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Abstract— A pneumatic actuator with solenoid valves is a
discontinuous-input system because each valve can be either in
on or off state. For such an actuator, this paper proposes a
sliding-mode control scheme based on an averaged continuous-
input equivalent model for the open-loop system. The averaged
model is obtained from the nonlinear dynamics of the open-loop
discontinuous-input system undergoing pulse-width-modulation
(PWM) at the input (i.e., valve open/close action). The PWM
duty cycle will be regarded as a continuous input to the
proposed averaged model, and thus generated by the proposed
sliding-mode controller. By adjusting the PWM duty cycle, the
controller switches between seven modes of operation of the
open-loop system in order to select the ones with necessary and
sufficient amounts of drive energy to achieve position tracking.
We will show that this results in reduced position error and
valve switching activity for the actuator. The proposed control
scheme is experimentally used in the position control of a
pneumatic actuator and the results are presented.

Index Terms— Pneumatic actuator, on/off solenoid valve,
PWM, sliding-mode control design, position tracking.

I. INTRODUCTION

In this study, we investigate the control of pneumatic
actuators used in robots. Pneumatic actuators are widely
used in many different industries and offer many advantages
such as low cost, good power/weight ratio, cleanliness, and
safety [1]. However, they suffer from drawbacks including
friction and variation of the actuator dynamics to load and
piston position along the cylinder stroke [2]. Controlling
the position of a pneumatic actuator is difficult due to the
nonlinear dynamics of the system [3].

For excitation, some pneumatic systems are equipped with
on/off solenoid valves. These valves represent a low-cost al-
ternative to servo-valves, which allow for continuous control
of the input mass flow rate. The difficulty in utilizing on/off
solenoid valves is that precise control of the piston position
will be hampered by the discrete-input (on/off) nature of
these valves. This makes the actuator position control even
more difficult.

If the nonlinear dynamics of a pneumatic system can be
approximated as an equivalent linear system, then linear
controllers can be designed [1]. However, it is preferable
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to design controllers that take into account the open-loop
system nonlinearities. PWM controllers have been developed
in the past to control the position of solenoid-valve pneu-
matic actuators [4], [5], [6], [7]. A PWM input with a high
switching frequency approximates a continuous input whose
magnitude is determined by the PWM duty cycle. This is
advantageous because it allows us to provide to a discrete-
input system what is effectively a continuous input.

On the other hand, it is possible to employ nonlinear
sliding-mode control for solenoid-valve systems [8]. Sliding-
mode control alters the dynamics of a system by the ap-
plication of a high-frequency switching control [9], [10].
Sliding-mode control is parametrically very robust and can
account for dynamic uncertainties as well as nonlinearities
of a system. While using pneumatic actuators equipped with
solenoid-valve it turns out that these systems are by essence
nonlinear with discontinuous-time dynamics. To control such
systems one can either use hybrid control theory or construct
an equivalent continuous-time dynamics of the system then
use nonlinear control theory. In [11], nonlinear model aver-
aging is combined with PWM and sliding-mode control to
control a solenoid-valve pneumatic actuator based on a three
mode model.

In our previous works, a sliding mode control based on
a seven mode switching law has been proposed [12]. It
has been shown in these works that four additional modes
allow not only to decrease the coarseness of the drive
force for lower position tracking errors but also to reduce
the number of switching. The current paper investigates a
PWM switching law, provided by a sliding mode controller,
which is designed from an averaged model of the system. In
[11], an approach based on a three mode model has been
introduced, in the current paper we provide a theoretical
extension from three modes to seven modes. Our proposal
is supported by experimental results and a comparison study
with another controller. Moreover robustness with respect to
load variations and input excitations are given to assess the
performances of the controller.

The organization of this paper is as follows. The discrete
input model of the actuator is found in Section II. A
nonlinear averaged continuous-input model of the open-loop
actuator is obtained in Section III. A sliding-mode control
for the pneumatic actuator is proposed in Section IV. The
experimental results validating the proposed controllers are
shown in Section V. Finally, the concluding remarks are
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Fig. 1. A pneumatic actuator with 4 on/off solenoid valves.

presented in Section VI.

II. DISCRETE-INPUT MODEL OF THE OPEN-LOOP
ACTUATOR

The modelling of a pneumatic actuator with its chamber
and four solenoid valves is visible in [12]. It is possible
to write the dynamics of the open-loop pneumatic actuator
in a discrete input form, assuming that the temperature
variation in chambers is negligible with respect to the supply
temperature (thus TP = TN = T ):

...
y = f +

krT

M

(
QP

l/2 + y
− QN
l/2− y

)
+
τ̇Ext
M

(1)

f =
−bV
M

ÿ − k

M

(
APPP
l/2 + y

+
ANPN
l/2− y

)
ẏ (2)

In this paper, we consider a 1-DOF pneumatic actuator
comprised of two chambers as shown in Figure 1. Each
chamber has two solenoid valves. These solenoid valves
allow each chamber to be in one of three states: connected to
an air supply (pressurizing), connected to exhaust pressure
(venting), or closed (no air flow in or out of chamber).
Since each chamber can be in one of the three states of
pressurizing, venting or closed, there are a total of nine
discrete modes for the two-chamber actuator [13]. These
modes are shown in Table I.

TABLE I
NINE DISCRETE MODES OF THE OPEN-LOOP ACTUATOR

M1 M2 M3 M4 M5 M6 M7 M8 M9

U1 0 1 0 0 0 1 0 0 1
U2 0 0 1 0 0 0 1 1 0
U3 0 0 0 0 1 0 1 0 1
U4 0 0 0 1 0 1 0 1 0

For each of these nine discrete modes, we obtain the
dynamic equation

...
y =

{
f + τ̇Ext

M ,mode M1

f + (−1)jbj + τ̇Ext

M ,mode Mj 6= M1

(3)

where the integer j ranges from 2 to 9 and

b2 =
krT

M

Q(PS , PP )

(l/2 + y)
b3 =

krT

M

Q(PP , PE)

(l/2 + y)

b4 =
krT

M

Q(PN , PE)

(l/2− y)
b5 =

krT

M

Q(PS , PN )

(l/2− y)
b6 = b2 + b4 b7 = b5 + b3

b8 = b4 − b3 b9 = b5 − b2

Note that because PE ≤ PP ≤ PS , PE ≤ PN ≤ PS ,
−l/2 ≤ y ≤ l/2, and mass flow rates are non-negative,
functions b2 through b7 are all positive or equal to zero.
Also, b8 and b9 are approximately equal to 0 and can be
positive or negative. As in [12], we will focus on the modes
M1 to M7.

In the next section, we will obtain an averaged continuous-
input equivalent for the above discontinuous-input open-loop
model. This averaged model is obtained from the nonlinear
dynamics of the open-loop system undergoing pulse-width
modulation at the input (i.e., valve open/close action). The
PWM duty cycle will act as the continuous input to the
proposed averaged model.

III. AVERAGED CONTINUOUS-INPUT MODEL OF
THE OPEN-LOOP ACTUATOR

Let us consider a general dynamic system that may operate
in one of p distinct modes at any given time. Within a PWM
“period”, the system can switch between modes 1 through
p, due to the variations in the input provided to the system.
Switching between the modes 1 through p happens according
to the modal duty cycle (duration) di. Then,

D = [d1, d2, ..., dp]
T (4)

gives the PWM period. The total duration of the modal duty
cycles must equal the total PWM period, which is usually
normalized to unity, i.e., ||D||1 = 1. If the system has
dynamics y(n) = fi when in mode i, where n is the system
order, and we collect the system dynamics for the p modes
in the vector

F = [f1, f2, ..., fp]
T (5)

Then a time-averaged model y(n)a of the system dynamics
y(n) can be given by [11]

y(n)a = FTD (6)

Therefore, if we can implement the PWM period as a
function of a single continuous input u, we obtain two things:
a duty cycle mapping for the p-mode system that can be used
to operate the PWM, and a time-averaged dynamic model
which can be utilized to design the sliding control.

A. Duty Cycle Mapping for the 3-Mode System

Shen et al. have applied such a nonlinear model averaging
to a 3-mode pneumatic actuator [11]. We will first derive that
averaged model and then extend the method to the case of a
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7-mode actuator model. Using (3) for a pneumatic actuator
without external disturbances, we have

fi =

{
f , i = 1

f + (−1)ibi , otherwise
(7)

for i ∈ {1, 6, 7} because, as discussed previously, these are
the three modes corresponding to “Close and Close” (mode
1), “Push and Pull” (mode 6), and “Pull and Push” (mode
7) used in [11]. For accommodating a wide range of desired
accelerations for the piston of the pneumatic actuator in the
positive direction, we would like to be able to appropriately
mix modes 1 and 6. Similarly, for creating a wide range
of desired piston accelerations in the negative direction, we
need to appropriately mix modes 1 and 7. To this end, within
each of the positive and negative actuation regions, we select
a duty cycle based switching scheme that alternates between
no actuation (mode 1) and full action (modes 6 and 7 in
the positive and negative directions, respectively). Such a
switching scheme is shown in Table II where

d(u) =
uH − u
uH − uL

(8)

with uL ≤ u ≤ uH . Also, u = 0 corresponds to no actuation.
Substituting (7) and the duty cycles d1, d6 and d7 listed in
Table II into (6), the average system model can be described
by

...
y a =

{
f + b6u , if u ≥ 0

f + b7u , if u < 0
(9)

TABLE II
THE 3-MODE DUTY CYCLE MAPPING PROFILE.

Region uL uH Duty Cycles
- −1 0 d7 = d(u), d1 = 1− d(u)
+ 0 1 d1 = d(u), d6 = 1− d(u)

The scheme for switching between modes 1 and 6 or
modes 1 and 7 according to the duty cycles listed in Table II
is illustrated in Figure 3(a) as a function of the input u. Here,
piecewise linear functions changing between 0 and 1 provide
the duration for operating different mode. At any given input
u level, the duty cycle for high-frequency switching between
the two modes present at that input level is determined by
the durations di for the two modes. Figure 2(a) shows (9) in
the plane of

...
y a − f versus u.

B. Duty Cycle Mapping for the 5-Mode System

If we extend the accepted values for the index i in (7) to be
i ∈ {1, 2, 5, 6, 7}, the system will include two more control
options: ”Push and Close” (mode 2) and ”Close and Push”
(mode 5). This mapping will result in a 5-mode system.

For a 5-mode system, similar to the 3-mode system, we
need to decide the scheme for switching between modes.
This mode selection scheme involves a new mapping of
the single input u to the duty cycle vector D. A desirable

mapping would utilize at most two modes in any PWM
period to simplify the mapping and also minimize the valves’
switching for reduced noise and extended lifespan of the
valves. Based on (7) and because bi in (3) are all positive,
we can see that the open-loop modes can be ordered in terms
of the magnitude of the resulting

...
y for each mode as

f7 ≤ f5 ≤ f1 ≤ f2 ≤ f6 (10)

Given this order of actuation level for each mode, it is
beneficial to arrange the duty cycles as shown in Table
III. Utilizing these mappings, the output

...
y a is increasing

(decreasing) with increasing (decreasing) u, only two modes
are used at a time, and ||D||1 = 1. The mapping from
Table III is plotted in Figure 3(b). Figure 3(b) has four
regions matching the same regions as in Table III.

To properly select the values of the transition points γ2 and
γ5 in Table III, we need to consider Figure 2(b). At u = 0,
mode 1 is utilized 100% of the time. As u decreases into
the negative values (region 2 in Table III), mode 5 is utilized
increasingly until u = −γ5, at which point mode 5 is utilized
100% of the time. As u further decreases (region 1), mode 5
is used increasingly less, and mode 7 is utilized increasingly
until u = −1, at which point mode 7 is utilized 100%.
The same holds for the positive range of u corresponding to
regions 3 and 4 in Table III. Now, if we select the following
values for the transition points γ2 and γ5

γ2 =
b2
b6

γ5 =
b5
b7

then we can see from Figure 2(b) that the resulting averaged
dynamics will demonstrate a straight line across the transition
points. It should be noted that any other selection of γ2 and
γ5 will lead to a non-uniformity in terms of actuation, which
will not be beneficial to the controller design. Note that since
bi in (3) are time-varying functions, γ2 and γ5 will also be
functions of time.

Straightforward calculations show that the derivation for
the 5-mode system leads to a time-averaged model that is
the same as that for the 3-mode system. This is distinctly
advantageous because we will be able to use the same control
signal u for both 3-mode and 5-mode systems. In this case,
the only difference between 3-mode and 5-mode operation
will be in the resulting valve open/close activity for a given
u.

C. Duty Cycle Mapping for the 7-Mode System

Extending the accepted values for the index i in (7) to
i ∈ {1, . . . , 7}, the system will include two more control
options: ”Pull and Close” (mode 4) and ”Close and Pull”
(mode 3). This mapping will result in a 7-mode system.

For a 7-mode system, similar to the 5-mode system, a
desirable mapping would utilize at most two modes in any
PWM period. To properly evaluate the averaged model of the
system, we will consider the 7-mode mapping through two
separate mappings: The pressurizing profile (which utilizes
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modes M7, M5, M1, M2, and M6) and the venting profile
(which utilizes modes M7, M3, M1, M4, and M6). Note that
the mode selection scheme in the pressurizing profile in the
7-mode case is the same as that in the 5-mode case. Based
on (7) and because bi in (3) are all positive, we can see that
these modes can be ordered in terms of the magnitude of the
resulting

...
y for each mode as

Pressurizing Profile: f7 ≤ f5 ≤ f1 ≤ f2 ≤ f6
Venting Profile: f7 ≤ f3 ≤ f1 ≤ f4 ≤ f6

Given this order of actuation for each mode, it is beneficial
to arrange the duty cycles as shown in Table III for the
pressurizing profile and Table III for the venting profile.
Observe that for the pressurizing profile of the 7-mode
system, we are utilizing the same modes and mapping as
the 5-mode system in the previous section.

TABLE III
THE 7-MODE DUTY CYCLE MAPPING FOR PRESSURIZING AND VENTING

PROFILE.

Region uL uH Duty Cycles
1 −1 −γ5 d7 = d(u), d5 = 1− d(u)
2 −γ5 0 d5 = d(u), d1 = 1− d(u)
3 0 γ2 d1 = d(u), d2 = 1− d(u)
4 γ2 1 d2 = d(u), d6 = 1− d(u)

5 −1 −γ3 d7 = d(u), d3 = 1− d(u)
6 −γ3 0 d3 = d(u), d1 = 1− d(u)
7 0 γ4 d1 = d(u), d4 = 1− d(u)
8 γ4 1 d4 = d(u), d6 = 1− d(u)

Utilizing these mappings, the output
...
y a is increasing

(decreasing) with increasing (decreasing) u, only two modes
are used at a time, and the ||D||1 = 1. The mapping in
Table III is plotted in Figure 3(b) and 3(c).

We select the same values for the transition points γ2 and
γ5 as in 5-mode (see (11)). Applying the same methodology
to the venting profile, we select the following values for the
transition points γ4 and γ3 in the venting profile:

γ4 =
b4
b6

γ3 =
b3
b7

The derivation of the time-averaged 7-mode model is
shown in the Appendix A. As it can be seen, the time-
averaged model of the 7-mode system is the same as that for
the 3-mode and 5-mode systems. So, we can use the same
control input u for 3-mode, 5-mode, and 7-mode systems.

IV. SLIDING-MODE CONTROL OF THE PNEUMATIC
ACTUATOR

Having expressed the multi-mode discrete-input system in
the continuous-input form (9), a sliding-mode approach can
be applied for position control of the system. Selecting an
integral sliding surface as

sp =

(
d

dt
+ ωp

)3 ∫ t

0

epdτ (11)

where ep = y − yd is the position error and ωp is a positive
gain. The switching function sp provides a measure of the

+
u

- 1
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u
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3 4
21 1

-1
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- b3
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Fig. 2. Time-averaged input-output relationship for: (a) the 3-mode system,
(b) the 5-mode system or 7-mode system (pressurizing profile).
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distance from the sliding surface using the current position
error and its derivatives. One can develop a control law based
on a sliding-mode approach, in which the equivalent control
action, ueq , is derived by solving for the input when ṡp = 0.
Taking the derivative of (11) we find

ṡp =
...
y −

...
y d + 3ëpωp + 3ėpω

2
p + epω

3
p (12)

If we substitute (9) as
...
y in (12), we obtain

ṡp = f + (b+/−)u−
...
y d + 3ëpωp + 3ėpω

2
p + epω

3
p (13)

where

b+/− =

{
b6, if u ≥ 0

b7, if u < 0

Solving for u such that ṡp = 0, we find ueq as

ueq =
û

b+/−
(14)

where

û =
...
y d − f − 3ωpëp − 3ω2

p ėp − ω3
pep (15)
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Utilizing the control (14) alone does not ensure con-
vergence to the sliding surface in finite time. Also,

...
y of

the discrete-input system (actual system) and
...
y a of the

continuous-input system (average system) will be somewhat
different. To study the robustness of the controller, let us
model the actual

...
y as

...
y a (from (9)) plus perturbations. We

propose the following theorem where we augment the control
action by a robustness term that also ensures convergence to
the sliding surface in finite time.

Theorem 1: Consider the perturbed system
...
y = (1 + ∆f )f + (1 + ∆b)(b

+/−)u (16)

where |∆f | ≤ α and (βgm)−1 ≤ (1 + ∆b) ≤ βgm
(with βgm ≥ 1).

The control input

u =
û−Ksgn(sp)

b+/−
(17)

with the time-variant robustness gain K

K = (βgm(α|f |+ ηp) + (βgm − 1)|û| (18)

will ensure convergence to the sliding surface sp = 0 in
finite time where sp is defined in (11).

Proof: To be able to analyze the closed-loop stability,
consider the Lyapunov function candidate

V =
1

2
s2p > 0 (19)

If V̇ < 0, then V will be decreasing. If V is decreasing,
|sp| will also be decreasing. Assuming sp is initially bounded
and |sp| is decreasing, then sp will be bounded and will
asymptotically approach zero. Thus, we intend to control the
system so that

V̇ = ṡpsp ≤ −ηp|sp| (20)

Substituting (15), (16), and (17) into (12), we find

ṡp = (b+/−)u− û+ (∆f )f + (∆b)(b
+/−)u (21)

Using (17) and (21), we find

ṡp = −Ksgn(sp) + (∆f )f + (∆b)(b
+/−)u (22)

Substituting (18) into (22), we find

ṡp = −sgn(sp)[βgm(α|f |+ ηp)− sgn(sp)(∆f )f

+ (βgm − 1)|û| − sgn(sp)(∆b)(b
+/−)u] (23)

Given that (βgm− 1) ≥ (∆b), and |û| ≥ sgn(sp)(b
+/−)u,

we find that

(βgm − 1)|û| − sgn(sp)(∆b)(b
+/−)u ≥ 0 (24)

and thus (23) can be simplified to

ṡp ≤ −sgn(sp)[βgm(α|f |+ ηp)− sgn(sp)(∆f )f ] (25)

Also, given that βgm ≥ 1, and α ≥ ∆f , we find

βgmα|f | − sgn(sp)(∆f )f ≥ 0 (26)

and thus (25) can be simplified to

ṡp ≤ −βgmηpsgn(sp) (27)

Since βgm ≥ 1, we get

ṡp ≤ −ηpsgn(sp) (28)

Multiply both sides of (28) by sp and we obtain

ṡpsp ≤ −ηp|sp| (29)

Thus, the system will converge to the sliding surface
sp = 0 in finite time because of (29).

The above controller leads to the closed-loop stable dy-
namics (

d

dt
+ ωp

)3 ∫ t

0

epdτ = 0 (30)

in which the position error ep asymptotically tends towards
zero.

Utilizing the control action u obtained from (2), (15), (17),
and (18), we can apply the closed-loop control to a 3-mode
system using the mapping from Table II or to a 7-mode
system using the mapping from Table III.

For the 7-mode mapping there are two separate profiles:
the venting and pressurizing profiles. The selection between
the pressurizing and venting profiles is updated periodically
based on the larger output actuation bi.

The order of the two modes in any given PWM window
was arranged to minimize the overall switching activity,
which is the total count of switches made by all 4 solenoid
valves divided by the total time. For example, if a PWM
window ended with mode M1 and the next window contained
the M1 mode, that mode was used at the start of the next
window.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

In this paper, experiments were performed with a 1-
DOF pneumatic actuator (see Figure 4). The low friction
cylinders (Airpel model M16D100D) have a 16 mm
diameter and a 100 mm stroke. The piston and shaft mass
is approximately M = 900 g. The pneumatic solenoid valves
(model GNK821213C3K from Matrix manufacturer) used to
control the air flow have switching times of approximately
1.3 ms (opening time) and 0.2 ms (closing time). With such
fast switching times, the on/off valves are appropriate for
the purposes of the proposed control. In terms of sensors, a
low-friction linear variable differential transformer (LVDT)
is connected to the cylinder in order to measure the linear
positions. The controller is implemented using a dSPACE
board (DS1104), running at a sampling rate of 500 Hz. This
sampling rate has been chosen according to the open/close
bandwidth of the valves and to enable an acceptable tracking
response. The PWM period was set to 10ms and the PWM
resolution was 0.2 (5 steps). The experimental setup has the
following model parameters:
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Fig. 4. Experimental setup.

l 0.1 m Chamber Length
T 296 C Supply Temperature
Cval 3.4× 10−9 kg/(s Pa) Mass Flow Rate Const.
PS 300, 000 Pa Supply Air Pressure
PE 100, 000 Pa Exhaust Air Pressure
k 1.2 Polytropic Constant
AP , AN 1.814 cm2 Piston Cylinder Area
bm 50 N s/m Viscosity Coefficient
M 0.9 kg Total Mass of load

B. 7-Mode Position Control of the Actuator

This section outlines the experimental testing conducted
using a 7-mode controller for the actuator as described in
Section IV. The following controller parameters were utilized
in (15), (17), and (18): ωp = 60 rad/s, α = 0.1, βgm = 1.1,
and ηp = 100 m/s3. The following sine wave test pattern
was used to test the position tracking performance of the
proposed algorithm:

yd = 0.02sin(2πft) (31)

The frequency was varied from 0.1 Hz to 3.0 Hz. The
tracking performance and switching activity was evaluated
for this test pattern over a 10 second period.

The results for different sine wave frequencies are plotted
in Figure 5(a). From these results, we find that for both the 3-
mode and the 7-mode systems, increasing the input frequency
increases the RMS tracking error. When we compare the
results for the 3-mode controller and the 7-mode controller,
we can see that for the latter there are notable decreases in
both the position error and the switching activity.

We also performed step response experiments to analyze
the transient modes (Figure 6). We can remark that the
7-mode controller provides a better tracking error on step
changes. To test the system’s ability to reject external force
disturbance, the experiment was run again utilizing the sine-
wave test input with a weight attached to the actuator via a
cord and pulley. The weights tested were 0.5 kg (Figure 5(b))
and 1.0 kg (Figure 5(c)). These weights applied a constant
gravity force in the positive direction of the actuator. To
prevent the weights attached to the actuator from pendulum-
like swinging, only frequencies from 0.1 Hz to 1.5 Hz
were tested. As the results show, position error was not
significantly increased as a result of attaching the weights,
and valve switching activity was increased only marginally.
This demonstrates the robustness of the controller to external
force disturbances.
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Fig. 5. PWM tracking and switching performance of the actuator with a
sine wave input for: (a) No Load on Pulley, (b) 0.5 kg on Pulley, or (c) 1.0
kg on Pulley.
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Fig. 6. PWM tracking of the actuator for a square input.

VI. CONCLUDING REMARKS

In this paper we present the discontinuous system of a
pneumatic actuator with solenoid valves. The system under
actuation switches between seven modes of operation of
the open-loop system. A lot of approaches already could
be used to control the discontinuous-time dynamics of such
a system and the method proposed in this paper is based
on a 7-mode mapping for the PWM to obtain a continuous
input time-averaged dynamic model. The averaged model
is obtained by averaging the nonlinear open-loop dynamics
of the discontinuous system undergoing PWM at the input.
This time-averaged model was utilized to create a sliding
control law for position control of a pneumatic actuator by
varying the PWM duty cycle as a continuous input. This
point fundamentally differs from other control techniques
on the same type of solenoid valves. This sliding control
law selects mode duty cycles for sufficient amounts of drive
energy to achieve position tracking. For this sliding control,
we developed a stability proof demonstrating convergence
of the sliding surface in finite time (and thus asymptotic
convergence of the position error).

The 7-mode control was compared experimentally against
the 3-mode control. There was a 20% improvement in
tracking performance and 30% reduction in valve switch-
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ing activity for different situations: a load variation and
several sinusoidal inputs. Thus, the performance was found
to improve with the additional modes of actuation. These
additional modes of operation provided by the 7-mode con-
troller allowed for reduced, yet appropriate amounts of drive
actuation. The result was more efficient actuator control.

APPENDIX

The time-averaged model for the 7-mode PWM controller
is derived by evaluating the combination of system dynamics.
As noted in the paper, modes M8 and M9 are not utilized.
Denoting the duty cycle vector and the modal system dy-
namics vector as

D = [d1 d2 d3 d4 d5 d6 d7]T (A1)
F = [f1 f2 f3 f4 f5 f6 f7]T (A2)

where

fi =

{
f , i = 1

f + (−1)ibi , otherwise
(A3)

for 1 ≥ i ≥ 7, the average system dynamics are given by
(6); with (A3), we find

...
y a = FTD =

7∑
i=1

fidi = f +

7∑
i=2

(−1)ibidi (A4)

Please note this model does not consider external distur-
bances for model based control because these are assumed
to be unknown.

Defining the duty cycle vector as given by Table III we
can evaluate the time-averaged model for the four regions
for the pressurizing profile. To do this we evaluate the
time-averaged models partial derivative with respect to the
continuous input u

∂(
...
y a)

∂u
=

7∑
i=2

(−1)ibi
∂di
∂u

(A5)

The di are defined by (8). Taking the derivative of (8) we
find the slope to be

−∂d(u)

∂u
=
∂(1− d(u))

∂u
=

1

uH − uL
= md (A6)

Using these equations the derivatives for ∂di/∂u can be
found for the four regions in the pressurizing profile.

For region 1 di = 0 for i 6= {5, 7}. Therefore, for this
region the system dynamics are given by

∂(
...
y a)

∂u
= −b7

∂d7
∂u

+−b5
∂d5
∂u

= −b7(−b7
b3

) +−b5(
b7
b3

)

= (b7 − b5)
b7
b3

=��b3
b7

��b3
= b7 (A7)

Repeating this process for the other 3 regions we can find
the time-averaged model’s partial derivative with respect to
the continuous input u.

Thus if we combine the previous results and integrate then,

we find the following time-averaged model:∫ u

0

∂(
...
y a)

∂u
du =

{
b6u+ C , if u ≥ 0

b7u+ C , if u < 0
(A8)

Evaluating C =
...
y a|u=0 we find that C = f . Substituting,

we find the pressurizing time-averaged model to be:

...
y a =

{
f + b6u , if u ≥ 0

f + b7u , if u < 0
(A9)

Repeating the process using the duty cycle vector as given
by Table III, we find the time-averaged model for the venting
profile is the same as the pressurizing profile.

Comparing (9) and (A9) we find they are the same.
Since they have the same time-averaged model they can use
the same sliding surface switching function, sp, see (11),
the same robustness gain, K, see (18), and thus the same
continuous closed-loop control, u, see (17).
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