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ABSTRACT
Platooning which is defined as controlling a group of au-
tonomous vehicles (multiple followers and one leader) to
have a desired distance between them while following a
desired trajectory has caught on recently in the control en-
gineering discipline. Platooning brings along promising
advantages, namely, increasing highway capacity and safety,
and reducing fuel consumption. In this paper, using lin-
earized longitudinal dynamic models for each vehicle, we
investigate the control problem of vehicular platooning to
have all vehicles followed the leader under a constant spac-
ing policy. Under decentralized linear feedback controllers
and taking account of heterogeneity in the dynamic models
and feedback information to the vehicles, a general dynamic
representation for the platoon is obtained. Having this and
the proposed controller, stability analysis is developed for
any information flow topology (IFT) between vehicles and
any number of vehicles. As a case study, a platoon with one
leader and two followers is investigated through the proposed
strategy, and its stability conditions are provided. Numerical
simulations are provided in which the stability range of con-
trol gains and the effect of different IFTs on the performance
of the platoon are discussed.

Index Terms— Autonomous vehicles, Platoon of vehi-
cles, Stability, Heterogeneity, Information flow topology

1 Introduction
Intelligent transportation systems (ITS) leverage a high level
of automation to provide an efficient and safe road transporta-
tion. Platooning, which corresponds to travel of a convoy of
vehicles with an enforced desired spacing between them, can
be subsumed under the ITS discipline. The promise of a re-
duction in vehicles’ fuel consumption due to the decreased
aerodynamic drag for back-to-back vehicles [1, 2], and an in-
creased highway capacity and safety [3, 4, 5, 6, 7] warrant
more research in this technology. Making sure that all pla-
toon vehicles move at the same velocity as the leader vehicle

This research is supported by the Government of Al-
berta’s grant to Centre for Autonomous Systems in Strengthen-
ing Future Communities (RCP-19-001-MIF). *Correspondence:
amir.zakerimanesh@ualberta.ca

while keeping a desired spacing among themselves underlies
the platoon control problem.

Defining a desired inter-vehicle distance is specified by
the spacing policy. Constant distance (CD) policy [8, 9] and
constant time headway (CTH) policy [10] are the predomi-
nant policies studied in the literature. The CD policy, as its
name implies, aims at maintaining a constant distance be-
tween consecutive vehicles. In the CTH policy, the spacing
between vehicles is dependent on the velocity of the leader
and thus no longer constant. Other policies are nonlinear dis-
tance policy [11] and delay-based distance policy [12].

From control perspective, dynamics of platoon is char-
acterized by vehicle longitudinal dynamics, information flow
topology (IFT), distributed controllers and the spacing policy
of the platoon [13, 14]. See [15] to get a quick insight about
these components. A platoon is called heterogeneous if the
dynamics of the vehicles are not identical.

As linear feedback controllers (LFCs) are concerned, in
[16] a decentralized LFC under identical control gains that
benefit from position, velocity and acceleration measure-
ments is proposed for a platoon of vehicles, under which the
stability conditions for some certain IFTs are derived. In
[17], a decentralized LFC is put forward that only utilizes po-
sition and velocity feedback signals, and the stability analysis
is only applicable for bidirectional and bidirectional-leader
IFTs. In [18], a distributed linear control under equal control
gains that uses only position signals is devised for the IFT
cases that was not addressed in the [16]. In this paper, we use
a decentralized LFC with non-identical gains that position,
velocity and acceleration of vehicles are fed back into the
controllers. In this work and contrary to [16, 18], we incorpo-
rate the control gains and the way vehicles communicate with
each other directly into the stability analysis of the overall
platoon which, therefore, makes it applicable for any IFT,
and can specify the stability ranges for the control gains. The
adopted method can consider any IFT in the stability analysis,
and is applicable for any number of vehicles.

2 Problem formulation
Figure 1 shows a platoon that has N+1 (not necessarily iden-
tical) vehicles such that the one designated by 0 is the leader
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vehicle and the others labeled by 1,...,i,i+1,...,N are the fol-
lowers. The distance between the two consecutive vehicles i
and i+1 is denoted by Di+1

i , and Li presents the length of
the ith follower vehicle. The x axis shows the position of the
vehicles during their movement such that x0 and xi are the po-
sitions of the leader vehicle and the ith follower, respectively.
Generally speaking, longitudinal control of a platoon consists
of 1) inner force/acceleration control loop, namely feedback
linearization (FL) control that compensates for the nonlinear
dynamics of the vehicles, and 2) an outer inter-vehicle dis-
tance control loop that is responsible for enforcing a desired
spacing between the consecutive vehicles within the platoon
according to the spacing policy. The FL control is based on
the assumption that the vehicle dynamics and its parameters
are fully known which means that a perfect nonlinear dynam-
ics cancellation can be achieved. We assume that the FL part
has already canceled the dynamics nonlinearities and there-
fore we will only focus on the inter-vehicle distance control
loop. Consider that for platooning, and as far as the leader ve-

Fig. 1. A platoon with constant inter-vehicle spacing.
hicle is concerned, we only need its position, velocity and ac-
celeration, and it does not undergo any control process. Given
that, let the following formulation characterize the dynamics
of the ith follower vehicle [19]:

ȧi=fi(vi,ai)+gi(vi)ci i=1,...,N (1)

in which vi and ai are the velocity and acceleration of the ith

follower, and fi(vi,ai) and gi(vi) are according to

fi(vi,ai)=−
1

τi

(
ai+

σAiCdiv
2
i

2mi
+
dmi
mi

)
−σAiCdiviai

mi

gi(vi)=
1

τimi

(2)

where ci is the engine input. The parameters σ,Ai,Cdi,dmi,
mi,τi are specific mass of air, and vehicles’ cross sectional
area, drag coefficient, mechanical drag, mass, and engine time
constant, respectively. Let the engine input ci be governed by
following FL controller:

ci=uimi+0.5σAiCdiv
2
i+dmi+τiσAiCdiviai (3)

substituting which into (1) results in

τiȧi+ai=ui (4)

in which ui is an auxiliary input signal to be designed. Now,
let Xi,[xi,ẋi,ẍi] denote the states of the ith follower where
ẋi=vi and ẍi=ai. Thus, given (4), the state-space model for
the ith follower can be written as

Ẋi=AiXi+Biui=

0 1 0
0 0 1
0 0 −1

τi

Xi+

00
1
τi

ui (5)

where both the vehicles’ feedback-linearized dynamics (char-
acterized by Ai,Bi and τi) and the platoon’s controllers (char-
acterized by ui) are nonidentical, meaning that they are not
the same for all the follower vehicles, constituting a heteroge-
neous platoon. Therefore, the problem formulation and sta-
bility analysis will be developed with taking account of het-
erogeneity in the dynamic models and feedback information
to the vehicles.

The objective of designing the controller ui is to guarantee
that when the leader has a constant steady velocity (,vs0), the
followers’ velocities track that leading velocity while desired
constant distances (,di+1

i ) are maintained between any two
back-to-back vehicles within the platoon. In other words, for
κ=1,...,N−1, the aim is to have

vi(t)=v
s
0(t)

xκ−xκ+1=Lκ+d
κ+1
κ ≡ Dκ+1

κ =dκ+1
κ

(6)

and to ensure which, we design a distributed controller with
non-identical gains as

ui=−
∑
j∈Ii

[ki(xi−xj−dij)+bi(ẋi−ẋj)+hi(ẍi−ẍj)]

dij,−sgn(i−j)
max(i,j)−1∑
κ=min(i,j)

[
lκ+d

κ+1
κ

] (7)

where Ii⊂{{0,1,...,N}−{i}} indicates the vehicles from
which the vehicle i receives information. Please note that we
develop the platooning formulation regardless of the type of
communications between the vehicles such that all IFTs can
suit properly in our problem development. Having di+1

i as
the desired spacing between the consecutive vehicles and x0
as the position of the leader vehicle, the desired position and
velocity of the ith follower can be defined accordingly as

x∗i,x0−
i−1∑
κ=0

[
lκ+d

κ+1
κ

]
, ẋ∗i=v

s
0=ẋ

s
0 (8)

For conciseness in presentation and ease in later analysis, the
state error of the ith follower is defined as x̃i=xi−x∗i utiliz-
ing which readily results in xi−xj=x̃i−x̃j+dij, and subse-
quently substituting which into the controller (7) gives

ui=−
∑
j∈Ii

[
ki(x̃i−x̃j)+bi

(
˙̃xi− ˙̃xj

)
+hi

(
¨̃xi−¨̃xj

)]
(9)

and plugging (9) in (4) yields
...
x̃ i=−

|Ii|ki
τi

x̃i−
|Ii|bi
τi

˙̃xi−
1+|Ii|hi

τi
¨̃xi

+
ki
τi

∑
j∈Ii

x̃j+
bi
τi

∑
j∈Ii

˙̃xj+
hi
τi

∑
j∈Ii

¨̃xj
(10)

which obtained using the facts that ẍi=¨̃xi and
...
x i=

...
x̃ i. Note

that |Ii| is the cardinality of the set Ii. Considering (10),
knowing x̃0= ˙̃x0=¨̃x0=0, and defining the ith vehicle con-
trol gains as Ki=[ki,,bi,hi]

T and platoon state error as
X̃N,

[
x̃1, ˙̃x1, ¨̃x1,...,x̃N, ˙̃xN, ¨̃xN

]T
, the platoon closed-loop



state-space dynamics model can be characterized by

˙̃XN=ÃNX̃N=


A∗11 A∗12 ... A∗1N

A∗21 A∗22 ... A∗2N
... ...

. . .
...

A∗N1 A∗N2 ... A∗NN

X̃N (11)

where ÃN is overall closed-loop system matrix such that for
a given follower i, we have A∗ii,Ai−|Ii|BiK

T
i and A∗ij,

BiK
T
i . Using ÃN , the determinant of the block matrix sIN−

ÃN , which can be obtained analytically [20], will provide
the characteristic polynomial of the platoon, using which the
stability conditions with respect to the control gains can be
obtained. Note that IN is the identity matrix of size N , and
the closed-loop system would be stable if all the eigenvalues
of ÃN are negative. In the rest of paper, we will consider
stability conditions for an two-followers platoon.

Case study: stability analysis for N=2.
Considering N=2, (11) can be written as

˙̃X2=Ã2X̃2=

[
A1−|I1|B1K

T
1 B1K

T
1

B2K
T
2 A2−|I2|B2K

T
2

]
X̃2 (12)

where the platoon would be asymptotically stable if and only
if all the eigenvalues of the matrix Ã2 are negative. In this
respect, the characteristic polynomial of matrix Ã2 can be
derived by the following determinant:∣∣∣∣[sI3−A∗11 −A∗12

−A∗21 sI3−A∗22

]∣∣∣∣
=|sI3−A∗11|

∣∣∣(sI3−A∗22)−A∗21(sI3−A∗11)−1A∗12∣∣∣ (13)

deriving which presents the characteristic polynomial as6+
bs5+cs4+ds3+es2+fs1+g in which the coefficients are ac-
cording to the following formulas.

a=τ1τ2 b=τ1(1+h2|I2|)+τ2(1+h1|I1|)
c=τ1b2|I2|+(1+h1|I1|)(1+h2|I2|)+τ2b1|I1|−h1h2
d=τ1k2|I2|+b2|I2|(1+h1|I1|)+b1|I1|(1+h2|I2|)

+τ2k1|I1|−b1h2−b2h1
e=k2|I2|(1+h1|I1|)+b1|I1|b2|I2|+k1|I1|(1+h2|I2|)
−k2h1−b1b2−h2k1

f=b1|I1|k2|I2|+k1|I1|b2|I|2−k2b1−b2k1
g=k1|I1|k2|I2|−k1k2

(14)

and if the first follower does not receive information from the
second follower, or vice versa, then we will have A∗12=0 or
A∗21=0, respectively. Thus, the coefficients would be

a=τ1τ2 b=τ1(1+h2|I2|)+τ2(1+h1|I1|)
c=τ1b2|I2|+τ2b1|I1|+τ1(1+h2|I2|)+τ2(1+h1|I1|)
d=τ1k2|I2|+b2|I2|(1+h1|I1|)+b1|I1|(1+h2|I2|)+τ2k1|I1|
e=k2|I2|(1+h1|I1|)+b1|I1|b2|I2|+k1|I1|(1+h2|I2|)
f=b1|I1|k2|I2|+k1|I1|b2|I|2 g=k1|I1|k2|I2|

(15)

Fig. 2. Schematic of different IFTs between the vehicles in
the one-leader-two-followers platoon.

Now, having (14)-(15) and using Routh–Hurwitz criterion,
the stability conditions can be obtained as follows.

1. a,b,c,d,e,f,g>0 2. ad−bc≤0 3. d(ad−bc)≤b(af−be)
4. (ad−bc)

[
b2g+f (ad−bc)

]
≤(af−be)[d(ad−bc)−b(af−be)]

5.
(
b2g+f (ad−bc)

)[
(ad−bc)

[
b2g+f (ad−bc)

]
−(af−be)[d(ad−bc)−b(af−be)]]

≥bg[d(ad−bc)−b(af−be)]2

(16)
3 Simulation Results
In this section, simulation results are provided to evaluate the
stability conditions for different IFTs that are depicted in Fig.
(2). For simulations, we consider a velocity trajectory for
the leader vehicle (see Fig. 4) and choose the vehicles’ ini-
tial velocities and accelerations equal to zero. Also, the ve-
hicles’ length are the same and equal to 4 m, and vehicles’
initial positions are selected as x0(0)=0 m, x1(0)=−10 m,
and x2(0)=−20 m. As you can see in the Fig. 4, the vs0 ve-
locities for the leader vehicle are 30 m/s (its maximum value)
persisting for 12 s, and 0 m/s that is associated with the time
the leader vehicle brakes and stands still. Furthermore, we
choose di+1

i =10 m as the desired spacing between the vehi-
cles.

Fig. 3. The stability area (the blue area) with respect to the
control gains k2 and b2 for different IFTs sketched in Fig. 2.



Fig. 4. Error signals of the followers for the different IFTs.

First, we assume that τ1=τ2=0.5 s, and the controller
gains of all the vehicles are the same, i.e., k1=k2, b1=b2
and h1=h2=1. Based upon the stability conditions given in
the work [16] and for IFT c illustrated in Fig. 2, we assign
k1=k2=3, b1=b2=5, and h1=h2=1. Having k1,b1,h1, we
choose h2=h1 and let k2 and b2 to be selected within the sta-
bility conditions given in (16). Regarding (14)-(15), this time
we will find stability conditions with respect to the control
gains k2 and b2 and for the four IFTs in Fig. 2. The results
for the different IFTs are depicted in Fig. 3. The stability ar-
eas are shown in Fig. 3. As you can see, by comparing the
stability areas of IFTs a and b, or IFTs c and d, or IFTs a and
c, and or IFTs b and d, an additional communication channel
between the vehicles makes the stability area larger. The IFT
a has the smallest stability area and the IFT d has the largest.

In order to draw an analogy between the controller per-
formances in different IFTs, using root locus analysis for a
given plausible k2 or b2 that belongs to all the stability areas of
Fig. 3, we assign k2=2.5 and b2=10. Therefore, the control
gains become k1=3, k2=2.5, b1=5, b2=10, and h1=h2=1.
Note here τ1=0.5 and τ2=0.5 are chosen for engines time
constants. So, using this controller, the results for the dif-
ferent IFTs are shown in Fig. 4 in which, for instance, IFT
(a,2) indicates the position error for the second follower and
implies that the controller is utilized within the IFT of case
a represented in Fig. 2. Note that the position error for the
ith follower is defined as ei(t)=xi(t)−x∗i (t). Investigating
the simulation results for the different IFTs, we can see that
when the leader has a constant steady velocity, the follow-
ers’ position errors asymptotically converge to zero. Also, in
IFTs b and d, in which both the first and second followers
receive information from the leader, the error signal exhibits
better damping behavior that can come in handy when, for
instance, we want to enforce small desired spacing between
the vehicles. To shed more light on the damping behavior, let
the following formula be defined as the error evaluation cri-
terion (EEC) for the transient behavior of the error signals of

Fig. 5. Vehicles’ positions using control gains k1=3, b1=5,
h1=1, k2=10, b2=2, and h2=1, and IFTs a and d.

the followers.

EECi,
∫ t

0

|ei(t)|dt (17)

regarding which the results for the followers within the given
IFTs are shown in Fig. 4. It is possible to see that the IFTs
b and d provide better performance for the platoon respecting
EEC measure. Moreover, making a comparison between the
IFTs b and d, we can see that the communication from the
second follower to the first follower has increased the settling
time and so the convergence occurs slower.

Fig. 5 shows the positions of vehicles for the given ve-
locity of the leader and for the two IFTs a and d. As obvious
from Fig. 3, for k2=10 and b2=2, the platoon of the IFT a
would be unstable and the platoon of the IFT d would be sta-
ble. Accordingly, in Fig. 5, using the IFT d, the desired dis-
tances between the vehicles are maintained, however, in the
IFT a the system is unstable and numerous collisions occur.

4 Conclusion
In this paper, using a decentralized linear feedback controller
with non-identical gains, a state-space model for the hetero-
geneous platoon was obtained. We developed the problem
in such a way as to could incorporate any IFT into the sta-
bility analysis. Thus, for any number of vehicles, using
the characteristic polynomial of the closed-loop system, the
Routh–Hurwitz criterion will present the stability conditions
of the platoon. As a case study, the simulation results were
provided for an two-followers platoon, and the effect of the
different IFTs on the system performance were discussed. It
was shown that, more communication between the vehicles
can provide more flexibility in the selection of control gains
that satisfy the stability conditions. The results also showed
that using feedback signals of the leader in the both followers’
controllers can offer better performance for the platoon.
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