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Abstract— Occupational rehabilitation is an integral part of
the recovery process for workers who have sustained injuries at
the workplace. It often requires the injured worker to engage
in functional tasks that simulate the workplace environment to
help regain their functional capabilities and allow for a return
to employment. We present a system comprised of a robotic arm
for recreating the physical dynamics of functional tasks and a
3D Augmented Reality (AR) display for immersive visualization
of the tasks. While this system can be used to simulate a multi-
tude of occupational tasks, we focus on one specific functional
task. Participants perform a virtual version of the task using
the robot-AR system, and a physical version of the same task
without the system. This study shows the results for two able-
bodied users to determine if the robot-AR system produces
upper-limb movements similar to the real-life equivalent task.
The similarity between relative joint positions, i.e., hand-to-
elbow (H2E) and elbow-to-shoulder (E2S) displacements, is
evaluated within clusters based on the spatial position of the
user’s hand. The H2E displacements for approximately 50%
of hand position clusters were consistent between the robot-
AR and real-world conditions and approximately 30% for E2S
displacements. The similar clusters are distributed across the
entire task space however, indicating the robot-AR system has
the potential to properly simulate real-world equivalent tasks.

I. INTRODUCTION

The growing demand for rehabilitation services following
a workplace injury has motivated the development of new
technologies for robotics-assisted assessment and rehabil-
itation of motor function following injury. The standard
practice in occupational (or vocational) rehabilitation is to
first perform a functional assessment of the injured worker.
Typically, this is done using a Functional Capacity Evalua-
tion (FCE) that assesses a worker’s performance in a set of
standard tasks [1], where each task requires different sets of
equipment. The tasks incorporated in the FCE may involve
material-handling activities such as lifting, pushing, and
pulling, and positional tolerance activities such as walking,
reaching, and grasping.

The first problem with the above is that it needs a large
amount of equipment for various functional tasks and the
space to store them. While a small number of all-in-one
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computer-based assessment tools exist [2], [3], they are
highly specialized in design and can replicate only specific
rehabilitation tasks. A second problem emerges due to the
current standardized assessments, where therapists qualita-
tively assess a patient’s performance based on what they can
observe. More complex, quantitative and objective assess-
ments are desired. A third problem occurs when therapists
increase the difficulty of a task or ask the injured workers
to execute tasks that are considered boring; the patients can
become bored, unmotivated, or uncooperative.

To address the above issues, we propose a generalized
robotics-based solution. Our solution incorporates a serial-
manipulator and a projection-based Augmented Reality (AR)
display in order to provide a unified tool for both FCE and
rehabilitation that is immersive and device-independent. To
evaluate the efficacy of the proposed system, the biomechan-
ics of the user’s arm while using the system is retrieved
and compared against the biomechanics of their arm in
an equivalent real-life performance of the same task. In
this regard, we present the following hypothesis: The pro-
posed system can be used as an alternative to traditional
occupational rehabilitation exercise environments because
it does not significantly modify the biomechanics of the
user’s arm while performing functional tasks compared to
the conventional task performance.

The paper is structured as follows: Section II is a brief
overview of the work found in the literature that relates to our
proposed approach. Section III describes the design of the
rehabilitation exercise and experimental procedure. Section
IV presents the results and provides a discussion based on
the performed data analysis. Finally, Section V concludes the
findings and examines possible directions for future work.

II. RELATED WORK

A. FCE

FCE is widely used to assess injured workers before,
during and after rehabilitation. A number of studies have
demonstrated the reliability and validity of FCE and cor-
relation with future recovery and return to work. Peppers
et al. showed that augmenting clinical evaluation with FCE
improves physicians’ assessments of the patient’s skills and
work capacities [4]. Gross et al. studied the impact and
benefits of integrating FCE into rehabilitation for better
outcomes for injured workers [5]. FCE has been found to
significantly predict return to work [6] and is an integral
component of graded activity and functional rehabilitation
programs [7]. However, James et al. concluded that further



research is needed in FCE, especially on the use of computer
technology (including robotics and digital sensors) [8].

B. Robot-assisted Assessment Rehabilitation

The inclusion of robots in therapy is becoming more
common thanks to robots’ power, repetitive motion ability,
reprogramming capacity and potential adaptability to new
tasks. These features allow robots to be used in therapy
fields such as emotional therapy and physical therapy. Yakub
et al. provide a list of robots developed in the context of
rehabilitation medicine [9]. The use of robots in occupational
rehabilitation began in the early 1990s [10], [11], although
they were employed mainly as assistive devices for workers
with injury or disability. Recent developments in the area
have culminated in devices such as BTE’s EvalTech [2]
and Simwork’s Ergos II [3] systems, which simulate FCE
assessment setups and can also be used for strength and
movement coordination training. However, these devices
are specifically designed to emulate a certain set of FCE
tasks. Also, the performance of tasks with these systems are
spatially constrained to their placement on the devices and
the performance of tasks involving free-space motions is not
an option. For instance, while a device may include a lock
for practicing turning a key to open it, the more challenging
task for painting a wall is not supported because it cannot
be done at one point on the device. The tasks also remain
limited by the need to have physical objects that the user
holds during assessments (e.g., rotating handles and knobs).

C. Virtual Reality & Augmented Reality in Rehabilitation

Virtual reality (VR) and AR technology has been making
its way into the rehabilitation field in recent years. It has been
shown to increase the motivation of patients and keep them
engaged since it uses games to disguise the repetitive move-
ments of the rehabilitation exercises [12]. However, most of
the VR and AR rehabilitation systems in the literature and
on the market are targeted for those who have been affected
by neurological injuries due to events such as stroke and
spinal cord injury [13]. These systems cannot be used by
injured workers as-is due to the difference in challenge level
and sophistication of the rehabilitation tasks between the two
groups (i.e., stroke patients and injured workers).

For non-immersive VR, in which the game is displayed
in a 2D screen in front of the patient, there exist systems
like the BTE Eccentron [14] to improve lower-limb strength
while providing an interactive game-like experience to guide
the patient toward their objectives. To the best of the authors’
knowledge, there are currently no immersive VR or AR
systems that train injured workers to regain muscle strength
to enable them to return to work. There is also no robotic
system that is specifically developed for simulating the
physical dynamics of functional tasks for the rehabilitation
of injured workers. Our proposed system employs the use
of a 3D spatial AR display to immerse the patient in a
projected 3D virtual environment that is integrated with
the physical environment including the robotic manipulator.
Previous research from our group shows that the resultant

colocation of visual and motor axes help improve user
performance in rehabilitation exercises [15].

We propose an approach based on using a seven Degree-
of-Freedom (DoF) serial manipulator for simulating the
physical dynamics (i.e., haptic interaction) corresponding to
functional tasks, eliminating the need for physical hardware
of such tasks. Compared to rehabilitation facilities that allo-
cate a large area for multiple tasks, this unified system can
reduce the costs for equipment. Our approach also integrates
an AR display to provide reconstructed visual feedback of
the simulated task in an immersive environment. All types
of motions can be performed on the robot due to its seven
DoF design. This allows flexibility in movement that is not
found in other systems. Furthermore, having a robotic system
allows for masking the task parameters from the patient
which can help prevent the loss of motivation from knowing
about an increase in the difficulty level of the task.

The overall robot-AR system is useful for both FCE and
rehabilitation of injured workers. Serial manipulators have
been previously incorporated into rehabilitation medicine for
both assessment and rehabilitation purposes [16]. Our group,
in particular, has extensively applied serial rehabilitation
robots to target the neuromuscular rehabilitation of patients
with stroke [17], [18]. Likewise, we have also developed
a robot-assisted AR system for simulated stroke patients,
in which the effects of stroke (e.g., being distracted) is
simulated by cognitively loading the user with a count down
task. However, to the best of our knowledge, the use of robots
and AR in the context of facilitating FCE and rehabilitation
of injured workers remains unexplored.

III. MATERIALS AND METHODS

A. Rehabilitation Task Design

The simplified movements found in rehabilitation tasks
often involve reaching, grasping, and weight lifting. The task
used in our robot-AR system implements these movements
in their basic forms but can be further adapted to higher
difficulty and complexity levels.

We chose a painting task that trains up-down hand move-
ments by having the user paint a vertical wall. A fill indicator
provides the user with information on the percentage of the
wall that is already painted. Force feedback is provided by
the robot when the virtual paint roller is in contact with the
wall so that the haptic experience of painting on the wall
in the real world is recreated. In the real-world condition,
the user is given a physical paint roller to use on a portable
physical wall positioned at the same spot the virtual wall
was in the robot-AR condition. No paint is used in the real
case; rather, the user is asked to “paint over” an area of the
wall as much as they can. The user “paints” until the area
they have covered encompasses the wall in the virtual task.
Measurements such as time of completion and amount of
force exerted by the user can potentially be retrieved and
analyzed in the robot-AR setup, but are not within the focus
of this paper.



B. Robotic Manipulator Choice and Control Strategy

Many standardized FCEs such as the WorkWell FCE and
the Progressive Isoinertial Lifting Evaluation (PILE) place
emphasis on an injured worker’s ability to lift weighted
objects (e.g., crates) as an important assessment, among other
physically strenuous tasks [1]. Therefore, it is desirable to
use a robot capable of exerting enough force to realistically
simulate heavy objects and interactions with environments
typical of an injured worker’s workplace. For this reason,
the robot used in this work is a heavy-duty industrial robot;
details are provided in Section III-C. Internal gearing makes
the structure of the robot non-back-drivable; however, the
requirement of physical human-robot interaction (PHRI) in
our experiments means a suitable robotic controller is needed
to make the robot back-drivable.

Impedance controllers, which output a force for a robot
to exert based on its motion, are ideal for providing stable
PHRI when simulating environmental interactions. However,
implementing such controllers typically requires full knowl-
edge of the robot’s dynamics parameters such as each joint’s
mass and center of mass [19], which are unavailable for the
robot used in this work and difficult to accurately measure.
Admittance controllers, which output a motion for the robot
to execute based on a measured force input, are a common
alternative for non-back-drivable, heavy-duty robots like the
one used in this paper. The general form of an admittance
controller’s transfer function is

G =
~Vd (s)

~W (s)
=

1

Ms+B
(1)

Note that in this paper, an internal velocity controller is
used by the robot to perform movements in real-time, so the
admittance controller is designed here to output a desired
velocity rather than a desired position. The input to the
controller, ~W (s) =

[
~F (s) , ~τ (s)

]ᵀ
, represents the wrench

composed of input forces and torques, and the output, ~Vd (s),
is the resulting desired velocity, composed of Cartesian and
angular terms. M represents the desired mass and inertia
matrix and B represents the desired Cartesian and angular
damping matrix. These matrices affect the transparency of
free motion experienced by the user and also the stability
of the robot. A stiffness parameter is not used, similar to
[20], because restoring forces are not desirable during co-
manipulation in free-space. It follows that G is given as

G =


gx 0 0 0 0 0
0 gy 0 0 0 0
0 0 gz 0 0 0
0 0 0 gα 0 0
0 0 0 0 gβ 0
0 0 0 0 0 gγ


where {gx, gy , . . . , gγ} represent the admittance terms
for each Cartesian direction and orientation angle. Large
values for admittance terms result in greater allowed motions
while small values result in more constrained movements.
By changing the admittance parameters, allowed movements

initiated by the user can be restricted to certain axes. This is
used, for example, in our task where it is beneficial to restrict
rotations in axes that are not of interest (e.g., small values
for gβ and gγ) while allowing free motion in the other axes
(e.g., large values for gx, gy , gz , and gα).

C. Experimental Setup

As seen in Fig.1, the robot-AR system uses a Motoman
SIA-5F (Yaskawa America, Inc., Miamisburg, Ohio, USA)
seven DoF serial manipulator as the user interface to control
the paint roller in the virtual environment. It is controlled
using MATLAB, Simulink, and C++ in which the flow of
communication between them is described in [21]. Attached
to the robot’s wrist joint before the end-effector is a 6-
DoF ATI Gamma Net force/torque sensor (ATI Industrial
Automation, Inc., Apex, North Carolina, USA). The AR sub-
system consists of an off-the-shelf InFocus IN116A projector
mounted 3 m above the ground that projects to a screen
on the table. A Microsoft Kinect V2 Sensor is positioned
1.2 m horizontally distant and 0.34 m vertically above the
user’s head to enable head tracking for displaying the correct
perspective to the user. To properly view the 3D scene, active
DLP-Link 3D shutter glasses are worn by the user. The
development of the 3D environment is done using the Unity
Game Engine [22] where a virtual model of the workspace
is created. This virtual model is created and calibrated to the
world scale using Microsoft’s RoomAlive Toolkit [23]. A
ClaroNav MicronTracker (ClaroNav, Inc., Toronto, Ontario,
Canada) motion tracking camera (MTC) is used to record
the positions of the user’s hand, elbow, and shoulder.

As mentioned earlier, the requirements of the more stren-
uous FCE and rehabilitation tasks imply a need for high
force and torque haptic interactions. The admittance-type
Motoman robot is used as the manipulator due to its heavy
load capabilities compared to other impedance-type haptic
interfaces. It has a payload limit of 5 kg for accurate
movement and can generate joint torques up to a rated 300
Nm. These are the maximum values achievable by the robot
and we do not use all of it. For safety, constraints are
placed in the software to limit high velocities and position
singularities. The attached force sensor records user force
and torque inputs, which are used to facilitate the admittance
control of the robot.

The painting task requires a specific setup of the projector
around the robot due to the limited projection space and
required robot configuration. The configuration uses a curved
screen with dimensions 85 cm tall, 75 cm deep, and 56
cm wide situated on top of the table. The end-effector
of the robot is positioned to the right of the screen. This
configuration allows the user to have an intuitive feel of the
simulated task and reduces the occlusions on the projection
display caused by the user’s arm and robot joints.

D. Experimental Procedure

5 trials for each condition (i.e., robot-AR or real-world)
are carried out to have a total of 10 trials per person, lasting
approximately 60 s per trial. The trials are performed by



Fig. 1. Flowchart of the communication between each system.

Fig. 2. Painting task experimental setup for the robot-AR condition
(top) and the real-life equivalent condition (bottom). The projector
is not shown. Through AR, the paint roller will pop out in 3D from
the perspective of the user in a geometrically correct position and
orientation relative to the robot end-effector.

2 able-bodied participants (both are male, 24 years old,
and right-handed). Each participant is asked to stand in a
comfortable position in front of the screen and to hold the
Motoman robot’s end-effector with his arm half extended.
The participant is instructed to refrain from changing his
standing location, which is marked on the floor, between
the two experimental conditions. A chair is provided for
the participant to take rests when needed. All 5 trials are
recorded for a specific condition before moving onto the
other one. The robot-AR condition for the painting task is
presented to Participant 1 as the first set of trials before
doing the trials under the real-world condition. The opposite
order is presented to Participant 2.

IV. RESULTS AND DISCUSSION

The hand, elbow, and shoulder positions recorded by the
MTC form the data for the biomechanics analysis performed.
These are recorded by placing fiducial markers on the back

of the user’s hand, and on the elbow and shoulder. To
evaluate the similarity of the biomechanics between using
the proposed system and the equivalent real-world task, we
consider the hand position as the independent variable and
the elbow and shoulder positions as the dependent variables.
In other words, while the user’s hand position changes, the
elbow and shoulder joint positions will change in order
to best accommodate the desired hand pose. For a fixed
hand position (independent variable), we will compare the
distribution of the dependent variables between the two
conditions.

The two-sample Kolmogorov-Smirnov (KS) test is a
commonly used method of evaluating whether two one-
dimensional distributions are statistically different (the null
hypothesis is that they are similar). Since pH−E and pE−S
are in three dimensions, we use the modified version of the
KS test in three dimensions as described in [24] by Fasano
and Franceschini. We make use of the implementation of
Fasano and Franceschini’s work in [25] in conjunction with
the Monte-Carlo simulations provided in the original work.

A preliminary comparison between the datasets for the
two conditions is performed first to see if the distribution
of elbow and shoulder joint positions for the same hand
position as it traverses the entire surface of the wall being
painted is statistically similar between the two conditions.
Here, the joint position data from the real-world condition
is taken as the baseline data; for a specific hand position,
the elbow and shoulder positions for the robot-AR condition
should resemble those measured in the real-world condition.
If this happens, it can be concluded that the robot-AR
system does not significantly modify how users perform
the task compared to the real-world condition. The process
of comparison is given as follows: for each recorded hand
position in the robot-AR dataset, a similar hand position in
the real-world data is found by using a nearest-neighbor (NN)
search. For these similar hand positions, the associated hand-
to-elbow (H2E) and elbow-to-shoulder (E2S) displacements
can be calculated in each dataset. The result is a distribution
of H2E and E2S displacements recorded in the robot-AR
condition, and a distribution of H2E and E2S displacements
that are associated with the real-world condition for the
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Fig. 3. Joint position data for an example cluster. (a) shows the point cloud
data for H2E displacements, and (b) shows E2S displacements.

same hand positions. The modified KS test is then used
to compare the H2E displacement distributions, and the
E2S displacement distributions between the two conditions.
Note that [24] only provides Monte Carlo simulations up
to a maximum n = 500, where in a two sample KS test
n = n1n2

n1+n2
where n1 and n2 are the number of points in the

real-world condition and robot-AR condition, respectively.
Knowing that the number of points in the distributions is
the same, i.e., n1 = n2, we then restrict the number of
points in the distributions to 1000 points or less. To do
this, the collection of datapoints are downsampled to 1000
points for each condition, resulting in 200 points per trial.
A significance value is returned by the test and is compared
against an alpha value of α = 0.05.

The results for the H2E and E2S comparisons produced
a value of p < 0.05, indicating that the distributions are
statistically different (i.e., rejecting the null hypothesis that
two conditions have the same distribution) and therefore
suggests that the biomechanics of the two conditions are
different. This motivates a closer inspection of the data.

Examining whether there are spatial trends in the similarity
between the distributions may help explain the dissimilarity
reported in the KS test for the full dataset. To do this, we
propose to divide the data into spatial sections or voxels
and performing the KS test for each voxel, looking for any
that may be dissimilar. A grid of measurement points is first
constructed by choosing points at evenly-spaced intervals to
encompass the range of hand positions across all datasets in
the three Cartesian dimensions. All recorded hand positions
are then clustered to the nearest grid point using the NN
search. We use an interval of 25 mm as the distance between
grid points, as it provides a high resolution of voxels in our
task space and allows most clusters to meet the requirements
for n1 and n2. Fig. 3 shows the distributions of H2E
displacements and E2S displacements for an example cluster.

For each cluster, the statistical similarity of the distri-
butions for the associated data from the two conditions
(robot-AR and real-world setups) is then evaluated with
the modified KS test. Similar to before, the Monte Carlo
simulations in [24] are only provided for a minimum of
n = 10 between two samples (and a maximum of n = 500).
To ensure 10 ≤ n ≤ 500, we impose conservative limits
where n1 ≥ 20, n2 ≥ 20 and n1 + n2 ≤ 2000. Graphical
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Fig. 4. Three-dimensional KS results for the painting task with the data split
into voxels for comparison. The grid points show points in space around
the surface of the wall where H2E and E2S results were clustered and
compared at. (a) and (b) represent H2E and E2S results for Participant 1,
respectively, and (c) and (d) represent the same for Participant 2. Clusters
with a sufficient number of datapoints for comparison with the KS test are
shown with black points and those of statistical similarity are circled in red.

results of the modified KS tests are shown in Fig. 4.

The percentage of clusters that are statistically similar
between the two conditions show that 43.85% of the measur-
able clusters were similar for H2E displacements and 28.46%
were similar for E2S displacements during Participant 1’s
trials. Participant 2 achieved 46.67% similarity for H2E
displacements and 29.33% similarity for E2S displacements.

At first glance, the fraction of clusters that produced
similar results seems to be quite low, especially for the
E2S displacements. However, a qualitative observation of
the results in Fig. 4 shows that the statistically similar
clusters are well spread across the entire workspace. There
are a few possible reasons as to why some clusters may not
show similar results. As the real-world condition experiments
did not involve actual paint being laid on the physical
wall, keeping track of the “painted” portion proved to be
challenging. This could affect the fairness of the KS test
performed. For example, if, for a specific cluster, n1 � n2,



where n1, n2 > 20, then a comparison of the distributions
would be valid according to the restrictions we placed on
the comparison in a cluster, but it could suffer from the
disparity in the quality of the distributions. The simplest way
to address this issue would be to simply have more trials,
which in turn would provide more data and a higher chance
to better define the distributions for more clusters. It would
also be beneficial in this situation to be able to remove the
upper limit on datapoints to compare over, meaning running
Monte Carlo simulations as in [24] for higher values of n.

Nevertheless, the results indicate there is a perceivable
difference between using the robot-AR setup and performing
the real-world equivalent task. The most likely cause would
be that the damping and inertia of the robot were not low
enough to properly convey full transparency during free
motion. This could be the case, given the nature of the geared
transmission system used in the robot and the admittance
controller used to make it compliant. The implied difference
in perceived weight during free motion would then be a
likely cause in any changes in the observed biomechanics, as
the user would compensate for the heavier load, experienced
in the robot-AR condition, by adjusting their joint positions
accordingly. In Fig. 4, this may be the reason why the E2S
distributions have a much lower overall similarity than the
H2E distributions, as the upper arm may have moved more in
order to compensate for the larger resistance to motion in the
robot-AR condition while the lower arm remained the same
in order to hold the brush handle comfortably. There is then a
motivation for reexamining the results when performed using
a robot with similar load-bearing capabilities that is designed
for the purpose of patient-safe interaction as well as built-in
back-drivability (i.e., without internal gearing). Other robot
designs such as those with series elastic actuators, or the use
of variable impedance controllers is also worth exploring.

V. CONCLUSION

In this paper, a robot-AR system that aims to be a suitable
alternative to existing FCE and rehabilitation environments
for injured or disabled workers is developed and evaluated. A
task that involves painting a wall is presented to the partici-
pants. To evaluate our approach, the task has a real-life equiv-
alent condition in which the biomechanics of the participant’s
arm for both robotic AR and real-life conditions are recorded
and compared to determine if the arm movements are similar.
Our results show that the arm biomechanics for a painting
task have significant differences in ≈ 50% of the collected
clusters for the hand-to-elbow (H2E) displacements, and ≈
30% for the elbow-to-shoulder (E2S) displacements for both
participants. These initial findings show the potential of our
robot-AR system to replicate upper-limb movements found in
traditional FCE and rehabilitation exercises and it motivates
us to further investigate better methods to simulate functional
tasks. Future work includes implementing the system with a
different robot and/or robot controller that is better suited
for physical human-robot interaction (PHRI), expanding the
projected area, developing more tasks, and testing the system
with actual FCE tasks, or even in a clinical setting. By

creating an all-in-one robotic AR occupational rehabilitation
system, we hope to motivate and provide an efficient method
for workers to recover from their injuries.
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