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Abstract— Learning from demonstrations is the paradigm
where robots acquire new skills demonstrated by an expert and
alleviate the physical burden on experts to perform repetitive
tasks. Ultrasound scanning is one of the ways to view the
anatomical structures of soft tissues, but it is repetitive for some
tissue scanning tasks. In this study, an autonomous ultrasound
scanning towards a standard plane framework is proposed.
Interaction probabilistic movement primitives (iProMP) was
proposed for the collaborative tasks for human and robot
movement. Inspired by the interval type-2 fuzzy system, an
interval iProMP is proposed to learn the ultrasound scanning
navigation strategy from scanning demonstrations and the
collaborative agents are the robot movement and ultrasound
image information. The proposed interval iProMP improves the
capacity of dealing with uncertainties due to insufficient obser-
vations during reproduction. U-Net is applied to recognize the
desired ultrasound image shown during demonstrations and a
confidence map is used to evaluate the ultrasound image quality.
Breast seroma scanning is chosen as the ultrasound scanning
task to validate the performance of the proposed autonomous
ultrasound scanning framework. Ultrasound navigation is to
realize autonomous ultrasound scanning for localizing the
breast seroma. The simulation comparison result shows the
better performance of the proposed interval iProMP under
insufficient observation, compared to traditional iProMP. The
experiment result validates the feasibility and generality of the
proposed autonomous ultrasound scanning framework using
interval iProMP with a higher success rate than that with
traditional iProMP.

I. INTRODUCTION

Learning from demonstrations (LfD) provides an effective
way to help humans transfer various complicated skills to
robots without any programming experience. Based on the
operation demonstrations by humans, robots can acquire and
later automatically implement desired tasks. LfD has been
widely used in different fields, such as physical rehabilitation
[1], highway driving [2], drilling [3], and re-grasping object
[4], LfD has been used in the field of autonomous surgery
for suturing [5] and retraction [6].

Clinical diagnosis incorporates ultrasound scanning as an
essential component. Based on their extensive experience,
clinicians utilize the US probe to locate desired anatomical
structures and planes. The US standard plane represents
the desired US image slice and serves as the scanning
objective in the US scanning process. However, certain
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US scanning tasks are repetitive and can strain clinicians
physically. Leveraging LfD can effectively transfer expert
skills to robots, allowing for reducing the physical burden
on clinicians.

There developed some research on autonomous US scan-
ning towards standard a plane using LfD. In [7], the robotic
US scanning skill, including the US image features, the
pose/position of the probe, and contact force, was encapsu-
lated into a high-dimensional multi-modal model and trained
by a deep neural network to learn the skill from experience.
In [8], a procedure-specified imitation learning framework
was proposed to realize autonomous scanning for both in-
plane and out-of-plane feature tasks in the targeted carotid
artery examination procedure. Inverse optimal control or
reinforcement learning is a popular method used in LfD by
inferring reward functions. Burke et al. applied a probabilistic
temporal ranking strategy to learn rewards from demonstra-
tion image sequences containing exploratory actions [9].

However, training a deep neural network to predict the
US probe movement based on image features is time-
consuming and has high computational complexity. Rein-
forcement learning attracts more and more attention in the
field of LfD, but it is not easy to find and design an
appropriate reward function to infer the relationship between
US probe movement and US image feature. Probabilistic
movement primitives (ProMP), proposed in 2013, is one of
the most widely used methods for LfD that parametrizes the
human demonstration distribution by a Hierarchical Bayesian
Model and allows for the derivation of new operations
[10]. In [11], iProMP was proposed for collaborative and
assistive robots to infer the corresponding movement from
the recognition of different human actions. Fuzzy set theory
was proposed by Zadeh in 1965 and crisp membership
functions of the type-1 fuzzy system (T1FS) characterized
fuzziness for describing the degree of membership [12]. In-
terval type-2 fuzzy system (IT2FS) has been proven to obtain
better performance than T1FS in dealing with nonlinear and
uncertain models due to the nature of its interval membership
function, also called the footprint of uncertainty (FOU). The
membership function of IT2FS is an interval area that covers
a broader spectrum of uncertainty and nonlinearity. Inspired
by the FOU of IT2FS, in this study, an interval iProMP
is proposed as developed, in which an adaptive factor α is
designed to obtain an adaptive modulation between the upper
and lower predicted trajectories generated by the proposed
interval iProMP and can be adaptive updated based on the
prediction differences of trajectory at each observation.

Overall, the motivation of this paper is to realize automa-
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tion in US scanning tasks and reduce the physical burden
on clinicians. Although there have developed some research
on autonomous US scanning using deep neural networks and
reinforcement learning, the high computational complexity is
a problem that cannot be ignored. In this paper, autonomous
US scanning towards a standard plane framework is proposed
using interval iProMP. The proposed interval iProMP is used
to learn the collaborative interaction trajectories of robot
movement and US image information. U-Net will be applied
to extract US image features that infer the scanning strategy.
The US image quality will be evaluated by a confidence map.

To validate the feasibility and generality of the proposed
autonomous US scanning framework, breast seroma scanning
is selected as the US scanning task in the experiment.
Lumpectomy is a kind of breast-conserving surgery and after
removing breast cancer, the area occupied by cancer before
may develop a serous fluid collection called a seroma. The
US scanning task of breast seroma in the experiment is to
localize the seroma in the center of the US image. Based
on the above discussion, the contributions of this study are
as follows: 1) Inspired by the advantages of FOU in IT2FS,
an interval iProMP is proposed to improve the capacity of
modeling the weight of trajectories and dealing with insuffi-
cient observations during reproduction; 2) An adaptive factor
α is proposed to obtain an adaptive modulation between the
upper and lower predicted trajectories. The updated law of
α is designed based on the prediction differences at each
observation.

II. ULTRASOUND SCANNING SKILLS MODELING

In this section, an interval iProMP is proposed to model
the weight of demonstration trajectories and a factor α is
designed to obtain an adaptive modulation for the crisp
output of the predicted trajectory. To model the US scanning
skill from demonstrations, the robot movement and US image
information are the collaborative agents in interval iProMP.

A. Interaction Probabilistic Movement Primitives

In the iProMP, the probability distribution of interaction
trajectories is modeled in lower dimensional weight space.
Different from ProMP, iProMP concatenates the weights of
the trajectory in a row vector and constructs a block diagonal
observation matrix. iProMP is able to generate and predict
the movement primitive of the unobserved agent based on
observations.

Let us consider human movement as P DOFs which
is represented as (.)H and robot movement as Q DOFs
which is represented as (.)R. Therefore, each human-robot
collaborative demonstration contains P + Q trajectories.
Define each demonstration at time t as the state vector as
follows

yt = [yH1,t, . . . , y
H
P,t, y

R
1,t, . . . , y

R
Q,t]

T (1)

In the iProMP, a smooth trajectory of length T is as-
sumed to be in a lower dimensional weight space and can
be achieved by linear ridge regression on Gaussian basis

functions [11]. At time t, a parameterization of trajectory
yt can be represented as

yt = HT
t ω + ϵy (2)

p(yt|ω) = N (yt|HT
t ω,Σy) (3)

where HT
t = diag(ΨT

t , . . . ,Ψ
T
t ) is the observation matrix

in which Ψt is a time-dependent basis function at time t and
ϵy ∼ N (0,Σy) is the zero-mean i.i.d Gaussian noise. The
observation matrix HT

t consists of observed basis functions
for humans and unobserved for robot as follows

HT
t =



(ΨH
t )T · · · 0 0 · · · 0

0
. . . 0 0

. . . 0
0 · · · (ΨH

t )T 0 · · · 0
0 · · · 0 0R · · · 0

0
. . . 0 0

. . . 0
0 · · · 0 0 · · · 0R


(4)

The probability of observing a trajectory y1:T is

p(y1:T |ω) =

T∏
1

N (yt|HT
t ω,Σy) (5)

The weights can be estimated by a linear ridge regression
with the ridge factor λ as follows:

ω = (HTH + λI)−1HTy1:T (6)

The distribution of p(ω;θ) is modeled as a Gaussian
with mean µω ∈ RN and covariance Σω ∈ RN×N and
the parameter θ = {µω,Σω} is defined to control the
distribution of weights.

p(ω;θ) = N (ω|µω,Σω) (7)

The probability of trajectory p(yt;θ) at time t can be
obtained by integrating out the weights

p(yt;θ) =

∫
p(yt|ω)p(ω;θ)dω

= N (yt|Ht
Tµω,H

T
t ΣωHt +Σy)

(8)

Hence, the distribution of trajectory can be updated by
the weights. Given a new desired point, the new mean
and covariance of weights can be computed to update the
distribution of trajectory.

B. Interval Interaction Probabilistic Movement Primitives

Estimating and modeling the weights of demonstration
trajectories are of crucial importance in the learning per-
formance of iProMP. The demonstration weights can be
computed by linear ridge regression with the pre-defined
basis function. Hence, basis functions and the value of
the ridge factor λ are critical in estimating the weights of
demonstration trajectories. The fuzzy model of IT2FS can
be considered as a collection of multiple T1FS as shown
in Fig.1. The FOU of IT2FS helps to cover a broader
spectrum of uncertainty and nonlinearity. Inspired by the
FOU of IT2FS, in the proposed interval iProMP, the upper
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(a) Type-1 fuzzy system
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(b) Interval type-2 fuzzy system

Fig. 1. Membership function of fuzzy system

and lower basis functions are used to model the weights of
demonstration trajectories.

Consider the human-robot collaborative demonstration tra-
jectory at time t

yt = [yH1,t, . . . , y
H
P,t, y

R
1,t, . . . , y

R
Q,t]

T (9)

In the interval iProMP, upper and lower basis functions
are used to model the demonstration trajectories. Thus, at
time t, we have

yt = H
T

t ω + ϵy (10)

yt = HT
t ω + ϵy (11)

where ω and ω are the upper and lower weights. H
T

t =

diag(Ψ
T

t , . . . ,Ψ
T

t ) and HT
t = diag(ΨT

t , . . . ,Ψ
T
t ) are up-

per and lower observation matrices, in which Ψt and Ψt are
the upper and lower basis functions at time t. ϵ ∼ N (0,Σy)
and ϵ ∼ N (0,Σy) are zero-mean i.i.d Gaussian noise.

Thus, the distribution of the trajectory at time t can be
represented as

p(yt|ω) = N (yt|H
T

t ω,Σy) (12)

p(yt|ω) = N (yt|HT
t ω,Σy) (13)

The upper and lower weights can be estimated as

ω = (H
T
H + λI)−1H

T
y1:T (14)

ω = (HTH + λI)−1HTy1:T (15)

where λ and λ are upper and lower ridge factor.
The distribution of the upper weight ω and lower weight

ω can be modeled as a Gaussian function. Let us define
θ = {µω,Σω} and θ = {µ

ω
,Σω}. Thus, the distribution of

ω and ω can be represented as

p(ω;θ) = N (ω|µω,Σω) (16)

p(ω;θ) = N (ω|µ
ω
,Σω) (17)

Given a new observation state xd
t = [yd

t ,Σ
d
y] at time t,

then the mean and covariance of the conditional distribution
of upper weight p(ω|xd

t ) and lower weight p(ω|xd
t ) can be

updated as

µω
∗ = µω +K(yd

t −Ht
T
µω) (18)

µ
ω
∗ = µ

ω
+K(yd

t −Ht
Tµ

ω
) (19)

Σω
∗
= Σω −KHt

T
Σω (20)

Σω
∗ = Σω −KHt

TΣω (21)

where K = ΣωHt
T
(Σd

y + Ht
T
ΣωHt

T
)−1 and K =

ΣωH
T
t (Σ

d
y +Ht

TΣωHt
T )−1. The upper predicted trajec-

tory y∗
t and lower predicted trajectory y∗

t
can be obtained

by the updated parameters of weights.
To overcome the high computation complexity of the En-

hanced Karnik-Mendel (EKM) algorithm in type reduction,
the adaptive factor α is proposed to obtain an adaptive
modulation between the upper and lower predicted trajectory.

Thus, the crisp output of the predicted trajectory can be
expressed as:

y∗
t = αy∗

t + (1−α)y∗
t

(22)

where the adaptive law of the factor α is

α̇ = γ∆y∗
t (y

∗
t − y∗

t
) (23)

in which γ is the positive adaptation gain and ∆y∗
t is the

prediction differences of the predicted trajectory based on
current observation and previous observation.

In the proposed autonomous US scanning framework, the
interval iProMP is used to model the US scanning skill
from demonstrations. Different from the current research on
iProMP, the collaborative agents in the proposed interval
iProMP are chosen as robot movement and US image in-
formation.

III. ULTRASOUND IMAGE PROCESSING

US scanning plays a vital important role in cancer diag-
nosis as a low-cost, noninvasive and non-ionizing radiation
way to analyze the lesion tissue. In the proposed autonomous
US scanning framework, US image features represent the
scanning strategy in the US scanning task. It is critical
to obtain the US image features to infer the US probe
exploration strategy.

A. Ultrasound Image Feature Extraction

To let the robot learn the US scanning exploration strategy
correctly, the US image should contain key information about
anatomical structures to infer the goal of navigation. The
key information of anatomical structures, such as area and
location, can be extracted by image segmentation. U-Net was
introduced by Olag Ronneberger and has been proven as a
promising method for medical image segmentation due to
precise segmentation using a scarce amount of training data
[13]. In the proposed autonomous US scanning framework,
to obtain the key information of anatomical structures in US
images, U-Net is applied for real-time US image segmenta-
tion to infer the intention of scanning exploration. Using the
pre-trained U-Net model, the predicted mask of an object will
be obtained on the novel image. In the proposed autonomous
US scanning framework, the image features of segmented US
images are selected as area and center of gravity.



B. Ultrasound Image Quality Evaluation

During the autonomous US scanning task, the robot may
navigate to a location with poor US image quality to achieve
lower pose error. In order to avoid such a situation, US image
quality should be considered. In the proposed autonomous
US scanning framework, a confidence map is used to evaluate
the US image quality during US probe navigation. The
confidence map provides a stable and objective per-pixel
measure of the US image quality based on the signal loss
estimation method [14]. To represent the distribution of the
confidence map at time t, image moment is used to describe
the feature of the confidence. Thus, at time t, the US image
quality can be represented by

ct = ΣiΣjijC(i, j, t) (24)

where C(i, j, t) ∈ [0, 1] denotes the pixel confidence at time
t.

IV. AUTONOMOUS ULTRASOUND SCANNING ROBOT
SYSTEM

In order to avoid any unintended injury to patients during
US scanning tasks, compliance in human-robot interaction is
necessary to be considered. In the proposed autonomous US
scanning framework, an admittance controller is employed to
ensure the compliance and safety of patients when facing an
unexpected robot motion [15]. The proposed autonomous US
scanning framework consists of two parts: the demonstration
process and the reproduction process.

In the demonstration process, to show the US scanning
strategy, the clinician will hold the end-effector of the robot
to move the US probe on the tissue surface to explore the
desired US image. During the US scanning demonstrated by
clinicians, the US image information and robot movement
will be recorded as demonstration trajectories which infer
the US scanning strategy that how the robot moves based on
the US image. The proposed interval iProMP is employed
to learn the distribution of demonstration trajectories. The
weights of demonstration trajectories are modeled by the
proposed interval iProMP to correlate the image-robot move-
ments. The workflow of the demonstration process is shown
in Fig.2.

Fig. 2. Workflow of demonstration process

In the reproduction process, the US image information
is observed and recognized by the model of demonstration
weights. Given the current US image features, the distribu-
tion of the weight is updated to predict the intention of US
image and generate the movement primitive of the robot. The

updated movement primitive allows the robot to explore and
realize the strategy for the US scanning task. The workflow
of the reproduction process is shown in Fig.3.

Fig. 3. Workflow of reproduction process

Compared with current research on autonomous US scan-
ning frameworks, such as deep neural network [7] and
reinforcement learning [9], the proposed framework has the
advantages of lower computational complexity and time
consumption. It is much easier and quicker for clinicians to
transfer scanning skills to the robot after collecting scanning
demonstrations.

V. EXPERIMENTS AND RESULTS

In this section, we will demonstrate the feasibility and
generality of the proposed autonomous US scanning toward
the standard plane framework. The ability to handle the
insufficient observations of the proposed interval iProMP will
be evaluated in simulation.

A. Prediction Performance Evaluation in Simulation

To compare the performance of the proposed interval
iProMP with traditional iProMP, the prediction results will
be evaluated in simulation. Considering a breast seroma
scanning scenario, we assume that the breast is in hemisphere
shape and the seroma is a sphere. The task in the simulation
is that the US probe could move along the breast surface
and find the center of the seroma, which is shown in Fig.4.
The green line represents the trajectory of the US probe.
The image feature is set to be the intersection line of the
section plane and the normal line through the center of
US probe. To simulate different situations of seroma US
scanning, the breast is set to be in different positions and
rotations with different volumes of seroma. A total number
of 50 demonstration trajectories is provided.

In the proposed autonomous US scanning framework, it is
expected that the robot movement can be predicted based on
limited observed US image information when the US probe
is randomly placed on the beast surface. In this scenario,
limited observation is the few US images used in the whole
trajectory prediction. To evaluate the prediction performance
under limited observations, the accuracy of the predicted
trajectory under different observations is used to compare
the prediction performance of the proposed interval iProMP
and traditional iProMP. In the evaluation, the test case is
that the seroma and breast are set to be in a new position



Fig. 4. Breast simulation

and rotation different from demonstrations. The root-mean-
square error (RMSE) of predicted trajectories under different
observations is shown in Fig.5.
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Fig. 5. Prediction Error

It can be seen that both methods have the ability to predict
the trajectory under limited observations, but the prediction
performance is different. When the observation is in 5% to
55%, the proposed interval iProMP achieves better prediction
performance and the prediction accuracy is about 17.83 %
to 45.06 % higher than iProMP. It demonstrates that the pro-
posed interval iProMP has the potential of dealing with un-
certainties in insufficient observations. When the observation
is more than 60%, both methods reach the highest accuracy
of predicted trajectory with similar prediction performance. It
is evident that the proposed interval iProMP achieves higher
prediction accuracy under limited observations.

B. Autonomous Ultrasound Scanning Experiment

We build up a US scanning robotic system using Panda
robot. An Axia80-M20 force-torque sensor is mounted on its
end-effector. US machine is attached to Panda robot using
a 3D-printed mount. An Epiphan DVI2USB3.0 is used for
real-time US image acquisition from the US probe. In this
section, the localization of breast seroma is chosen as the US
scanning task to validate the proposed framework. A medical
phantom is used to simulate the properties of the breast with

a seroma. The autonomous US scanning robot system for
breast seroma is shown in Fig.6.

Fig. 6. US Scanning Robot System for Breast Seroma

In the proposed autonomous US scanning robot system,
the US image features are extracted by the offline trained
U-Net. A total number of 150 US images of breast phantom
are collected to train the U-Net. The trained U-Net can
realize real-time segmentation on the breast phantom. The
US image quality can be evaluated by the confidence map.
The segmentation results and confidence maps of the US
images in different positions are shown in Fig.7.

Fig. 7. US image processing results

To validate the generality of the proposed US scanning
robot system for breast seroma, we assume that there is
an operation area and the breast phantom can be placed
anywhere within the defined operating area as shown in
Fig.8. The radius of the breast phantom is about 76 mm
and that of the operation area is about 114 mm. The breast
seroma scanning strategy of this experiment is to let the robot
automatically move the US probe to localize the seroma in
the center of US image. In the demonstration process, the
breast phantom is placed in different positions and rotations
within the operation area, and the robot is guided to localize
the seroma to the center of the US image. A total number
of 25 seroma scanning demonstrations is conducted on the
breast phantom.

Based on the observed US image information, the weight
distribution can be updated and then predict the movement
primitives of the robot. To verify the feasibility and generality



Fig. 8. Operation area

TABLE I
TESTING EXPERIMENT

Test number 1 2 3
with iProMP 77.8%(7/9) 66.7%(8/12) 73.3% (11/15)

with interval iProMP 77.8%(7/9) 83.3%(10/12) 80.0% (12/15)

of the proposed autonomous US scanning framework, in
the testing process, the breast phantom will be randomly
rotated and translated within the operation area. A successful
autonomous US exploration means that when the US probe
is randomly placed on the phantom to find the partial seroma
and then the robot can automatically move the US probe to
localize the seroma in the center of the US image. The testing
result for performance assessment is shown in Table.I.

It can be seen that the testing experiment was in three
groups: 9 tests, 12 tests, and 15 tests respectively. Each test-
ing group was conducted separately to test the performance
of the proposed method. In each test, the beast phantom was
randomly placed within the operation area. It is noted that
the proposed autonomous US scanning framework with both
methods has the ability to realize the autonomous seroma
scanning task. But the proposed framework with interval
iProMP achieves a higher success rate than that with iProMP.
The testing results for the seroma scanning task verified the
feasibility and generality of the proposed autonomous US
scanning framework. More demonstrations help to achieve
higher prediction accuracy and improve the success rate.
The testing performance of the proposed framework can be
improved by providing more scanning demonstrations.

VI. CONCLUSION AND FUTURE WORK

In this study, we propose an autonomous US scanning
towards a standard plane framework. Inspired by the FOU
of IT2FS, an interval iProMP is proposed to learn the weight
distribution of scanning demonstration trajectories which
infers US scanning strategy. To obtain the crisp prediction
output, a modulation factor α is proposed and the adaptive
law is designed based on the prediction error. The US
image feature can be extracted by the trained U-Net and
a confidence map is used to evaluate the US image quality.
The superior ability to handle the limited observations of
the proposed interval iProMP is proved by the simulation
result. To further validate the feasibility and generality of
the proposed autonomous US scanning framework, a breast
seroma scanning robot system for breast seroma scanning
is set up. In the experiment, the US scanning strategy is to
let the robot automatically move the US probe to localize

the seroma from the edge to the center of the US image.
The testing result shows the feasibility and generality of the
proposed autonomous US scanning toward a standard plane
framework.

There are some limitations in this work. The real-time
segmentation results of the US image are not stable, which
will cause the error prediction and make the sudden move-
ment of the US probe. The other limitation is more generality
is needed in this framework. Therefore, future works in this
study are to obtain more stable image segmentation to ensure
the scanning trajectory is smooth and safe, and increase the
generality of the framework for autonomous US scanning.
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