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Abstract— In this paper, a novel haptic tele-cooperation

control scheme for a system consisting of multiple manipulators

interacting with a physical or virtual object is proposed. The

contact force between each manipulator and the object is

decomposed into two independent forces, one of which is related

to grasping the object and the other is related to the motion

of the object including its interaction with the environment it

is in. The Lyapunov’s direct method is used for designing and

stability analysis of the proposed controller. As a case study,

the problem of robotic tele-rehabilitation is investigated where

multiple human operators (e.g., one or more therapists, patients,

and trainees in a tele-rehabilitation setting) control their user

interfaces in order to tele-cooperatively manipulate an object in

a virtual environment. Experimental results confirm the perfor-

mance and effectiveness of the proposed control methodology.

Keywords: Cooperative haptic teleoperation, sliding mode

control, tele-rehabilitation.

I. INTRODUCTION

Research on cooperative robotic systems has attracted
the attention of researchers as these systems are useful for
grasping and handling objects of various shapes and weights.
There are three main strategies for centralized control of
cooperative robots [1]: master-slave control, coordinated
motion control, and object motion control. In the master-
slave control strategy, one or more robots are considered as
the master and others act as the slaves [2]. In the coordinated
motion control category, which is the case of this paper,
grasping and manipulation of an object are achieved through
controlling the robots’ end effectors (EEs) [3], [4]. In the
object motion control strategy, the system’s dynamics are
obtained based on the object’s dynamic parameters and the
object is controlled directly [1], [5].

Several papers have been published on cooperative sys-
tems, considering new aspects in the control of these systems
[6]–[14]. An experimental study was performed in [6] on a
cooperative system consisting of two fully known manipula-
tors handling a rigid object in free motion but the control of
the internal forces was not considered in this research. The
works in [7] considered cooperative control of two flexible
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arms of a space robot handling an object. Multiple impedance
control (MIC) algorithm and virtual linkages approach was
used in [9] to propose a control algorithm for multiple mobile
manipulators. The virtual linkages were used for control of
the internal forces. An adaptive synchronization architecture
for multiple robots with known kinematic parameters was
proposed in [12]. In [13] a strategy for motion and internal
force control of a cooperative robotic system was developed.
However, they did not consider control of contact forces due
to the environment-robot interaction.

A control methodology was presented for teleoperation of
cooperative systems in [2]. A synchronization method was
developed in [15] for cooperative robots in free motion as
well as trajectory tracking of the object. The grasping process
was also modeled without assuming constraints on contact
points. [16] suggested a strategy for position control and syn-
chronization of cooperative robots by introducing the concept
of passive decomposition. However, the methodology was
only developed on point mass mobile robots in free motion.

In this paper, the problem of cooperative grasping of an
object with several teleoperated robots is addressed. The
system consists of several master haptic interfaces, the same
number of slave manipulators, and one object. The slave
manipulators and the object can either be physical or virtual.
For the virtual case, as each operator works with a robot
(haptic master interface), a virtual mirror of that robot
(slave robot) interacts with the virtual object in terms of
position and force. An important use for such systems is
in cooperative therapy for post-disability rehabilitation (see
Fig. 1). Accordingly, the case study considered in this paper
concerns a tele-rehabilitation scenario. For implementing the
VE, a Unity3D c� environment [17] is designed.

The rest of paper is organized as follows. In Section II,
the reduced order dynamics of the overall system is given
in operational space. Our robust adaptive control strategy for
both the object’s position and the object-environment contact
forces is presented in Section III. Control of the internal
forces is also covered in this Section. In Section IV, the
effectiveness of the proposed controller is verified through
experimental results.

II. DYNAMIC EQUATIONS OF MOTION

In this section, the dynamics of the manipulators, the
object and the overall system are given. The following
assumptions are made in this work:
(A1) The contact between the end-effector of each robot and

the object is rigid.
(A2) The object is rigid.



Fig. 1: Rehabilitation of a patient via cooperative manipula-
tion of a ball together with a therapist [18].

(A3) The rotational speed of the robots’ joints and the
contact forces between the object and the robots and
the objects and its environment are measurable.

(A4) The robots do not get into singular configurations.

A. The Manipulator Dynamics
When the object makes contact with its environment, an

impulsive force is exerted on it. This force is generated due
to sudden changes in the object’s velocity. For simplicity, the
effects of this impulsive force are not considered. However,
it is possible to consider the impact as a bounded systematic
disturbance and to make the controller robust against it.

The dynamic model of each of the manipulators can be
expressed as

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = ⌧i � J
T

i
fhi (1)

where i = 1, 2, ..., r and Mi 2 R
n⇥n is the inertia matrix, Ci

is the matrix of Coriolis and centrifugal terms, gi is the vector
of gravitational forces, ⌧i is the vector of control signals, and
fhi is the vector of external forces and moments exerted on
the ith manipulator. Moreover, Ji is the analytical Jacobian
matrix for the ith robot. The dynamics of the multiple robots
are expressed by

Mm(q)q̈ + Cm(q, q̇)q̇ + gm(q) = ⌧ � J
T
fh (2)

where
Mm(q) = diag{Mi(qi)} , Cm(q, q̇) = diag{Ci(qi, q̇i)},

fh = [fT

h1, · · · , f
T

hr
]T , gm = [gT

1 , · · · , g
T
r
]T ,

⌧ = [⌧T
1 , · · · , ⌧

T
r

]T , J = diag{Ji} ; i = {1, ..., r}

By writing the dynamics of the robots in task space, the
following equation is obtained

M(Xe)Ẍe + C(Xe, Ẋe)Ẋe + fh = u � G(Xe) (3)

In this equation, M , C, G and u are the transformed forms of
Mm, Cm, gm and ⌧ defined above, respectively. Moreover,
Xe = [XT

e1, X
T
e2, · · · , X

T
er

]T denotes the vector of positions
of the end-effectors of the manipulators.

B. The Object Dynamics
The dynamics of the object can be written as

Mo(Xo)v̇o + Co(Xo, vo)vo + go(Xo) + do(t) = fo

fo = fho + fco

(4)

where Mo is the inertia matrix, Co is the matrix of Coriolis
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Figure 1. The schematic diagram of the coordinates and forces

2.2. The Object Dynamics

The dynamics of the object can be written as follows:

Mo(Xo)v̇o + Co(Xo, vo)vo + go(Xo) + do(t) = fo (4)

fo = fho + fco

where Mo is the inertia matrix, Co is the matrix of Coriolis and centrifugal terms, go is the vector
of gravitational forces, do is the vector of bounded disturbances exerted on the object (such as
friction at the contact point), and fo is the vector of external forces and moments exerted on
the object. The latter consists of two separate terms, i.e. fho and fco that are the external forces
and moments of the robots and the environment, respectively. The Schematic diagram of the
cooperative system is shown in Figure 2.
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(a) The object in its environment.

(b) Diagram of the object grasped by the robots.

Fig. 2: Diagram of the manipulated object.

and centrifugal terms, go is the vector of gravitational forces,
do is the vector of bounded disturbances exerted on the object
(such as friction at the contact point), and fo is the vector
of external forces and moments exerted on the object. The
latter consists of two separate terms, namely fho and fco,
which are the external forces and moments of interaction of
the object with the robots and the environment, respectively.
A diagram of the cooperative system is shown in Figure 2a
when the slave manipulators and the object are virtual (a
similar arrangement is possible when the slave manipulators
and the object are physical).

It is noted that v
T
o

= [ẋT
o , !

T ] is the object’s velocity in
the base coordinate frame ({XYZ}) and

fho = J
T

o
fh , Ẋei = Joivo (5)

in which Jo = [JT
o1, J

T
o2, · · · , J

T
or

]T is the so-called grasp
matrix. Each grasp matrix between one of the robots’ end
effectors and the object (Joi, i = {1, ..., r}), depends on the
relative position of the object’s centre of mass (COM) and the
end-effector of the robot, and it is constant. The interaction
forces between the object and the environment are obtained
as
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(c) Unity Environment for Virtual Object Manipulation.

Fig. 3: The schematic of the overall system. (a) The schematic which shows the interaction between the operators and the Virtual Realty Environment.
The virtual object is touched from different aspects, with therapist, patient, and other operators such as trainees (that are mentioned as the ith operator
in the figure). The black circles show the desired mid-points, which the virtual object should reach. The paths are colorized as warm black to cold black,
which refer to the resistive to assistive path, respectively. (b) The assistive/resistive paths and points.

fco =


n�c

Pc ⇥ n�c

�
= N�c (6)

where n 2 R
m⇥1 is the unit vector of the exerted force and

Pc is a vector connecting the object’s coordinate frame origin
to the contact point (Figure 2a). n is known since it depends
only on the environment, which is assumed to be known. It is
also possible to decompose fh into two orthogonal subspaces
as [19]:

fh = (JT

o
)†fho + G

�T

o
(I � J

†T
I

J
T

I
)fhint| {z }

FI

(7)

In (7), Go = diag{Joi}, i = {1, 2, ..., r} and fhint is
the vector of internal forces for grasping the object. These
forces have no contribution in the object’s motion and JI =
[In⇥n, · · · , In⇥n]T 2 R

rn⇥n. Moreover,
J

T
o

= J
T

I
G

T
o
,

F
T

I
= [fT

int1, f
T

int2, ..., f
T

intr
],

J
T

I
FI = 0

(8)

Furthermore, finti is the vector of internal forces between
the object and the ith manipulator. (JT

I
)† is the weighted

pseudo inverse of J
T

I
defined in (9), in which Q =

diag{⇣iIn⇥n}, i = {1, 2, ..., r}, is a matrix that identifies
load distribution between the robots:

J
†T
I

= QJI(J
T

I
QJI)

�1 (9)

C. Dynamic Model of the Virtual Fixture
We model the virtual fixture (VF) as another virtual

manipulator so that it is general and can have dynamics.
In contrast to to the other manipulators, the VF manipulator
does not have any mirror in the real world. It is designed
to help the patient and the other operators to work in an
assistive or a resistive mode of rehabilitation. The dynamic
model of the VF can be expressed as

Mvf (xvf )ẍvf + Cvf (xvf , ẋvf )ẋvf + ḡvf (xvf ) = Uvf + Fevf

(10)
Uvf = Mvf (xvf )avf + Cvf (xfvf , ẋvf )ẋvf

+ḡvf (xvf ) � Fevf
(11)



where
avf = Ẍd � k1

˙̃
Xd � k2X̃d

in which

Xd(t) =

⇢
XOrigin VO is inside resistive path.
XPoint2 VO is inside assistive path.

It is obvious that the derivative of Xd(t) inside the path is
zero. So, the internal dynamics become

Ẍvf (t) + k1Ẋvf (t) + k2Xvf (t) = Xd

where, Xvf is the position of the VF, Mvf is the inertia
matrix, Cvf is the matrix of Coriolis and centripetal forces,
ḡvf is the vector of gravitational forces, Uvf is the vector
of control signals and Fevf is the vector of human forces
exerted on the VF.

D. The Overall Dynamics of the System

According to Assumption A1 and considering the task-
space dynamics of the manipulators, the object and the VF in
((3), (4), (7), and (8), the overall dynamics of the cooperative
system can be written as

Mx1Ẍe1+Cx1Ẋe1 = v�T
T
G�J

�T

o1 [go �N�c +do] (12)

where
Mx1 = T

T
MT + (JT

o1)
�1

MoJ
�1
o1

Cx1 = T
T
CT + (JT

o1)
�1

CoJ
�1
o1

v = T
T
u = T

T
um

and
T

T = [I6⇥6, T
T
2 , · · · , T

T
r

] = constant

, Ti = JoiJ
�1
o1 , i = {1, 2, ..., r}

T
T
FI = 0 , T

T
uf = 0

As long as the positions of the contact points are known, it
can be concluded that the matrix T is constant. This property
is used in the controller design. Due to the decoupling of
the object’s motion and the internal forces exerted on it,
it is possible to control each of them independently [19].
Control of the object’s motion and the environmental forces
exerted on it are performed through designing the signal um.
Moreover, uf is the control signal for the internal forces.
Therefore, the overall control signal can be obtained as

u = um + uf (13)

In addition, v is the transformation of the control signal um,
which is introduced later in Section III. Due to the kinematic
constraints between the robots and the object, it is also
possible to obtain the overall dynamics of the cooperative
system with respect to another point. This point could be the
end-effector of another robot or a point on the object such
as the geometrical centre of the contact points ((Xt, Yt, Zt)
in Figure 2b). The following properties can be inferred from
(12):

Lemma 1 ( [20]): The matrix Ṁx1 � 2Cx1 is skew sym-
metric, i.e.,

q
T (Ṁx1 � 2Cx1)q = 0 for every q 2 R6

Moreover, Mx1 is symmetric positive definite and is
bounded. This means that there exist some positive constants
↵min and ↵max such that

↵minIn⇥n  Mx1  ↵maxIn⇥n

In addition, it can be easily concluded from Lemma 1 that

Ṁx1 = Cx1 + C
T

x1 (14)

Proposition 1 ( [21] ): A manipulator with only revolute
joints of the form (12) is considered. It is assumed that
Ẋe1, Ẍe1 2 L1. Then the derivative terms of its Coriolis
matrix, Ċx1(Xe1, Ẋe1), are bounded.

III. CONTROL OF THE COOPERATIVE SYSTEM

A. Control of the Object’s Motion and the Object-
Environment Contact Forces

Manipulators with known dynamic parameters are utilized
for handling an object with unknown geometry, inertia, mass
and centre of mass position. The grasped object is initially at
(x0, y0, z0). Next, the manipulators cooperatively move it so
that it makes contact with the environment. Then, the object
makes contact with the environment and exerts a controlled
force upon it. The following error signals are defined:

e = Xe1 � X
d

e1 (15)

en = (�c � �
d

c
)⌘ (16)

In the above, X
d
e1 and �

d
c

are the desired values of Xe1

and �c, respectively, and ⌘
T = [nT

, 0T

(n�m)⇥1]. A hybrid
force/position control algorithm is defined for controlling
the object’s motion and its interaction with the environment
independently. To this end, the dynamics of the system, (12),
are decomposed into two subspaces as

S(Mx1Ẍe1 + Cx1Ẋe1) = vp � S(TT
G + J

�T

o1 [go � N�c + do])

(17)
S
0(Mx1Ẍe1 + Cx1Ẋe1) = vf � S

0(TT
G + J

�T

o1 [go � N�c + do])

(18)
v = vp + vf (19)

where vp = Sv, vf = S
0
v. Note that S(t) and S

0(t) are the
selection matrices that project the dynamics of the system
onto the motion and force subspaces, respectively. These
diagonal matrices are orthogonal and S(t) + S

0(t) = In⇥n.
The columns of the selection matrices S, S

0 are the bases
of the motion and force subspaces, respectively. Since the
control strategy considers both free motion and interaction
with the environment as far as the object is concerned, the
elements of the selection matrices are time-dependent. In the
contact scenario, the diagonal elements of the force subspace
selection matrix (S0) actually depend on the normal to the
environment’s surface (n).

In the contact case, since the object is relatively fixed in
the exerted force direction, it is assumed that S

0
Ẍe1 ⇡ 0

and S
0
Ẋe1 ⇡ 0. Hence (18) is reduced to

S
0(TT

G + J
�T

o1 [go � N�c + do]) = vf (20)



The parameter L is introduced for ease of notation as

L = J
�T

o1 N (21)

The elements of the selection matrices change only on
transition phases from free motion of the object to its con-
tact with the environment. Hyperbolic functions of contact
forces are used for making this transition. As a result, time
varying elements of d

dt
S(t) and d

dt
S
0(t) are functions of

sech(f(�c))2, which vanishes quickly. Hence, differentia-
tions of the selection matrices are approximated to zero.

Considering Assumptions A3-A4, the control signals are
defined as

vp = p(t) � S[Kpsp + L�c + d1 � sat(sp)]
vf = f(t) � S

0[d1 � sat(sp) � Kf (sf + en)] � ⌘�
d
c

(22)
where

p(t) = S[Mx1(Ẍd
e1 � �ė) + Cx1(Ẋd

e1 � �e)
+T

T
G + J

�T

o1 go]
f(t) = S

0[TT
G + J

�T

o1 go]
(23)

Moreover, sp = ė+�e and sf =
R

t

0 end⌧ are the sliding sur-
faces of the motion and force control subspaces, respectively.
In addition, Kp, Kf 2 R

n⇥n are some symmetric positive
definite matrices, � is a positive number and d1 is an upper
bound value for the signal J

�T

o1 do. Furthermore, ô means the
estimated value of o, sat(.) is the saturation function, and �
is the symbol of element-wise product. After substituting the
control signals (22) into (17) and (20), the error dynamics
of the closed loop system are obtained as

S[Mx1ṡp + Cx1sp] = S[�Kpsp � d1 � sat(sp) � J
�T

o1 do]

en = (In⇥n + S
0
Kf )�1[�S

0(Kfsf + d1 � sat(sf ) � J
�T

o1 do)]
(24)

In addition, (23) can be simplified to

p(t) = pt(t) + po(t)
pt(t) = ST

T
J
�T [Mmq̈t + Ctq̇t + gm]

po(t) = S[J�T

o1 (MoJ
�1
o1 q̈o + CoJ

�1
o1 q̇o + go)]

(25)

Moreover, q̇t, q̈t, q̇o and q̈o are defined as below:

q̇t = J
�1

T (Ẋd
e1 � �e)

q̈t = J
�T

TẌ
d
e1 � J

�1
J̇J

�1
T (Ẋd

e1 � �e)
(26)

q̇o = Ẋ
d
e1 � �e

q̈o = Ẍ
d
e1

(27)

The main result of the paper is summarized in the following
theorem.

Theorem 1: Consider the cooperative system (12) with
the control signal (19). Then, the position error e and
its derivative converge to zero asymptotically. In addition,
the error of the object-environment contact force and en

remain bounded. Furthermore, if the disturbance signal do is
differentiable, then ë and en converge to zero asymptotically.

Proof: The theorem is verified for motion and force
subspaces separately.

Motion subspace: The Lyapunov function (28) is used
for stability analysis of the motion subspace.

Vp = 1
2s

T
p
SMx1sp (28)

Differentiating (28), using (24), and doing some algebraic
manipulations, yields

V̇p = s
T
p
(�S[Kpsp � d1 � sat(sp) � J

�T

o1 do

�Cx1sp + 1
2Ṁx1sp])

(29)

By using the property (1), it is finally concluded that

V̇p = �s
T

p
SKpsp �s

T

p
S(d1 � sat(sp) + J

�T

o1 do)| {z }
�0

 0 (30)

Hence, sp 2 L2\L1. From (24), property (1) and bounded-
ness of e, ė, Ẋ

d
e1, Ẍ

d
e1,⌦ (⌦ is a function of the robots and

the object parameters), it is concluded that ë is bounded.
As a result, e, ė are uniformly continuous. Finally, as a
consequence of Barbalat’s lemma [22]:

lim
t!1

e, ė = 0

From (24), it is obtained that

ë = M
�1
x1  (e, ė, en, ėn, do) (31)

If the disturbance vector “do” is differentiable, then using
(14) and the proposition (1), it can be verified that d

dt
ë which

is computed from (32), is bounded
d

dt
ë = M

�1
x1 (Cx1 + C

T

x1)M
�1
x1  + M

�1
x1  ̇ (32)

Hence, ë is uniformly continuous and it is concluded from
Barballat’s lemma that limt!1 ë = 0.

Force subspace: The Lyapunov function (33) is used for
stability analysis of the motion subspace.

Vf =
1

2
s

T

f
sf (33)

Similarly, differentiating (33), using (24) gives:

V̇f = �s
T

f
S
0
Kfsf � s

T

f
S
0(d1 � sat(sf ) + J

�T

o1 do)| {z }
�0

 0

As a result, sf 2 L2 \ L1. From (24) it is concluded that
“en” is bounded and as a result of Barbalat’s lemma “sf”
converges to zero. If the disturbance signal “do” is differen-
tiable, differentiating (24) yields that “ėn” is bounded and
uniformly continuous. Finally from Barbalat’s lemma “en”
converges to zero asymptotically and the proof is complete.

B. Computation of The Optimal Control Torques
In order to obtain the optimal control torques of the robots,

first the control signal “um” should be computed from the
calculated signal “v” defined in the task space. To this end,
the control signals umi are computed in a way that a cost
function Ju = 1

2

P
r

i=1 u
T

mi
umi, is minimized with respect

to each umi (i = {1, 2, ..., r � 1}) [23]. Hence, a system
of equations is obtained consisting of “r” equations and “r”
unknowns:

@Ju
@umi

= 0 i = 1, ..., r � 1
v = um1 +

P
r

i=2 T
T

i
umi

(34)

Solving (34), the optimal um is obtained. Next, the control
signal “u” is computed from (13) and finally the control
torques are obtained as:

⌧ = J
T
u (35)



C. Internal Force Control
In order to control the internal forces, first they should be

computed. Hence, solving (9) results in:

J
†T
I

= [�1In⇥n, · · · , �mIn⇥n]T (36)

where �i = ⇣iPm
j=1 ⇣j

and ⇣i’s define the load distribution
between the robots. Using (7) and (8), it is verified that:

FI =

2

64
J

T
o1fh1 � �1

P
r

i=1 J
T

oi
fhi

...
J

T
or

fh1 � �r

P
r

i=1 J
T

oi
fhi

3

75 (37)

Consequently,

finti = J
T

oi
fhi � �i

rX

j=1

J
T

oj
fhj (38)

Due to the assumptions (A1) and (A2), the expression
“J

�T

oi
J

T

oj
”, 8i, j 2 {1, 2, ..., r} depends only on the relative

positions between the contact points of the robots and the
object. Hence, considering the assumption (A3), the term
“Fint” defined in (39) is computable based on measurements
of the contact forces between the object and the manipula-
tors:

Fint = G
�T

o
FI 2 R

rn⇥1 (39)

Now, the control signal uf is proposed as follows:

uf = Fintc = F
d

int
� �(eFint) (40)

where F
d

int
= G

�T
o

F
d

I
is the vector of desired internal

forces and eFint = Fint � F
d

int
is the internal forces

error signal. � is a dynamic control signal which includes
integrator operators in time domain. It should be noted that
no derivatives of the internal forces are used in (40). For
example, (41) can be suggested as a definition of �, in which
K1, K2 and K3 are some positive definite matrices:

� = K1eFint +K2

Z
t

0
eFint d⇢+K3

Z
t

0

Z
t

0
eFint d⇢ (41)

Theorem 2: Consider the cooperative system (3), with the
control signal (13), then the errors for the internal forces
remain bounded. Moreover, if the disturbance signal do is
differentiable, these errors converge to zero.

Proof: For simplicity, it is assumed that � in (40)
is defined as (41). By substituting (13) into the dynamic
equation of motion (3), the error dynamics of the internal
forces are obtained as

eFint + K1eFint + K2

R
t

0 eFint d⇢ + K3

R
t

0

R
t

0 eFint d⇢ = �'(t)
(42)

where

'(t) = Fintc � Fint = MẌe + CẊe + G � um

�J
†T
o

(MoẌo + CoẊo + go + do � fco)
(43)

According to the results of the Theorem 1, (e, ė, ë, en) and
their derivatives are limited. Thus, '(t) 2 Ł1 and as a result,
eFint remains bounded. Moreover, as long as e, ė, ë, en

and ėn converge to zero and the disturbance signal do is
differentiable, '(t) will converge to a constant vector. Now,

Fig. 4: The operators who are working as the Therapist, the
Patient, and the Trainee.

suppose that B(s) = L�(t) is of type one or higher, i.e.
B(s) = 1

s
�(s), which �(s) 2 RH1 is a stable transfer

function. It is then concluded from the final value theorem
that:

lim
t!1

eFint(t) = lim
s!0

sEFint(s) = lim
s!0

s
2

�(s)
�(s) = 0

For example, considering �(t) as (41):

EFint(s)(
K2

s
+ (1 + K1) +

K3

s2
) =

�(s)

s

Hence, using the final value theorem it is obtained that:

lim
t!0

eFint(t) = lim
s!0

s
2

s2(1 + K1) + sK2 + K3
�(s) = 0

IV. EXPERIMENTAL RESULTS

In order to illustrate the performance of the proposed
method, an experimental tele-rehabilitation system is devel-
oped. In this system, there are four operators consisting of a
therapist, a patient, a trainee, who are working with Phantom
Premium/Omni devices (Fig. 4). Beside a VF is utilized as
the fourth operator in VF as depicted in Fig. 3a. In this figure,
the darker paths show the resistive directions while the paler
paths show the assistive directions as far as the effect of
the VF on the object movement is concerned. The operators
are working with 6-DOF Phantom Premium devices as the
manipulators. The 3D dynamical and graphical models of
the manipulators are built in Unity3D. Likewise, a virtual
ball is designed inside the virtual environment (see Fig.
3c). Furthermore, the controller is implemented in Simulink
Desktop Real-TimeTM [24] and its input/output is connected
to Unity3D via the UDP protocol. Fig. 5 shows the results
for experimentation. As illustrated in Figures 5a and 5b, the
system starts working in resistive mode. After 120 seconds,
the system goes to assistive mode. In the assistive mode
(> 120 seconds), due to the presence of the assistive VF
force, the forces applied by the human operators on their
respective manipulators decrease. In the resistive mode (<
120 seconds), due to the presence of the VF resistive force,
the forces applied by the human operators on their respective
manipulators increase to be able to move the object. The 2D
position of the ball is depicted in Fig. 6.



(a) (b)

(c) (d)
Fig. 5: After 120 seconds the system goes to assistive mode and the Virtual Guidance Manipulator’s force help others to
move.
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Fig. 6: 2D position of Virtual Ball.
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