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Abstract—Rehabilitation robots may be used to accurately
measure the mechanical impedance of the human arm in order to
quantitatively assess the motor function of a patient undergoing
neurorehabilitation therapy. However, the high cost of these
robotic systems and their required sensors has posed a barrier to
widespread clinical use. We present a technique to measure the
mechanical impedance of the human arm without the need for a
physical force sensor to measure human-robot interaction forces.
Instead, these forces are accurately estimated by a virtual sensor
that incorporates the robot’s kinematics and dynamics, along
with acceleration measurements from an inexpensive accelerom-
eter. The identification techniques are validated on a mass-spring
system of known impedance and are subsequently applied to data
collected from the human arm.

Index Terms—force sensors, virtual sensors, accelerometers,
arm impedance measurement, rehabilitation robotics

I. INTRODUCTION

Accurate measurement of the human arm’s mechanical
impedance is important in many areas of neurorehabilitation.
Impedance, which describes the dynamic relationship between
force and motion, may be quantified by measuring the re-
action force the limb exerts as it is displaced by a robot.
Three primary applications have motivated research in hu-
man arm impedance measurement to date: characterizing arm
dynamics to design human-robot interaction systems [1], [2],
investigating how the central nervous system (CNS) controls
movement [3], [4], and assessing the motor function and
muscle tone of impaired individuals undergoing rehabilitation
therapy [5], [6]. The latter application is especially significant
in a clinical context as it promises to augment conventional
motor performance assessments based on therapist observation
with accurate, objective data to monitor patient recovery and
optimize therapy interventions.

Mussa-Ivaldi et al. [3] used a planar robot to impose step
position perturbations on a human subject’s hand, allowing
the static endpoint impedance (i.e., stiffness) of the arm
to be calculated in two Cartesian dimensions. Gomi et al.
[4], Dolan et al. [2], and Tsuji et al. [7] extended this
approach to measure not only the arm’s stiffness, but also
the dynamic impedance components of inertia and viscosity.
Several researchers have since employed stochastic position or
force perturbations to identify non-parametric models of arm
impedance or admittance [5], [6]. Others have extended these
techniques to analyze impedance in three dimensions [8], [9].

Detailed models of the arm’s neuromusculoskeletal structure
have been identified to distinguish impedance contributions
of the arm’s intrinsic biomechanics from those caused by
its involuntary reflex responses [10]. Customized mechatronic
systems for arm impedance measurement have also been
designed to deliver high-bandwidth perturbations in multiple
measurement planes [5] and accelerate data collection [11].

These methods for arm impedance measurement have all
required a force sensor with the exception of the work by
Mussa-Ivaldi et al. [3], which only measured the arm’s static
stiffness; they simply calculated the static human-robot inter-
action forces from the joint torques with knowledge of the
robot’s kinematics. Previous work in quantifying the arm’s
dynamic impedance, however, has relied on a force transducer
to measure the changing interaction forces.

Given the cost-containment pressures faced by rehabilita-
tion clinics, the relatively high retail cost of robotic ther-
apy and diagnostic tools has presented a barrier to their
widespread clinical use [12]. Commercial multiple degree-
of-freedom (DOF) force/torque sensors typically retail for
several thousand dollars due to their intricate strain-gauge
design and precise calibration (e.g., a 6-DOF force/torque
sensor from ATI Industrial Automation or JR3, Inc. costs
approximately 6,000 USD). Unfortunately, these sensors have
not become more affordable over the past decade and no
low-cost alternative technology has appeared on the horizon.
According to a recent survey of therapists, a complete upper
limb rehabilitation robotic system should ideally retail for no
more than 6,000 USD. While this target may be unrealistic
for a comprehensive, multi-DOF rehabilitation robotic system,
it underscores the importance of reducing the cost of this
technology—especially when designing simpler, economical
robotic devices intended for use in the patient’s home. Thus, at
least for the present, conventional multiple-DOF force/torque
sensors are not suitable for inclusion in low-cost rehabil-
itation robotic systems. This paper contributes to previous
work by developing and evaluating an economical human arm
impedance measurement technique that does not require a
physical force sensor. Instead, an accelerometer retailing for
less than 15 USD is used to estimate interaction forces through
a virtual sensor (or “soft sensor”) derived from the robot’s
kinematics and dynamics.

This paper is organized as follows: Section II presents
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relevant mathematical formulae and introduces the experi-
mental apparatus and data collection protocols, data analysis
techniques are developed in Section III, results are discussed
in Section IV, and concluding remarks follow in Section V.

II. METHODS AND MATERIALS

In this paper, the arm’s endpoint impedance is measured in
two Cartesian dimensions as it interacts with the robot. This is
sufficient to facilitate analysis of the relative contributions of
the shoulder, elbow, and biarticular muscles to the overall limb
impedance without necessitating the experimental complexity
of a full three-dimensional measurement [13]. However, the
techniques presented in this paper can be readily extended to
three dimensions.

A. Mathematical Preliminaries

When a horizontal 2-DOF revolute-joint planar robot is
subjected to an externally-applied force Fext

.
= [fx fy]T at

its end-effector, its movement is described by the following
dynamics equation:

I(Θ)Θ̈ + C(Θ, Θ̇)Θ̇ + Fr(Θ̇) = τr + JTFext (1)

where I(Θ) is the 2 × 2 inertia matrix, C(Θ, Θ̇) is the
2 × 2 Coriolis/centrifugal force matrix, Fr is a 2 × 1 friction
force vector, and JT is the robot’s Jacobian transpose matrix.
Vectors Θ

.
= [θ1 θ2]T and τr

.
= [τ1 τ2]T represent joint

angles and torques, respectively. Isolating Fext in this equation
enables the external force to be calculated from records of
the robot’s motion in lieu of direct measurement by a force
sensor:1

Fext =
(
JT
)−1

(
τr − I(Θ)Θ̈ − C(Θ, Θ̇)Θ̇ − Fr(Θ̇)

)
. (2)

The human arm’s endpoint impedance may be represented
in a Cartesian plane by the following model:

MẌ + BẊ + K (X −Xv) = −Fext, (3)

where X = [x y]T is the hand position, Xv = [xv yv]
T is

the hand’s equilibrium position commanded by the CNS, and
Fext is the force the hand exerts on the robot. The matrices

M
.
=

[
mxx mxy

myx myy

]
, B

.
=

[
bxx bxy
byx byy

]
, K

.
=

[
kxx kxy
kyx kyy

]
, (4)

which represent the hand inertia, damping, and stiffness,
respectively, contain real-valued constants for the Cartesian
plane of measurement. This model is derived from a simplified
representation of the arm’s neuromusculoskeletal structure as
Dolan et al. detail in [2], but it may also be interpreted as
a second-order Taylor-series linearization of an arbitrary non-
linear impedance model. Therefore, the model can accurately
describe the lumped effects of the arm’s intrinsic and reflexive

1While robotic control theory literature provides several methods for
estimating external disturbance forces in real time (see [14] and [15] for
examples), these causal, observer-based techniques suffer from convergence
delays. For impedance measurement in the context of patient motor recovery
assessment, non-causal offline analysis approaches may be used to achieve
improved estimation accuracy.
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Fig. 1. Experimental apparatus for measuring impedance of (a) a spring array
and an inertial payload that simulate the human arm, and (b) the actual human
arm. Red arrows indicate the axes of the Cartesian coordinate system. In (b),
measurements are performed in a horizontal plane approximately 10 cm below
the shoulder joint.

impedance only for small perturbations about the constant
equilibrium position Xv .

If the human arm is replaced by a mechanical system of
known dynamic impedance comprising an inertial payload and
a planar array of ideal springs connected to the robot’s end-
effector, (3) simplifies to

MẌ + K (X −X0) = −Fext, (5)

where X0
.
= [x0 y0]T is the equilibrium position of the spring

configuration and M and K have the simplified structure

M
.
=

[
m 0
0 m

]
, K

.
=

[
kxx ks
ks kyy

]
. (6)

Note that the inertia matrix is diagonal with equal elements
and the stiffness matrix is symmetric.

B. Experimental Apparatus

Human arm impedance measurements were performed with
a 2-DOF planar rehabilitation robot (Fig. 1) manufactured by
Quanser, Inc. (Markham, Ontario, Canada). This prototype
device was expressly designed for home-based rehabilitation
therapy, with an estimated retail cost of 15,000 USD [16].
The robot’s capstan drive mechanism makes it readily back-
drivable with low friction and inertia. At its end-effector,
the robot can exert forces in excess of 50 N throughout
its semicircular workspace, and the motors’ optical encoders
provide a Cartesian resolution of better than 0.002 mm in
position measurement. Results of system identification exper-
iments to identify the robot’s dynamics are included in the



Appendix. A two-axis accelerometer (ADXL-203, Analog De-
vices, Norwood, MA) was attached at the robot’s end-effector
to measure Cartesian accelerations. To compare the impedance
measurements obtained through the robot’s dynamics with
those yielded by a conventional force measurement approach,
a commercial 6-DOF force/torque sensor (50M31A3-125 DH,
JR3 Inc., Woodland, CA) was also mounted on the robot’s
end-effector.

C. Experimental Protocol

The impedance measurement technique was first developed
and validated by measuring the impedance of a mass-spring
system intended to simulate a human arm with known inertia
and stiffness. The technique was then applied to data collected
from the actual human arm.

1) Impedance Measurement for a Mass-Spring System:
The robot’s end-effector was connected to an inertial payload
and a planar array of linear mechanical springs (Fig. 1a).
Although a two-dimensional spring array has a nonlinear
stiffness field, the stiffness could be approximated as (5) for
small perturbations about the equilibrium position of the spring
system. By changing the number, stiffness, and arrangement
of the springs included in the array, five different stiffness
fields were obtained. For each of these spring arrangements,
five different payloads were attached to the robot, creating a
total of 25 unique impedance configurations. Table I lists the
theoretical values of the K matrices (comprising kxx, kyy, ks,
and X0 values calculated from independent measurements of
the spring constants) and M matrices (comprising m values
measured by weighing the payloads).

To measure the impedance of each of the 25 configurations,
the robot’s end-effector was perturbed about the equilibrium
position of the spring array. To create the perturbation, each
of the robot’s two joints was set to track a reference position
comprising the sum of ten sinusoids with frequencies from
0 to 2 Hz using a proportional-derivative controller. The
bandwidth of this perturbation signal was selected to match
the experimental conditions under which the robot dynamic
model was identified and validated and to avoid exciting
the mechanical resonance of the mass-spring system at 4 to
5 Hz. (Preliminary investigations revealed that the sustained
resonant vibrations excited by higher frequency excitation
signals caused the identified impedance to be overestimated.)
Each joint moved through an angular range of 10◦, causing the
robot’s end-effector to remain within a circular region 5 cm in
diameter. All data logging and robot control actions occurred
with a 1 kHz sampling frequency. Three trials lasting 50 s each
were performed for each of the 25 impedance configurations,
yielding 75 trials in total.

2) Impedance Measurement for the Human Arm: For arm
impedance identification, data was collected from a 23-year-
old right-handed male with no history of motor impairment.
The subject sat in front of the robot and rested his dominant
hand on a hemispherical handle connected to the force sensor
(Fig. 1b). (The interaction forces in this experiment were suffi-
ciently small to allow the subject to simply rest his hand on the

TABLE I
THEORETICAL IMPEDANCE VALUES FOR MASS-SPRING SYSTEM

Stiffness
Matrix

Stiffness Values (N/m) X0 (mm) Inertia
Matrix

Inertia value (kg)

kxx kyy ks x0 y0 m

K1 421.57 213.35 -18.87 364 -9 M1 0.539
K2 476.38 248.71 -16.02 375 -8 M2 0.786
K3 239.54 421.29 -12.52 394 53 M3 1.031
K4 190.26 406.39 -2.08 390 36 M4 1.279
K5 373.81 377.10 73.16 332 -61 M5 1.527
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Fig. 2. Dynamics of the impedance measurement system. Robot and human
(or mass-spring system) impedances are Zr and Zh respectively. The force
sensor measures Fext, the force exerted by the human on the robot. See text
for definition of other variables.

robot’s handle without the need to forcibly grasp the device.)
The handle was positioned 50 cm anterior to the shoulder in
the sagittal plane intersecting the shoulder joint. The subject’s
elbow was supported against gravity by a sling attached to
a 2 m rope connected to the ceiling. A belt restrained the
subject’s torso to prevent translation of the upper body, which
would have undermined the accuracy of the arm position
measurements. The subject was instructed to relax his arm
and avoid voluntarily exerting force while the robot perturbed
his hand. This instruction was given to prevent voluntary
force contributions from obscuring those arising from the
subject’s intrinsic impedance and reflex responses. In addition,
the arm is usually similarly relaxed when traditional clinical
assessments of muscle tone (e.g. the Modified Ashworth Scale
[17]) are administered. Five trials were performed as the robot
perturbed the hand in exactly the same manner as the mass-
spring system.

III. ANALYSIS

During the data collection experiments, the position-
controlled robot and the human arm formed a closed-loop
system with the block diagram shown in Fig. 2. In this
diagram, Zr and Zh represent the impedances of the robot
and the human (or mass-spring system) respectively, and Cr is
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Fig. 3. Combined frequency response magnitude for the smoothing filter
and differentiation filters each formed by a combination of Savitzky-Golay
filtering and zero-phase Butterworth low-pass filtering. The ideal differentiator
response is depicted by a thin dashed line.

the robot’s joint-level position controller. The endpoint of the
arm (or mass-spring system) was modelled in Cartesian space
by (3) (or (5)) while the robot was modelled in joint space
by (1). The two domains are related by the robot’s forward
kinematics T and Jacobian-transpose JT .

The robot’s position controller tracks a joint-domain per-
turbation signal Θr, causing the robot to exert a torque τr
that moves its joints to position Θ (close to Θr). The joint
position is translated into a Cartesian end-effector position
through the robot’s forward kinematics T , where the motion
acts on the impedance Zh of the human arm’s endpoint to
generate a reaction force −Fext measured by the force sensor
(note that Fext is defined as the force the human exerts on
the robot). This force is translated into a joint-domain torque
through the robot’s Jacobian-transpose JT . This equivalent
interaction torque together with the controller’s torque output
τr acts on the robot’s admittance Z−1

r to complete the closed-
loop system. Since Fext = −ZhX , and both Fext and X are
measured, Zh can be identified directly from closed-loop data
according to (3).

If Fext is not directly measured by a force sensor, the only
other way it may be obtained is to use records of the robot’s
position Θ and command torque τr to work backwards through
the robot’s dynamics Zr and calculate Fext from the relation
−JTFext+τr = Z−1

r Θ, which is equivalent to (2). Therefore,
elimination of the force sensor comes at the cost of requiring
an accurate model of robot dynamics.

A. Data Preprocessing

Estimating arm impedance without direct measurement of
Fext is not trivial, as the calculation of Fext from (2) requires
accurate records of Θ̇ and Θ̈. Finite-differencing and low-pass
filtering of encoder data was found to be insufficiently noise-
robust for this task. Instead, the accelerometer was introduced
to allow direct measurement of acceleration. Furthermore, a
Savitzky-Golay filter [18] was used to remove noise from all
measured signals and calculate first time derivatives. This non-
causal filtering technique fits a smooth N th-order polynomial
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Fig. 4. A six-second segment of typical noise-filtered identification data for
the mass-spring system with K5 and M5 as given in Table I. The source of
each signal is listed in Table II. In the bottom row, the solid line shows the
Cartesian force signal by the physical sensor and the dashed line indicates
the corresponding force estimate of the virtual sensor.

to a window of W consecutive data points. By ensuring
W � N , the least-squares fitting process smooths out any
random fluctuations in the unfiltered signal. The polynomial
is evaluated and differentiated at the center of the window
to yield both the smoothed signal and its first derivative at
the corresponding time instant. The window is subsequently
advanced forward by one sampling interval, and the algorithm
is repeated until the entire signal has been processed by the
filter. Through rigorous empirical evaluation, a filter with
N = 6 and W = 151 was found to yield optimal results.

To enhance the noise-suppression characteristics of the
Savitzky-Golay filter, its two outputs (i.e., the smoothed signal
and its derivative) were passed through a zero-phase 5th-order
Butterworth low-pass filter (MATLAB function filtfilt) with a
4.5 Hz cutoff frequency. Fig. 3 shows the magnitude response
of combined Savitzky-Golay smoothing and Butterworth low-
pass filtering operations (herein referred to as the “smoothing
filter”) and the combined Savitzky-Golay differentiation and
Butterworth low-pass filtering operations (termed the “differ-
entiation filter”). The smoothing filter maintains a magnitude
response near unity over the 2 Hz bandwidth of the perturba-



TABLE II
SIGNAL ORIGINS IN EACH IMPEDANCE IDENTIFICATION METHOD

Method Impedance Identification Signals
X Ẋ Ẍ Θ Θ̇ Θ̈ τr Fext

Method 1
(Proposed method)

Forward Differentiation Accelerometer Joint Differentiation Equation (7) Recorded from Equation (2)Kinematics Filter Encoders Filter Robot Controller

Method 2 Forward Differentiation Accelerometer Joint (Not Used) (Not Used) (Not Used) Commercial
Kinematics Filter Encoders Force Sensor

tion signal, but drops to zero at higher frequencies for noise
suppression. Similarly, the differentiation filter closely matches
the ideal differentiator response from 0 to 2 Hz, but decays to
zero at higher frequencies.2

B. Identification of Mass-Spring System Impedance

The impedance of the mass-spring system was identified
by fitting records of Fext, X , and Ẍ to (5) via linear least
squares to obtain M, K, and X0. All recorded signals (i.e.,
Θ from the joint encoders, Ẍ from the accelerometer, Fext
from the force/torque sensor, and the joint torque τr) were
passed through the smoothing filter to suppress noise prior
to identification. The Cartesian position trajectory of the
robot’s end-effector was calculated from encoder data using
the robot’s forward kinematics, which were known precisely
from manufacturer specifications. Table II summarizes the two
methods used to obtain the human-robot interaction force:

Method 1 – Virtual sensor: The interaction force Fext was
calculated from (2), with Θ̇ obtained from the differentiation
filter and Θ̈ calculated from the accelerometer’s reading of Ẍ
according to

Θ̈ = J−1
(
Ẍ − J̇Θ̇

)
. (7)

Method 2 – Physical sensor: Fext was directly measured
by the force/torque sensor attached to robot’s end-effector.

A segment of typical identification data for the mass-spring
system is shown in Fig. 4. The first 40 s of each dataset
were used for identification, while the final 10 s were used
to validate the identification results through the Variance
Accounted For (VAF) test statistic:

V AF = 100 ×
(

1 − var
(
fext − f̂ext

)
/var (fext)

)
, (8)

where fext is the x or y component of Fext estimated by the
virtual sensor or measured by the physical sensor and f̂ext is
the corresponding external force component predicted by the
identified impedance model.

C. Identification of Human Arm Impedance

A handle with mass Λ = 135 g was present at the robot’s
end-effector during data collection for the human arm. To
remove the effects of this handle from the identified inertia

2A Savitzky-Golay filter may also be used to calculate the second deriva-
tives of Θ and X directly, eliminating the need for an accelerometer.
However, this approach was found to yield impedance estimates that did not
agree with theoretical values. The inclusion of an inexpensive accelerometer
notably enhanced the identification accuracy without compromising the goal
of developing an economical impedance measurement technique.

matrix, the human arm’s inertia, damping, and stiffness ma-
trices were identified by applying the least-squares procedure
to

(M + ΛI) Ẍ + BẊ + K (X −Xv) = −Fext, (9)

where I is the 2 × 2 identity matrix. The Cartesian velocity
signal Ẋ was obtained from the differentiation filter. Interac-
tion forces were calculated by applying the same two methods
used for the mass-spring system. Again, the data sets were
split into identification and validation portions and the VAF
was calculated.

IV. RESULTS

The bottom row of Fig. 4 demonstrates that the force
estimated by the virtual sensor agreed favourably with that
measured by the physical sensor. This enabled the proposed
virtual sensor identification approach (Method 1) to yield
impedance estimates comparable to those obtained with the
physical sensor (Method 2) as discussed below.

A. Results for the Mass-Spring System

Table III shows the identified mass-spring system parame-
ters obtained by Method 1 and Method 2. To simplify presen-
tation, each entry represents the average and standard deviation
of 15 trials. For instance, the stiffness values for K1 are
the average values obtained for the three trials performed for
spring configuration K1 with each of the five inertial payloads
M1 through M5. Similarly, the inertia values reported for M1

are averages of the three trials performed for M1 under each of
the five spring arrangements. Identified equilibrium positions
X0 are omitted from the table for brevity as they were always
within 18 mm of theoretical values.

Fig. 5 plots the identified parameters against their theoretical
values listed in Table I. This figure shows that Method 1 and
Method 2 yielded parameter estimates that were comparable
to each other, demonstrating the feasibility of the virtual
sensor approach (Method 1) for arm impedance measurement.
Furthermore, both techniques produced parameter estimates
close to theoretical values. While the agreement between the
identified and theoretical inertia values was very strong, the
agreement was slightly lower for stiffness values. This is
partially due to approximations inherent in obtaining the-
oretical stiffness values through the numerical linearization
of a nonlinear stiffness field calculated from empirically-
determined spring constants.

Comparing the two identification methods against each
other, the virtual sensor approach yielded stiffness parameters



TABLE III
IMPEDANCE IDENTIFICATION RESULTS FOR MASS-SPRING SYSTEM (AVERAGES AND STANDARD DEVIATIONS FROM 15 TRIALS)

Identified Stiffness Values (N/m) Identified Inertia Values (kg)
Stiffness
Matrix

Method 1 Method 2 Inertia
Matrix

Method 1 Method 2

kxx kyy ks kxx kyy ks m m

K1 504.43 ± 3.62 257.03 ± 6.85 −14.77 ± 4.36 458.99 ± 3.26 236.74 ± 0.86 −23.49 ± 0.42 M1 0.491 ± 0.042 0.544 ± 0.015
K2 569.98 ± 13.74 298.49 ± 6.34 −5.22 ± 3.14 514.03 ± 3.6 281.98 ± 1.79 −16.51 ± 1.39 M2 0.719 ± 0.042 0.773 ± 0.019
K3 311.49 ± 9.01 436.13 ± 2.58 76.96 ± 2.69 275.06 ± 1.22 429.85 ± 2.54 −7.44 ± 0.96 M3 0.95 ± 0.034 1.005 ± 0.016
K4 276.37 ± 4.32 434.26 ± 4.25 10.5 ± 2.23 226.94 ± 0.91 415.37 ± 3.2 −3.84 ± 1.39 M4 1.156 ± 0.041 1.235 ± 0.019
K5 447.33 ± 9.49 382.45 ± 4.38 76.96 ± 2.69 417.24 ± 1.92 372.37 ± 1.07 70.11 ± 1.35 M5 1.399 ± 0.036 1.471 ± 0.019

TABLE IV
VAF BY METHOD 1 (V AFx , V AFy )

Stiffness Max. Stiffness Inertia Matrix
Matrix Direction M1 M2 M3 M4 M5

K1 x 97.5, 93.5 97.5, 93.1 97.5, 92.6 97.4, 92.0 97.2, 92.1
K2 x 97.4, 95.5 97.7, 95.2 97.7, 94.9 97.5, 93.6 97.5, 94.2
K3 y 88.7, 96.7 88.2, 96.7 87.6, 96.6 86.8, 96.6 84.9, 96.7
K4 y 88.9, 97.1 88.2, 97.1 87.8, 97.3 83.5, 96.2 84.8, 96.9
K5 N/A 97.4, 96.1 97.3, 95.7 97.1, 95.6 97.1, 95.4 96.9, 95.2
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Fig. 5. Comparison of identified and theoretical impedance parameters for the mass-spring system. Data points in perfect agreement with theoretical values
would lie on the dotted line.

that were slightly higher and inertia values that were slightly
lower than those obtained with the physical sensor. These
discrepancies are the result of the limited accuracy of the robot
dynamics model obtained by system identification procedures.
Equation (1) can be augmented to include a residual error force
Ferr that accounts for any differences between the estimated
robot dynamics obtained through system identification (̂I(Θ),
Ĉ(Θ, Θ̇), and F̂r(Θ̇)) and their true values:

Î(Θ)Θ̈+Ĉ(Θ, Θ̇)Θ̇+ F̂r(Θ̇) = τr+JT (Fext + Ferr) . (10)

While a force sensor can accurately measure Fext directly,
calculating the external force through (2) actually yields the

sum of Fext + Ferr. This error in the estimated force caused
Method 1 to slightly underestimate inertia and overestimate
stiffness relative to Method 2. Of all the identified parameters,
the relative discrepancy between Methods 1 and 2 is the largest
for kxx. This indicates that Ferr contributed larger errors to
x-component of the estimated force than the y-component—a
reasonable finding since elastic forces in the force sensor and
accelerometer cabling caused the robot to have the highest
resistance to motion along the x direction.

While the standard deviations yielded by Method 1 were
larger than those obtained by Method 2, they were still very
small in comparison to their corresponding mean values. This



TABLE V
IMPEDANCE IDENTIFICATION RESULTS FOR HUMAN ARM

Identification Method
Inertia (kg) Viscosity (Ns/m) Stiffness (N/m) Equilibrium Position (mm) VAF

mxx mxy bxx bxy kxx kxy xv V AFx

myx myy byx byy kyx kyy yv V AFy

Method 1 1.42 ± 0.2 0.68 ± 0.09 14.26 ± 1.44 1.62 ± 0.72 90.97 ± 5.98 17.05 ± 9.82 383 ± 5 90.9
0.69 ± 0.11 0.99 ± 0.07 1.08 ± 0.79 6.82 ± 0.75 25.92 ± 4.58 27.22 ± 4.46 15 ± 9 90.2

Method 2 1.45 ± 0.21 0.65 ± 0.09 10.88 ± 1.12 3.09 ± 0.53 72.34 ± 6.99 6.29 ± 10.14 382 ± 5 91.3
0.68 ± 0.11 1.06 ± 0.07 2.75 ± 0.61 4.01 ± 0.51 16.12 ± 4.05 12.61 ± 3.99 8 ± 28 94.5

indicates that the virtual sensor identification method showed
excellent inter-trial reproducibility. The k values identified for
each stiffness matrix did not change as the inertial payload was
increased, nor did the identified inertia values change with
various spring configurations. Thus, both methods could ef-
fectively distinguish impedance contributions from the spring
array and the inertial payload.

With Method 2, VAF values for both the x and y com-
ponents of Fext were consistently over 99%, demonstrating
that the identified parameters described the impedance of the
mass-spring system exceptionally well. Average VAF values
obtained using Method 1 for each of the twenty-five impedance
configurations are recorded in Table IV. Method 1 always
yielded models with VAF values above 83%, with the VAF
being well over 92% in the vast majority of cases. This demon-
strates that the proposed virtual sensor method also estimated
the mass-spring system impedance with good accuracy.

The VAF values obtained by Method 1 also provide insight
into the design of robotic devices that are well-suited to
measuring impedance without a physical force sensor. As seen
from Table I and indicated in Table IV, the stiffness matrices
K1 and K2 had a much higher value in the x direction than
the y direction. The opposite was true for K3 and K4, while
K5 had kxx ≈ kyy. The VAF values obtained by Method 1
were always larger for the force component in the direction of
greater stiffness. This occurred because the interaction force
between the robot and the spring array system was larger in the
direction of higher stiffness. When Fext is large, it overshad-
ows any residual error forces contributed by inaccuracies in the
robot dynamics (Fext � Ferr). Therefore, a robot intended for
impedance measurement with a virtual force sensor should be
designed to have low impedance (e.g., it can be a back-drivable
haptic device) such that the robot’s motions are dominated by
the externally-applied force rather than its intrinsic dynamics.
In this case, any error in the identified dynamic matrices will
give rise to force contributions that are small in comparison to
the force exerted by the human arm, enabling a highly accurate
identification of the arm’s impedance.

B. Results for the Human Arm

Parameter values and standard deviations from the five
human subject trials are presented in Table V. As with the
mass-spring system, Methods 1 and 2 yielded very close inertia
estimates. The viscosity and stiffness estimated by Method 1
were slightly larger but still close to those obtained by Method

2. VAF values are over 90% for both methods, indicating that
the simple second-order model in (3) accurately captured the
arm’s dynamics for the relaxed grasping task in this study.

The inertia and viscosity values estimated for the human
arm are comparable to those obtained in previous studies
under similar experimental conditions by Dolan et al. [2]
and Tsuji et al. [7], but the stiffness values are notably
smaller. The high VAF values indicate that this discrepancy
cannot be attributed to inaccurate identification. Rather, the
lower apparent endpoint stiffness was likely due to the low-
bandwidth, slowly varying perturbation signals used to identify
arm dynamics. As discussed in the Appendix, flexibility in the
robot’s capstan drive mechanism enabled the robot dynamics
model to be accurately identified only over the frequency range
of 0 to 2 Hz, and the perturbation signal used to identify
the impedance of the human arm was necessarily limited to
the frequencies over which the robot dynamics model was
valid. Furthermore, the mass-spring system had a mechanical
resonance between 4 and 5 Hz, causing excessive vibrations
that compromised identification accuracy when the system was
excited in this frequency range. In contrast, Dolan et al. and
Tsuji et al. both applied rapidly-rising step perturbations to
the arm. The effective stiffness they measured may have been
higher because these perturbations excited additional high-
frequency impedance dynamics in the arm. Note that reflexive
contributions to arm impedance have been found to become
significant only at frequencies above 5 Hz [19]. In this work,
forces from the arm’s stiffness made smaller contributions
to Fext, explaining why the discrepancy between Methods
1 and 2 is higher for estimates of stiffness than for inertia
or viscosity. If a suitable back-drivable robotic system were
available with a dynamics model valid over a larger frequency
range, the virtual sensor impedance measurement technique
presented in this paper could be extended to identify higher
frequency components of the human arm impedance.

V. CONCLUSIONS AND FUTURE WORK

This paper demonstrates that arm impedance can be ac-
curately measured without a force sensor if the human-
robot interaction forces are calculated using a virtual force
sensor incorporating a valid model of the robot’s dynamics.
Although this technique necessarily entails a slightly higher
estimation error compared to direct force measurement, it is a
viable approach to add impedance measurement functionality
to existing robotic devices without the need for potentially



costly force/torque sensors. In a telerehabilitation scenario for
instance, this approach could enable a rehabilitation therapist
to remotely monitor a patient’s arm impedance using an
economical home-based rehabilitation robot.

This work focused on identifying a second-order Cartesian
model of human arm impedance to demonstrate the feasibility
of a virtual sensor approach for arm impedance measure-
ment. The model was valid only for low frequencies due to
bandwidth constraints imposed by the robot dynamics model
and mechanical resonances in the mass-spring system used
to validate the virtual sensor technique. Nevertheless, this
virtual sensor technique may be extended to analyze the arm’s
impedance over a larger frequency range by applying it to a
robot with a dynamic model valid at high frequencies, enabling
separate analysis of the intrinsic and reflexive contributions
to limb impedance. The virtual sensor approach could also
could also be extended to other robotic therapy or assessment
tasks that require offline analysis of force signals. For example,
this approach could be used to measure impedance while the
subject voluntarily co-contracts his muscles, to identify more
complex models of neuromusculoskeletal system dynamics
with the aid of higher-frequency perturbation signals, to quan-
tify the mechanical work done during a therapy exercise, or
to administer patient strength testing.

APPENDIX
IDENTIFICATION OF ROBOT DYNAMICS

The robot has the following dynamic matrices:

I(Θ) =

[
α1 −1/2α2 sin(θ1 − θ2)

−1/2α2 sin(θ1 − θ2) α3

]
(11)

C(Θ, Θ̇) =

[
0 1/2α2 cos(θ1 − θ2)θ̇2

1/2 ∗ α2 cos(θ1 − θ1)θ̇1 0

]
(12)

Fr(Θ̇) =

[
α4θ̇1
α5θ̇2

]
(13)

where αi are constant parameters. To identify these parame-
ters, each of the robot’s two joints was set to track a signal
comprising ten sinusoids to move each joint through a 40◦

range such that the robot’s end-effector covered the majority
of its workspace. The bandwidth of the perturbation signal
was limited to 0 to 2 Hz, as higher-frequency excitations were
found to compromise identification accuracy due to elasticity
in the robot’s capstan drive mechanism.

Six trials were performed, each lasting 50 s in duration.
The first 40 s of data from each trial were used to identify
parameters by linear least-squares. The identified model was
validated against the final 10 s of data by applying the variance
accounted for (VAF) test statistic. The following identified
parameters consistently yielded VAF values in excess of 99%
for τ1 and 90% for τ2.
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TABLE VI
IDENTIFIED DYNAMIC PARAMETERS WITH STANDARD DEVIATIONS

Parameter Value

α1 0.06929 ± 0.00003
α2 0.04217 ± 0.00007
α3 0.04416 ± 0.00004
α4 0.06510 ± 0.00176
α5 0.07389 ± 0.00072
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