disturbance observer based controller achieves stability and full transparency

when the teleoperation system is subject to slow-varying disturbances. Under fast-varying

disturbances, it is shown that the proposed control scheme achieves stability while tracking

errors are ultimately bounded. Finally, simulations in section IV show the efficiency of the

proposed control scheme as compared with the case where no disturbance observer is employed.
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II. NONLINEAR MODEL OF A TELEOPERATION SYSTEM

The dynamical models investigated in this paper and our proposed control law in section III

will be described in the Cartesian space. This enables us to make a teleoperation system stable

and transparent without requiring the master and the slave robots to have similar kinematics and

dynamics.

A. Models of a teleoperation system in the joint and Cartesian spaces

The following dynamic equation governs the motion of an n-degree-of-freedom (DOF) robot

in the joint space [25]:

M(q)q̈ + N(q, q̇) + F(q̇) = τττ + τττ ext (1)

where

N(q, q̇) = V(q, q̇)q̇ + G(q) (2)

and q ∈ Rn×1 is the vector of joint positions, M(q) ∈ Rn×n is the inertia matrix, F(q̇) is the

vector of friction torques acting on the joints, V(q, q̇)q̇ ∈ Rn×1 is the vector of Coriolis and

centrifugal forces, G(q) ∈ Rn×1 is the gravity vector, τττ ∈ Rn×1 is the vector of the control

torques applied to the joints, and τττ ext ∈ Rn×1 is the vector of the external disturbances exerted

on the joints. Assume that M̂(q) and N̂(q, q̇) are the approximations of M(q) and N(q, q̇) and

∆M and ∆N are the corresponding additive uncertain terms present in the model of the robot.

That is to say

M(q) = M̂(q) + ∆M (3)

N(q, q̇) = N̂(q, q̇) + ∆N (4)

Also assume that we have no prior information about the uncertain terms ∆M and ∆N, the

friction vector F, and the vector of external disturbances τττ ext. Now, take

τττ d = τττ ext −∆Mq̈−∆N− F(q̇) (5)
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By this definition, we lump the effect of all dynamic uncertainties, joint frictions and external

disturbances into a single disturbance vector, i.e., τττ d. From (1), we get

M̂(q)q̈ + N̂(q, q̇) = τττ + τττ d (6)

Now, define J(q) as the Jacobian matrix of the robot and x as the position/orientation (pose)

vector of the robot’s end-effector in the Cartesian space. We assume that J is of full column rank,

i.e., the robot is not at a singularity and J∗ = JTJ is invertible. Using ẋ = Jq̇ and ẍ = J̇ q̇+J q̈

in (6), we get the dynamic equation (7), which governs the motion of the end-effector of the

robot in the Cartesian space.

M̂x(q)ẍ + N̂x(q, q̇) = f + d (7)

where,

M̂x(q) = JJ−1∗ M̂(q)J−1∗ JT (8)

N̂x(q, q̇) = JJ−1∗ N̂(q, q̇)− M̂x(q)J̇J−1∗ JT ẋ (9)

and

f = JJ−1∗ τττ (10)

d = JJ−1∗ τττ d (11)

Similar to a single robot, the dynamic equations describing the motions of the end-effectors

of the master and the slave robots with n DOFs, which are interacting with the human operator

and the remote environment, in the presence of dynamic uncertainties, external disturbances and

joint frictions can be written as

M̂xm(qm)ẍm + N̂xm(qm, q̇m) = fm + fh + dm (12)

M̂xs(qs)ẍs + N̂xs(qs, q̇s) = fs − fe + ds (13)
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where qm, qs, xm, xs, M̂xm(qm), M̂xs(qs), N̂xm(qm, q̇m) and N̂xs(qs, q̇s) are defined as in (7)

and subscripts m and s refer to the master and the slave, respectively. Also, fm, fs ∈ R6×1 are

the (equivalent) control forces applied to the master and the slave end-effectors in the Cartesian

space, fh, fe ∈ R6×1 are the forces exerted to the master and the slave end-effectors by the

human operator and the remote environment, and dm,ds ∈ R6×1 are the (equivalent) disturbance

forces exerted to the master and the slave end-effectors in the Cartesian space. These disturbance

forces represent the lumped effect of all dynamic uncertainties, frictions and external disturbances

exerted to the master and the slave robots in the Cartesian space.

B. 4-channel control architecture

The 4-channel control architecture is shown in Figure 1 with disturbance observers incorpo-

rated into it. Note that the conventional 4-channel architecture does not have any disturbance

observers. When no disturbance observer is used in the 4-channel control architecture, we have

d̂m = 0 and d̂s = 0. Exogenous signals f∗h and f∗e are exerted by the human operator and

the remote environment, respectively. The signals xm, xs, fh, fe, fm, fs, dm and ds are as

defined in (12)–(13). Position information is exchanged between the master and the slave via

the position channels C1 and C4. Force information is exchanged through the force channels

C2 and C3. In addition, Cm and Cs are local master and slave (position) controllers. Lastly,

C5 and C6 provide the master and the slave with local force feedback from the human operator

and the remote environment, respectively. In the conventional design of 4-channel controllers, it

is assumed that dm = 0 and ds = 0. We are, however, going to deal with these disturbances in

this paper.

Every control scheme designed for a teleoperation system should be able to satisfy two main

requirements: closed-loop stability and transparency [3]. In a fully transparent teleoperation

system we have xs = xm and fh = fe. If the master and the slave can be modeled by

LTI impedances1 Zm(s) and Zs(s), the 4-channel teleoperation system of Figure 1, when

no disturbance observer is incorporated into it, becomes fully transparent in the absence of

disturbances and delays if the controllers are chosen as [5]

1Causal dynamic operator which maps position/velocity to force.
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C1 = Zs + Cs

C2 = I + C6

C3 = I + C5

C4 = −Zm −Cm (14)

III. DISTURBANCE OBSERVER BASED CONTROL OF TELEOPERATION SYSTEMS

In this section, first the concept of disturbance observer based control is introduced. Next,

control laws are developed based on this concept and incorporated into the 4-channel architecture

for a nonlinear teleoperation system. Then, the stability and transparency achieved by the

proposed control law are investigated.

A. Disturbance observer based control concept

Consider (7), which describes a single robot dynamics in the Cartesian space. When there is no

uncertainty in the model of the robot and no disturbances are exerted to the robot, we have d = 0

and the control law f can be designed in a way as if there exist no disturbances. In the presence

of uncertainties and disturbances, the previous control law f fails to perform properly. The idea

behind employing a disturbance observer is to estimate the lumped disturbance, including the

effect of the dynamic uncertainties, friction and external disturbances, that is exerted to the

robotic manipulator and then to feed it back to the input of the robot. If the disturbance vector

is exactly estimated, i.e., d̂ = d, disturbances will be cancelled out in the closed-loop equation

and it seems as if we are dealing with a robot with known dynamics, for which we can easily

design the controller.

B. Proposed teleoperation control laws

Extending the idea of disturbance observer based control of a single robot to a master-slave

teleoperation system, we will design a disturbance observer for each of the master and the slave

robots in order to estimate and cancel out the disturbances. Figure 1 depicts the proposed 4-

channel architecture with disturbance observers incorporated into it.
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Assume that the master and the slave disturbances are estimated to be d̂m and d̂s, respectively.

Later, we will introduce the disturbance observers that can provide us with these estimations.

We propose the following nonlinear control laws for the master and slave robots described by

(12) and (13), respectively:

fm = M̂xm(qm)[−Cmxm −C2fe −C4xs + C6fh + fh]

+N̂xm(qm, q̇m)− fh − d̂m (15)

fs = M̂xs(qs)[−Csxs + C1xm + C3fh −C5fe − fe]

+N̂xs(qs, q̇s) + fe − d̂s (16)

where Cm, Cs, C1, . . . , and C6 are some LTI controllers used in the above nonlinear control

laws. Note the use of disturbance estimates d̂m and d̂s in the proposed control laws.

The disturbance observer based control laws (15) and (16), when applied to the master and

slave described by (12)–(13), result in the following closed-loop equations for the two robots:

ẍm = −Cmxm −C2fe −C4xs + C6fh

+fh + M̂−1
xm(qm)∆dm (17)

ẍs = −Csxs + C1xm + C3fh −C5fe

−fe + M̂−1
xs (qs)∆ds (18)

where ∆dm = dm− d̂m and ∆ds = ds− d̂s are the master and the slave disturbance estimation

errors, respectively.

Remark 1. When ∆dm = 0 and ∆ds = 0, i.e., under ideal disturbance tracking, (17) and

(18) describe an n-DOF conventional 4-channel teleoperation system without disturbances with

the master and slave robots represented by identity inertia matrices, i.e., Zm(s) = s2I and

Zs(s) = s2I.

♦

Let us choose the master and the slave local position controllers in (15) and (16) to be of
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proportional-derivative type:

Cm = Kmvs+ Kmp

Cs = Ksvs+ Ksp (19)

where Kmv, Kmp, Ksv and Ksp are constant gain matrices. Also, let us choose the force reflection

gains in (15) and (16) to be

C2 = Cmf

C3 = Csf (20)

where Cmf and Csf are constant force reflection gain matrices. We choose the other controllers

in (15) and (16) to satisfy the full transparency conditions listed in (14), i.e., we choose

C1 = s2I + Ksvs+ Ksp

C4 = −(s2I + Kmvs+ Kmp)

C5 = Csf − I

C6 = Cmf − I (21)

Remark 2. In order to implement C1 and C4 in (21), we need to measure or compute

the acceleration of the master and the slave robots. We can omit the acceleration terms if

good low-frequency transparency is enough in the desired application. However, requiring good

transparency over both low and high frequencies justifies using accelerometers [3]. Alternatively,

one may employ precise numerical differentiation techniques, which are robust to measurement

errors and input noises, in order to obtain acceleration and velocity signals from position

measurement [26], [27].

♦

Using (19), (20) and (21) in (15)–(16) results in the control laws
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fm = M̂xm(qm)[ẍs −Kmv∆ẋ−Kmp∆x + Cmf∆f ]

+N̂xm(qm, q̇m)− fh − d̂m (22)

fs = M̂xs(qs)[ẍm + Ksv∆ẋ + Ksp∆x + Csf∆f ]

+N̂xs(qs, q̇s) + fe − d̂s (23)

where ∆x = xm− xs is the position tracking error and ∆f = fh− fe is the force tracking error.

The master and the slave closed-loop dynamics (17) and (18) are reduced to

∆ẍ = −Kmv∆ẋ−Kmp∆x + Cmf∆f + M̂−1
xm(qm)∆dm

(24)

∆ẍ = Ksv∆ẋ + Ksp∆x−Csf∆f − M̂−1
xs (qs)∆ds (25)

Assume that matrices Cmf , Csf and C−1mf + C−1sf are invertible. Multiplying (24) by C−1mf and

(25) by C−1sf and adding them together, we can find the dynamic equation governing the position

tracking error

∆ẍ + Kv∆ẋ + Kp∆x = ΨΨΨxm(qm)∆dm −ΨΨΨxs(qs)∆ds (26)

where

Kv = (C−1mf + C−1sf )−1(C−1sf Ksv −C−1mfKmv)

(27)

Kp = (C−1mf + C−1sf )−1(C−1sf Ksp −C−1mfKmp)

(28)

ΨΨΨxm(qm) = (C−1mf + C−1sf )−1C−1mfM̂
−1
xm(qm) (29)

ΨΨΨxs(qs) = (C−1mf + C−1sf )−1C−1sf M̂−1
xs (qs) (30)
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Before introducing the disturbance observers to be used with the proposed control laws (22)

and (23) in the next section, let us investigate the effect of disturbances on the teleoperation

system when the control laws (22)–(23) employ no disturbance estimates, i.e., when d̂m = 0 and

d̂s = 0. Applying the control laws (22)–(23) with no disturbance estimate terms to the master

and slave robots (12)–(13) the following position tracking error dynamics is obtained:

∆ẍ + Kv∆ẋ + Kp∆x = ΨΨΨxm(qm)dm −ΨΨΨxs(qs)ds (31)

Now, let us consider the following candidate Lyapunov function with Kp, as defined in (28),

being a symmetric matrix:

Φ(∆ẋ,∆x) =
1

2
∆ẋT∆ẋ +

1

2
∆xTKp∆x (32)

Taking the time derivative of the above function we get

Φ̇ = ∆ẍT∆ẋ + ∆ẋTKp∆x = −∆ẋTKv∆ẋ

+∆ẋT [ΨΨΨxm(qm)dm −ΨΨΨxs(qs)ds] (33)

The presence of disturbance terms in (31) may cause poor position tracking or even instability

of the system. For instance, special values of disturbances dm and ds are able to make Φ̇

positive in a neighbourhood of the origin and thus cause instability of the position tracking error

according to the Chetaev Theorem (see for example Theorem 3.12 in [28]). This means that the

teleoperation system lacks position tracking and is not transparent.

C. Proposed disturbance observers

In this section, we will design the disturbance observers in a way that full transparency and

disturbance tracking are acheived under the control laws (22)–(23). Our proposed disturbance

observers designed in the Cartesian space given the master and slave (approximate) dynamics

(12)–(13) are
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˙̂
dm = −Lmd̂m + Lm[M̂xm(qm)ẍm + N̂xm(qm, q̇m)

−fh − fm] + ΨΨΨT
xm(qm)(∆ẋ + γ∆x) (34)

˙̂
ds = −Lsd̂s + Ls[M̂xs(qs)ẍs + N̂xs(qs, q̇s)

+fe − fs] + ΨΨΨT
xs(qs)(−∆ẋ− γ∆x) (35)

where γ is an arbitrary positive constant. Also, Lm and Ls are constant gain matrices.

Note that in the 4-channel teleoperation control architecture, it is assumed that fh and fe

are measured. The proposed nonlinear disturbance observers in (34) and (35) need acceleration

measurements. As mentioned before, the need for full transparency in a wide frequency range

justifies using accelerometers, which is dictated by the transparency conditions in (14) for use

in (22) and (23) – the same measurements will be needed in (34) and (35). Equations (12) and

(13), along with (34) and (35), result in the following disturbance estimation error dynamics:

˙̂
dm = Lm∆dm + ΨΨΨT

xm(qm)(∆ẋ + γ∆x) (36)

˙̂
ds = Ls∆ds + ΨΨΨT

xs(qs)(−∆ẋ− γ∆x) (37)

Therefore, the following disturbance estimation error dynamics result from (36) and (37) for the

master and the slave, respectively:

∆ḋm = ḋm − Lm∆dm −ΨΨΨT
xm(qm)(∆ẋ + γ∆x) (38)

∆ḋs = ḋs − Ls∆ds −ΨΨΨT
xs(qs)(−∆ẋ− γ∆x) (39)

Remark 3. The terms ΨΨΨT
xm(qm)(∆ẋ + γ∆x) and ΨΨΨT

xs(qs)(−∆ẋ− γ∆x) in (34) and (35) do

not exist in the nonlinear disturbance observer proposed by [23]. These new terms are employed

in the disturbance observers in order to improve the performance of the teleoperation system.

♦

First, we will investigate the stability and transparency of the teleoperation system when it is
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subject to slow-varying disturbances. We have the following theorem regarding the stability and

transparency of the system under slow-varying disturbances.

Theorem 1. Consider the teleoperation system subject to disturbances described by (12) and

(13). The master and the slave disturbance observers are given in (34) and (35). Then the

disturbance observer based control laws given in (22) and (23) guarantee global asymptotic

stability of the disturbance tracking error, the position tracking error, and the force tracking

error if the following conditions hold:

• Lm = LT
m > 0 and Ls = LT

s > 0 are constant symmetric and positive definite matrices,

• Kv given by (27) exists and is a constant symmetric and positive definite matrix satisfying

Kv > γI,

• Kp given by (28) exists and is a constant symmetric and positive definite matrix,

• ḋm ≈ 0 and ḋs ≈ 0, i.e., the rates of change of disturbances acting on the master and

the slave robots are negligible in comparison with the estimation error dynamics (36) and

(37).

�

Proof: Under the control laws (22) and (23), and according to the fourth condition of the

Theorem, the position tracking error dynamics and the disturbance tracking error dynamics of

the master and the slave are given by (26) and (38)–(39) with ḋm = 0 and ḋs = 0, respectively.

Let us consider the following candidate Lyapunov function:

V (∆ẋ,∆x,∆dm,∆ds) =
1

2
(∆ẋ + γ∆x)T (∆ẋ + γ∆x)

+
1

2
∆xT (Kp + γKv − γ2I)∆x +

1

2
∆dTm∆dm

+
1

2
∆dTs ∆ds (40)

Taking the time derivative of the above function, we get
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V̇ = (∆ẋ + γ∆x)T (∆ẍ + γ∆ẋ) + ∆ẋT (Kp + γKv

−γ2I)∆x + ∆ḋm
T

∆dm + ∆ḋs
T

∆ds (41)

Using (26), (38) and (39) in the above equation, we get

V̇ = (∆ẋ + γ∆x)T [−Kv∆ẋ−Kp∆x +

ΨΨΨxm(qm)∆dm −ΨΨΨxs(qs)∆ds + γ∆ẋ] +

∆ẋT (Kp + γKv − γ2I)∆x +

[−Lm∆dm −ΨΨΨT
xm(qm)(∆̇x + γ∆x)]T∆dm +

[−Ls∆ds + ΨΨΨT
xs(qs)(∆̇x + γ∆x)]T∆ds

= −∆ẋT (Kv − γI)∆ẋ− γ∆xTKp∆x−

∆dTmLm∆dm −∆dTs Ls∆ds (42)

According to (40) and the second condition of the theorem, the Lyapunov function V is

positive definite in the entire state space [∆ẋT ,∆xT ,∆dTm,∆dTs ]T and is radially unbounded.

The first three conditions of the theorem guarantee that V̇ is negative definite in the entire state

space. Therefore, the velocity, position and disturbance tracking errors are globally asymptotically

stable. Since limt→∞∆ẋ = 0, limt→∞∆x = 0, limt→∞∆dm = 0 and limt→∞∆ds = 0 and

according to (26), we have limt→∞∆ẍ = 0. Finally, (24) and (25) result in limt→∞∆f = 0.

This concludes the proof.

The transparency achieved by the proposed control laws in (15) and (16) is a result of

exchanging both position and force information between the master and the slave sides. This

requires that we use all the four channels C1 to C4 in Figure 1 in order to transfer position and

force data.

The next theorem states that the disturbance tracking and the position tracking errors of the

teleoperation system, subject to slow-varying disturbances, can converge exponentially to zero

under certain conditions.
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Theorem 2. Consider the teleoperation system subject to disturbances described by (12) and

(13). The master and the slave disturbance observers are given in (34) and (35). Under

the control laws (22)–(23), the disturbance tracking and position tracking errors converge

exponentially to zero provided that the conditions of Theorem 1 hold and γ ≤
√
λmax(Kp + γKv)

where λmax(.) represents the maximum eigenvalue of a matrix.

�

Proof: Consider the Lyapunov function proposed in the proof of Theorem 1. Let us define

e = [∆ẋT ,∆xT ,∆dTm,∆dTs ]T . According to Rayleigh Inequality (see for example Theorem 2.5

in [28]), the Schwarz Inequality and from (40)

V (e) ≤ 1

2
||∆ẋ||22 + γ||∆ẋ||2||∆x||2 +

1

2
λmax(Kp + γKv)||∆x||22 +

1

2
||∆dm||22 +

1

2
||∆ds||22 (43)

Note that if γ ≤
√
λmax(Kp + γKv), we will have

1

2
(||∆ẋ||2 −

√
λmax(Kp + γKv)||∆x||2)2

+(−γ +
√
λmax(Kp + γKv))||∆ẋ||2||∆x||2 ≥ 0

⇒ ||∆ẋ||22 + λmax(Kp + γKv)||∆x||22 ≥
1

2
||∆ẋ||22 + γ||∆ẋ||2||∆x||2 +

1

2
λmax(Kp + γKv)||∆x||22

(44)

Using (44) in (43), we have

V (e) ≤ eTΓ1e (45)

where ΓΓΓ1 = diag{I, λmax(Kp+γKv)I,
1
2
I, 1

2
I} represents a block-diagonal matrix with matrices
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I, λmax(Kp + γKv)I and 1
2
I on its diagonals.

Taking the time derivative of the candidate Lyapunov function and similar to the calculations

done in the proof of the Theorem 1, we get:

V̇ = −eT diag{Kv − γI, γKp,Lm,Ls}︸ ︷︷ ︸
Γ2

e (46)

According to Rayleigh inequality and equations (45) and (46), we have the following upper

bound on the above positive definite candidate Lyapunov function and its time derivative:

V (e) ≤ λmax(Γ1)||e||22 (47)

and

V̇ (e) ≤ −λmin(Γ2)||e||22 (48)

where λmin(.) represents the minimum eigenvalue of a given matrix. Therefore, we have

V̇ (e) ≤ −λmin(Γ2)

λmax(Γ1)
V (e)

⇒ V (e) ≤ V (e0) exp[−λmin(Γ2)

λmax(Γ1)
] (49)

The above inequality implies exponential convergence of position and disturbance tracking errors

to the origin with a minimum rate determined by − λmin(Γ2)
λmax(Γ1)

.

Remark 5. As it is shown in Theorem 2, the minimum exponential rate of convergence for

the disturbance tracking and the position tracking errors to the origin is equal to λmin(Γ2)
λmax(Γ1)

. If we

define
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κ1 = λmax(Γ1) = max{1, λmax(Kp + γKv)} (50)

κ2 = λmin(Γ2) = min{λmin(Kv − γI),

γλmin(Kp), λmin(Lm), λmin(Ls)} (51)

One can simply determine the minimum rate of convergence by computing κ2
κ1

.

♦

Now, we consider the case when the rate of change of disturbances is not negligible in

comparison with the disturbance observer dynamics. In particular, we show that if the rate of

change of the disturbances is bounded, the tracking errors will be globally uniformly ultimately

bounded and the ultimate bound can be made as small as desired by using the design parameters.

We claim that

Theorem 3. Consider the teleoperation system subject to disturbances described by (12) and

(13). The master and the slave disturbance observers are given in (34) and (35). Under the

control laws (22)–(23), the tracking errors are globally uniformly ultimately bounded provided

that

• The first three conditions of the Theorem 1 hold,

• The rate of change of disturbances is bounded, i.e., ∃ζm > 0, ζs > 0 such that ||ḋm(t)||2 <

ζm and ||ḋs(t)||2 < ζs for ∀t > 0.

�

Proof: Again, consider the Lyapunov function given in (40). We define the tracking error

vector e as in the proof of Theorem 2. Also, define κ1 and κ2 as in (50)–(51). Taking the time

derivative of the candidate Lyapunov function and from (38)–(39), we get:

V̇ = −eTΓ2e + ḋm
T

∆dm + ḋs
T

∆ds (52)

where Γ2 is defined in (46). Since ||ḋm(t)||2 < ζm and ||ḋs(t)||2 < ζs and according to Rayleigh
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Inequality and Schwarz Inequality, we have

V̇ ≤ −κ2||e(t)||22 + ζm||∆dm(t)||2 + ζs||∆ds(t)||2 (53)

We define ζ = 2 max(ζm, ζs). Since ||∆dm(t)||2 ≤ ||e(t)||2 and ||∆ds(t)||2 ≤ ||e(t)||2, we have

V̇ ≤ −κ2||e||22 + ζ||e||2

= −κ2(1− θ)||e||22 − κ2θ||e||22 + ζ||e||2 (54)

where θ ∈ (0, 1). Therefore, we have

V̇ ≤ −κ2(1− θ)||e||22, ∀||e||2 ≥
ζ

θκ2
(55)

As V(e) is continuous, positive definite and radially unbounded, using Lemma 3.5 in [29]

there exist class K∞ functions 2 α1(.) and α2(.) such that α1(||e||2) ≤ V (e) ≤ α2(||e||2).

Using Corollary 5.1 in [29], we conclude that the tracking error is globally uniformly ultimately

bounded with an ultimate bound determined by α−11 (α2(
ζ
θκ2

)), i.e., there exists T > 0 such that

||e(t)||2 ≤ α−11 (α2(
ζ
θκ2

)) for ∀e(0) and ∀t ≥ T .

Therefore, the disturbance observer based control laws (22)–(23), with the disturbance

observers given in (34)–(35), improve the performance of the teleoperation system in the presence

of fast-varying disturbances by making the position and force tracking errors ultimately bounded.

As it was shown in the proof of Theorem 3 the tracking error ultimate bound can be made as

small as desired if κ2 = min{λmin(Kv − γI), γλmin(Kp), λmin(Lm), λmin(Ls)} is chosen to

be sufficiently large, i.e., if the controller and the disturbance observer gains are chosen to be

sufficiently large.

2A continuous function α(.) : R+ → R+ is said to be in the class K∞ if: (i) α(0) = 0, (ii) it is strictly increasing, and (iii)
α(r) → ∞ if r → ∞.
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IV. SIMULATION STUDY

In this section, computer simulations will illustrate effectiveness of the proposed control

scheme. Both the master and the slave robots are considered to be planar two-link manipulators

with revolute joints. The schematic diagram of the teleoperation system is shown in Figure 2.

The Cartesian dynamics of the manipulators are [25]

Mx(q) =

 m2 + m1

s22
0

0 m2



Vx(q, q̇) =

 Vx1(q, q̇)

Vx2(q, q̇)



Gx(q) =

 m1g
c1
s2

+m2gs12

m2gc12


where

Vx1 = −(m2l1c2 +m2l2)q̇
2
1 −m2l2q̇

2
2 −

(2m2l2 +m2l1c2 +m1l1
c2
s22

)q̇1q̇2

Vx2 = m2l1s2q̇
2
1 + l1m2s2q̇1q̇2

also, the forward kinematics and the Jacobian matrix are

h(q) =

 l1c1 + l2c12

l1s1 + l2s12



J(q) =

 l1s2 0

l1c2 + l2 l2


where l1 and l2 are the lengths of the links, and m1 and m2 are the point masses of the links.
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Also, we have s1 = sin(q1), s2 = sin(q2), c1 = cos(q1), c2 = cos(q2), s12 = sin(q1 + q2) and

c12 = cos(q1 + q2).

In this simulation study, the remote environment and the human operator’s hand are modeled

as second-order LTI systems. We take

fh = f∗h − (Mhẍm + Bhẋm + Khxm)

fe = f∗e + Meẍs + Beẋs + Kexs

where Mh = mhI, Me = meI, Bh = bhI, Be = beI, Kh = khI and Ke = keI are the mass,

damping, and stiffness coefficients of the envirnoment and the human operator’s hand, and I is

the identity matrix. Also, f∗h and f∗e represent the human and the environment exogenous forces,

respectively. The overall human hand parameters have been measured in several papers such as

[11], [30] and [31]. In the simulations, the human hand parameters are chosen as in [30]. The

remote environment is modeled by dampers and springs. These lead us to:

mh = 11.6kg, bh = 17Nsm−1, kh = 243Nm−1

be = 5Nsm−1, ke = 1Nm−1

The friction torques acting on the joints of the robots are generated based on the model in

[32]. For the i− th joint of the robot, i = 1, 2, we have the frictions modeled as

τifriction = Fcisgn(q̇i)[1− exp(
−q̇2i
v2si

)]

+Fsisgn(q̇i) exp(
−q̇2i
v2si

) + Fviq̇i

where Fci, Fsi, Fvi are the Coulomb, static, and viscous friction coefficients, respectively. The

parameter vsi is the Stribeck parameter. In the simulations, the friction coefficients and the

Stribeck parameter for the master and the slave are chosen as follows [7]:
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Fci = 0.49, Fsi = 3.5, Fvi = 0.15, vsi = 0.189

i = 1, 2

We take the actual parameter values of the master and the slave robots to be

m1m = 2.3kg, m2m = 2.3kg, l1m = 0.5m, l2m = 0.5m

m1s = 1.5kg, m2s = 1.5kg, l1s = 0.5m, l2s = 0.5m

Assuming a maximum of ±25% uncertainty in these parameters, we take the approximate values

of these master and the slave parameters to be

m̂1m = 2.82kg, m̂2m = 2.36kg, l̂1m = 0.62m, l̂2m = 0.56m

m̂1s = 1.16kg, m̂2s = 1.29kg, l̂1s = 0.38m, l̂2s = 0.52m

The controllers Cm, Cs, C1, . . . , and C6 are chosen as in (19), (20) and (21). The controllers

and disturbance observer gains and initial conditions are chosen as

γ = 1

Kmv = 50I , Ksv = 50I

Kmp = 50I , Ksp = 50I

Cmf = I , Csf = I

Lm = 50I , Ls = 50I

d̂0m = 0 , d̂0s = 0

⇒

Kv = 25I , Kp = 25I

The above gains satisfy the conditions in the Theorem 1 and the Theorem 2. Note that the master

and the slave controller and observer gains have been chosen to be equal– this choice is not

necessary but is one that results in identical closed-loop master and slave dynamics (24) and
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(25) when ∆dm = 0 and ∆ds = 0.

We choose different values for initial joint positions of the master and the slave while assuming

that both robots are initially at rest. We take the initial joint position vectors to be

q0m = [30◦, 45◦]T

q0s = [0, 22.5◦]T

We take f∗e = [0, 0]T and assume that the human operator moves the master end-effector

such that the second joint of the master robot moves from 45◦ to 81.5◦ while the position of

the first joint of the master robot is fixed. The slave end-effector should follow the position

of the master end-effector. We assume that an external payload, with a mass equal to 0.5kg, is

connected to the end-effector of the slave. Also, we assume that a sinusoidal disturbance torque

equal to τd = sin(4πt) is exerted to the second joint of the slave robot. Sinusoidal disturbances

are exerted to the joints of a robot in order to examine the efficiency of fault tolerant control

schemes (see, for example, [33]). These external disturbances are exerted to the slave robot in

addition to the disturbances due to joint frictions and dynamic uncertainties.

Figures 3 and 4 show the position tracking responses of the teleoperation system in presence

and absence of the disturbance observers. Because of the sinusoidal disturbance acting on the

second joint of the slave robot, the slave robot end-effector payload, the friction forces and

the dynamic uncertainties present in the master and the slave, the control law without using

disturbance observers fails to achieve good position tracking. As it can be observed from Figures

3 and 4, perfect position tracking has been acheived under the disturbance observer based control

scheme while there are offsets in the position tracking error under the conventional control

scheme.

Figure 5 shows the force tracking responses of the teleoperation system in presence and

absence of the disturbance observers. The force tracking of the teleoperation system under the

disturbance observer based control scheme has been significantly improved in comparison with

the conventional scheme. Figures 6 and 7 show the disturbance tracking of the disturbance

observer at the master and the slave sides. As it can be observed from these figures, the

disturbances are not constant at the slave side. However, the estimated disturbances tend to
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follow the actual disturbances with a bounded tracking error (see Theorem 3).

V. CONCLUSION

In this paper, a novel control scheme has been proposed for nonlinear teleoperation systems

subject to dynamic uncertainties and disturbances. The designed nonlinear disturbance observer

based controller is incorporated into the 4-channel bilateral teleoperation control framework.

The proposed control scheme is able to decrease the adverse effects of the disturbances

on the stability and transparency of the teleoperation system. Full transparency in terms of

asymptotic convergence of the position tracking and force tracking errors to zero, and exponential

convergence of disturbance tracking and position tracking errors to zero are achieved under

slow-varying disturbances. In this case, the minimum exponential convergence rate can be

determined by the proposed controller parameters. When the teleoperation system is subject

to fast-varying disturbances, the proposed control scheme improves transparency and guarantees

uniform ultimate boundedness of the teleoperation system tracking errors. Computer simulations

are done to show the effectiveness of the proposed approach.
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Fig. 2. Schematic diagram of the teleoperation system used in simulation.

Fig. 3. Position tracking of the teleoperation system with and without disturbance observer.
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Fig. 4. Position tracking error of the teleoperation system with and without disturbance observer.
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Fig. 5. Force tracking of the teleoperation system with and without disturbance observer.
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Fig. 6. Disturbance tracking at the slave side.
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Fig. 7. Disturbance tracking at the master side.
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