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ABSTRACT

Haptic teleoperation and haptic interaction systems can be modeled as
multi-port networks. In this context, bilateral or trilateral haptic systems
stability has been analyzed in the literature by using their two-port or
three-port network models. Traditionally, such stability criteria assume
that operators and environments (collectively, terminations) of the multi-
lateral haptic system are passive but otherwise arbitrary. However, recent
research has shown that such an assumption can be inaccurate or too con-
servative as far as the human operator in a robotic system is concerned.
In order not to jeopardize the haptic system stability when a termination
is active or sacrifice system performance when a termination is strictly
passive, we need a stability analysis approach that can take into account
the degree of passivity (or lack thereof) of each termination. In response
to this need, we have developed an approach based on series-shunt
decomposition of the termination impedance model. Experimental val-
idation of the theoretical stability criteria are performed involving active
operators and environment for both bilateral and trilateral teleoperation.

List of Acronyms – LTI: Linear time-invariant; PEB: Position error
based; RHP: Right half plane; ISP: Input strictly passive; OSP: Output
strictly passive; INP: Input non-passive; ONP: Output non-passive;
DNP: Disc-like non-passive; EOP: Excess of passivity; SOP: Shortage
of passivity.

1 INTRODUCTION

Haptic teleoperation and haptic interaction systems (collectively,
haptic systems) have seen increasing applications in recent years. In
particular, a multilateral haptic teleoperation system can be modeled
as a multi-port network representing a teleoperator (consisting of the
robots, their controllers and communication channels), connected to
one-port network terminations modeling the dynamics of the human
operators and/or the environments. Similarly, a multilateral haptic
interaction system can be modeled as a multi-port network representing
a haptic virtual environment (HVE), connected to one-port network
terminations modeling the dynamics of the human operators. The
analysis of stability of such coupled systems can be difficult because the
exact physical properties of the human operators and environments are
typically unknown, uncertain or time-varying, thus making the classical
approaches such as the Routh-Hurwitz criteion, inapplicable. In the
presence of these uncertainties, the concept of absolute stability is often
utilized. In the case of a two-port network, the absolute stability criterion
ensures the coupled system’s BIBO (bounded-input/bounded-output)
stability for two passive but otherwise arbitrary terminations [1]. Closed-
form absolute stability conditions involving the two-port network’s
immittance parameters are given by a well-known criterion proposed by
Llewellyn [2]. Thus, in traditional bilateral teleoperation, Llewellyn’s
criterion has been widely used for stability analysis, based on the
assumption that both the human operator and the environment are linear
time invariant (LTI) and passive [3, 4]. In trilateral teleoperation, our
research group has developed a similar approach for absolute stability
analysis based on the same passivity assumption on terminations [5].
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For the human arm, although this assumption of passivity is valid
when considering tasks involving a relaxed arm (or relaxed grasp) [6],
it can be violated in tasks involving posture-maintenance (or rigid grasp)
[7]. This could be the case in a bilateral telerehabilitation system for
telepresenting a hospital-based therapist to a home-based patient in order
to enable home-based rehabilitation. The reasons for considering both
the therapist and the patient as active terminations are as follows. First,
the therapist would be required to execute complex motor control tasks.
For instance, the therapist might exert resistive forces against a patient
to build muscle strength – this task bears resemblance to the rigid grasp
task, which was shown in [7] to involve activity. Second, inter-muscular
feedback with unequal gains has previously been linked to the arm
impedance activity [8] making it possible that the patient also demon-
strates an active impedance. The degree of activity can be described by
the concept of shortage of passivity (SOP) defined mathematically later.

From another perspective, the assumption of having an arbitrary
passive termination can lead to conservative stability conditions on the
teleoperator. This happens if a termination is strictly input or output
passive. For example, a mass-spring-damper system is output strictly
passive in the admittance domain with an excess of passivity (EOP)
equal to the system damping [9]. Excess of passivity of a termination
can be used to design teleoperation systems with higher performance.

In order to derive effective stability conditions for multi-port
networks involving active or strictly passive terminations, we can utilize
prior knowledge concerning EOP or SOP values on the human operators
or/and environments. Past work includes using Mobius transformation
to map the impedance of one termination to the driving point impedance
seen at the other port connected to an unknown LTI passive termination
[10]. This approach, however, is limited to considering only one active
or strictly passive termination for a two-port network while the other
termination is simply passive. Wave variables and scattering parameters
have also been used to relax Llewellyn’s criterion on bounded passive
terminations [11], but not for active terminations. Also, in this work,
S-parameters are needed, but a stability condition expressed directly
in the immitance (e.g. impedance) domain is more desirable, because
S-parameters are most accurately measured for systems with higher
frequency such as microwave circuits while impedance parameters can
be measured accurately for mechanical systems. The approach proposed
in our paper will rely solely on the impedance representation. Another
approach to relax conservatism during application of Llewellyn’s
criterion is the series-shunt approach [4, 12]. These papers allow taking
into account the lower and upper bound on the impedance of a passive
termination. However, the human operator and environment were
still assumed to be passive. All of the above are limited to bilateral
teleoperation systems and do not offer stability criteria for trilateral
systems. In this paper, we will utilize the series-shunt approach to take
into account different topologies of passive and active terminations to
derive explicit stability conditions on the teleoperator, both in two-port
network (bilateral) and three-port network (trilateral) cases. The same
approach is applicable to n-port networks with larger n. It will also be
the first time that activity or strict passivity of more than one termination
and up to all terminations is allowed in the stability analysis.

The paper is organized as follows. First, passivity and activity are
defined mathematically, and existing absolute stability criteria for two-
port and three-port networks are reviewed in Section 2. In Section 3, the
series-shunt approach is applied to two-port and three-port networks to
derive stability conditions when one or multiple terminations are active or
strictly passive. Although the conditions derived in Section 3 are general,
they are applied to bilateral and trilateral teleoperation systems in Sec-
tion 4. Closed-form conditions on controller parameters under position-
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error-based (PEB) control paradigm and experimental results are pre-
sented. Finally Section 5 contains concluding remarks and future work.

2 DEFINITIONS AND ABSOLUTE STABILITY CRITERIA FOR
TWO-PORT AND THREE-PORT NETWORKS

In this section, we review the definitions of passivity and activity as well
as the existing stability criteria for two-port and three-port networks.
Different passivity/activity topologies will be defined including input
strictly passive (ISP), input non-passive (INP), output strictly passive
(OSP), output non-passive (ONP), and disc-like non-passive (DNP).

2.1 Definitions and Lemmas of passivity and activity
Definition 1 [13] A system with input u(.) and output y(.) where
u(t),y(t)∈Rm is passive if there is a constant β such that∫ t

0
yT (τ)u(τ)dτ ≥ β (1)

for all functions u(.) and all t ≥ 0. The constant β is the energy stored
in the system at time t = 0. If further, there exist positive constants δ

and ε such that∫ t

0
yT (τ)u(τ)dτ ≥ β +δ

∫ t

0
uT (τ)u(τ)dτ +ε

∫ t

0
yT (τ)y(τ)dτ (2)

for all functions u(.) and all t ≥ 0, the system is ISP if δ > 0,ε = 0,
and OSP if ε > 0,δ = 0. The values of δ and ε are the EOP for the
ISP and OSP systems, respectively.

A system is non-passive (active) if it is not passive. Based on the
above definition, we can have the corresponding definition for different
non-passivities:

Definition 2 In Definition 1, if δ < 0 then the system is INP with SOP
of η =−δ; if ε < 0 then the system is ONP with SOP of µ =−ε.

Figure 1: Nyquist diagram regions of (a) a passive system, (b) an ISP
system with EOP of δ , (c) an OSP system with EOP of ε, (d) an INP
system with SOP of η, (e) an ONP system with SOP of µ, (f) a DNP
system with SOP of ρ.

When a single-input/single-output (SISO) system is represented in
the frequency domain by a transfer function, the following lemmas
establish the connection between different types of passivity and the
region covered by the transfer function’s Nyquist diagram (Fig.1):

Lemma 1 [13] A system represented by an LTI rational transfer
function G(s) with all poles having negative real parts is passive if and
only if Re(G( jω))≥ 0,∀ω (Fig. 1(a)).

Lemma 2 [13] A system represented by an LTI rational transfer
function G(s) with all poles having negative real parts is ISP with EOP
of δ if and only if Re(G( jω))≥ δ ,∀ω (Fig. 1(b)).

Lemma 3 [13] A system represented by an LTI rational transfer
function G(s) with all poles having negative real parts is OSP with
EOP of ε if and only if Re(G( jω))≥ ε|G( jω)|,∀ω, i.e. the Nyquist
diagram of G( jω) is contained in a circle with center on the real axis
at 1/2ε and with a radius of 1/2ε (Fig.1(c)).

By the same token, the SOP of INP and ONP systems can be related
to their Nyquist diagrams in Fig. 1(d) and Fig. 1(e) respectively. Finally,
we define a DNP system with its transfer function:

Definition 3 An LTI system G(s) is called DNP with SOP of ρ (not
based on (2) but) if |G( jω)| ≤ 1/2ρ, i.e., the Nyquist diagram of G(s)
is contained in a circle centered at the origin with a radius of 1/2ρ (Fig.
1(f)).

The reason for considering these passivity/activity topologies is their
direct physical relevance in the immittance domain. For example, the
impedances of the human arm in rigid and relaxed grasping tasks have
been shown to be INP and ISP, respectively [7]. Given the reciprocal
relationship between impedance and admittance, it is easy to see that
an INP termination in the impedance domain is ONP in the admittance
domain and vice versa, while an ISP termination in the impedance
domain is OSP in the admittance domain and vice versa. Thus, the
admittances of the human arm in rigid and relaxed grasping tasks are
ONP and OSP, respectively. Also, due to the limited co-contraction
of human arm muscles, there is an upper bound on the magnitude of
the arm impedance, which means the arm can always be modeled by
a DNP impedance. Therefore, there is a need for considering the effect
of INP, ISP, ONP, OSP and DNP immittance on stability. Note that
although the rest of the paper is based on impedance parameters, the
results derived here will apply to any immittance representation.

2.2 Existing absolute stability criteria for two-port and
three-port networks

We review two absolute stability criteria in the literature that we will later
use to derive stability conditions with different termination impedance
topologies. Immittance-based stability criteria lend themselves well to
our extension of the series-shunt approach. Therefore, first we consider
an LTI two-port network which can be modeled by its impedance (Z)
parameters as[

V1(s)
V2(s)

]
=

[
Z11(s) Z12(s)
Z21(s) Z22(s)

][
I1(s)
I2(s)

]
(3)

where the effort/flow pairs (V1,V2) and (I1,I2) denote the voltages and
currents at the two terminals. A three-port networks impedance matrix
relationship incorporates three pairs of effort/flow variables:[

Z11(s) Z12(s) Z13(s)
Z21(s) Z22(s) Z23(s)
Z31(s) Z32(s) Z33(s)

]
(4)

Lemma 4 [1] The two-port network (3) is absolutely stable if and only
if

1. Z11 and Z22 have no poles in the right-half plane (RHP),
2. Any poles of Z11 and Z22 on the imaginary axis are simple with real

and positive residues, and
3. For all real positive frequencies ω,

Re(Z11)≥ 0

Re(Z22)≥ 0

2Re(Z11)Re(Z22)−Re(Z12Z21)−|Z12Z21| ≥ 0 (5)

Lemma 5 [5] The three-port network with the impedance matrix Z
in (4) satisfying the symmetrization condition

Z13Z21Z32−Z12Z23Z31 = 0 (6)
is stable if and only if
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Re(Z11)≥ 0, (7a)

Re(Z22)≥ 0, (7b)

Re(Z33)≥ 0, (7c)

2Re(Z11)Re(Z22)−|Z12Z21|+Re(Z12Z21)≥ 0, (7d)
and

2Re(Z11)Re(Z22)Re(Z33)

−Re(Z11)(|Z23Z32|+Re(Z23Z32))

−Re(Z22)(|Z13Z31|+Re(Z13Z31))

−Re(Z33)(|Z12Z21|+Re(Z12Z21))

+4Re(
√

Z12Z21)Re(
√

Z13Z31)Re(
√

Z23Z32)≥ 0 (7e)

3 MAIN RESULTS

In this section we consider the two-port and three-port networks
described by (3) and (4).

3.1 Decomposition of terminations into series/parallel
impedances via Mobius transformation

Figure 2: Decomposition of termination Za into a passive impedance Zp
in parallel connection with Z1 and series connection with Z2.

In order to utilize information on the topology of termination
impedances so that we can derive less conservative stability conditions
for overly passive terminations and valid conditions for active termina-
tions, we propose to first decompose a given termination impedance
into a passive (but arbitrary) impedance in series/shunt connection with
other to-be-determined impedances. Consider a termination impedance
Za in Fig. 2, the impedance topology of which is known, i.e., we know
whether it is passive, active (INP, ONP or DNP with a given SOP), or
strictly passive (ISP or OSP with a given EOP). We decompose it into a
passive impedance Zp in parallel connection with an impedance Z1 and
then the total in series connection with an impedance Z2. The goal is
that the overall impedance will represent the topology characterizing Za.
Note that despite the fact that Za and Zp are complex impedances, we
have Z1,Z2 ∈R; we will see later that they will be able to map the pas-
sive impedance Zp to different regions shown in Figure. 1. Now, Z1 and
Z2 (for each termination) can be assimilated into the original two-port
(or three-port) network impedance to make an augmented network, such
that Lemma 4 and 5 can be applied to the new coupled system consisting
of the passive Zp (for the corresponding termination) and the augmented
network. Fig.2 only shows the case for one termination, but the teleoper-
ator can be augmented to incorporate Z1 and Z2 for as many terminations
as needed. This approach for decomposing termination impedances is
illustrated with INP/ISP, OSP and DNP examples in the following.

3.1.1 Decomposition of ISP/INP terminations

In the case of ISP and INP terminations, the complex plane regions
in Fig. 1 (b) and (d) with EOP of δ and SOP of η, respectively, are
obtained by a translation of the RHP along the real axis by δ or -η.
Therefore Z1 = ∞, reducing the termination to a series connection of
Zp and Z2, with Z2 taking the value of δ or -η.

3.1.2 Decomposition of OSP terminations
If Za in Fig. 2 is OSP with EOP of ε, we can set the value of Z2 to 0
and the value of Z1 to 1/ε. The combined impedance Za will be

Za =
Zp ·1/ε

Zp+1/ε
(8)

Which, as argued below, can characterize a given OSP impedance
with EOP of ε. In fact, this is a Mobius transformation [14] with
regard to Zp; recall that Zp is any arbitrary impedance in the RHP. The
transformation (8) consists of four steps:
1. Horizontal translation by 1/ε of the region of the impedance Zp,

which is the RHP (Fig. 3(a) to Fig. 3(b)); i.e., f1(Zp) = Zp+1/ε

2. Inversion of the result of step 1 (Fig. 3(b) to Fig. 3(c)); i.e.,
f2(Zp) = 1/ f1(Zp)

3. Scaling the result of step 2 by a factor of −1/ε2 (Fig. 3(c) to Fig.
3(d)); i.e., f3(Zp) =− f2(Zp)/ε2

4. Horizontal translation by 1/ε (Fig.3(d) to Fig.3(e)) ; i.e.,
f4(Zp) = f3(Zp)+1/ε.

It is easy to see that f4(Zp) is the same as Za in (8). Therefore, with Z1 =
1/ε and Z2 = 0 we can recover the OSP termination with an EOP of ε.

Figure 3: Step-by-step Mobius transformation of the RHP to OSP topology

3.1.3 Decomposition of DNP terminations
From Fig. 1(f), it can be seen that a DNP impedance with SOP of ρ

can be obtained by applying a horizontal translation of −1/2ρ to the
region covered by an OSP impedance with EOP of ρ. Therefore, we
can set the value of Z1 to 1/ρ and Z2 to −1/2ρ to recover the region
covered by a DNP termination in the Nyquist plane.

3.1.4 Decomposition of ONP terminations
Similar to the DNP termination, from Fig. 1(e) it can be seen that an
ONP impedance with SOP of µ can be obtained by applying a horizontal
translation of−1/µ to the region covered by an OSP impedance with
EOP of µ. Therefore, we can set the value of Z1 to 1/µ and Z2 to−1/µ

to recover the region covered by a DNP termination in the Nyquist plane.

3.2 Augmented teleoperator impedance with different
termination combinations

After termination impedance decomposition in Section 3.1, we can
incorporate the Z1 and Z2 associated with each termination into the tele-
operator impedance matrix to form a new teleoperator impedance matrix.

3.2.1 Bilateral teleoperator case
In the two-port network case, the new teleoperator impedance matrix
calculation can be systematically carried out by first calculating the
equivalent chain matrix for the two-port network comprised of the Z1
and Z2 combination at each termination. Then, the new teleoperator can
be expressed in terms of its chain (ABCD) parameters by calculating
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the product of the chain matrices of the individual two-port networks
as the three two-port networks are in cascade connection (Fig. 4) [1].
The reason for utilizing the chain matrix instead of, say, the impedance
matrix representation for each two-port network is this very ability
to multiply the matrices of the cascaded networks to get the matrix
for the total network. Finally, the equivalent impedance matrix of the
augmented teleoperator can be obtained by performing a parameter
conversion from the total chain matrix to impedance matrix.

Figure 4: Cascade connection of two-port networks 1-3, consisting of
the original teleoperator two-port network and two equivalent two-port
networks from termination decompositions

Next, the INP, OSP and DNP terminations are considered to form
different termination combinations for the two ports of the two-port
network and their corresponding augmented teleoperator impedance
matrices are reported in Table 1. Due to the symmetries, only six
distinct cases exist: INP-INP (i.e., ports 1 and 2 are connected to INP
terminations that are not necessarily the same), OSP-OSP, DNP-DNP,
INP-OSP, INP-DNP, and OSP-DNP. We take termination 1’s EOP/SOP
to be a and termination 2’s EOP/SOP to be b. Note that it suffices to
change the sign of the SOP of an INP termination in order to get the
results for an ISP termination.

Stability criterion for each combination can be then derived by
applying Lemma 4 to the new teleoperator impedance. An example
will be studied in Section 4.

3.2.2 Trilateral teleoperator case
Following a similar approach, the augmented teleoperator impedance
matrix can be derived for a three-port network. While a total of 35
distinct combinations exist if we consider all the termination impedance
topologies mentioned so far (ISP, INP, OSP, ONP and DNP), for brevity
we only report the augmented impedance matrix for one case: the three
terminations are INP with SOP values of a, b, and c, respectively. The
impedance matrix is[

Z11−a Z12 Z13
Z21 Z22−b Z23
Z31 Z32 Z33−c

]
(9)

Again, stability criteria can be derived for the three-port network
by applying Lemma 5 to the new teleoperator impedance matrix
given that we have incorporated activity or excessive passivity of the
terminations into the teleoperator, leaving the terminations with only
passive impedances. An example will be studied in Section 4. Note
that if the symmetrization condition (6) is satisfied for the original
impedance teleoperator matrix (4), it is still satisfied for the augmented
impedance matrix (9).

4 CASE STUDIES: APPLICATION OF PROPOSED APPROACH
TO BILATERAL AND TRILATERAL TELEOPERATION

In this section, we apply the proposed approach for stability analysis with
non-passive operator/environment to both bilateral and trilateral teleoper-
ation systems, although the approach described above can be used for any
multi-port network. As discovered in [7], human arms can exhibit INP
impedance behaviors under rigid grasping conditions. Therefore, in both
bilateral and trilateral cases we consider the presence of at least one INP
termination. In practice, the level of activity/passivity can be determined
using a similar approach in [7] where the time-domain force and velocity
data are examined and definitions in Section 2 are applied. Stability cri-
teria for each case will be derived in terms of the teleoperator impedance
parameters, followed by derivation of closed-form conditions on the

control gains within a given control architecture. Finally experiments are
performed to validate the stability criteria. Note that although we applied
the proposed approach to INP terminations only, it can be applied to any
considered termination topology to derive stability conditions.

4.1 Bilateral teleoperation under two INP terminations
Consider a bilateral teleoperation system where the two operators acting
on the master and slave robots demonstrate INP impedances of with
SOP values of a and b, respectively. As discussed in 1 this could be
the case in a telerehabilitation setting. Now by applying Lemma 4 to
the bilateral teleoperator matrix for the INP-INP case in Table 1, the
condition set (5) is revised to

Re(Z11)≥ a

Re(Z22)≥ b

2(Re(Z11)−a)(Re(Z22)−b)

−Re(Z12Z21)−|Z12Z21| ≥ 0 (10)
Note that by setting a or b to zero, the stability theorem derived in

[10], where only one port is terminated to an INP termination while
the other port is terminated to an arbitrarily passive termination, can
be recovered. However, our approach is equally applicable to bilateral
teleoperation systems with one or two active terminations.

Now consider a bilateral teleoperation system under position error
based (PEB) control. For details of the control architecture, readers can
refer to [15]. The impedance matrix representing the system can be
expressed as: [

Zm+Cm Cm
Cs Zs+Cs

]
(11)

Where, in the force-velocity domain, the master and slave robots
are modeled as Zm = Mms+Bm and Zs = Mss+Bs, and the local
position controllers for the two robots are Cm = Kvm +Kpm/s and
Cs =Kvs+Kps/s. We assume Kvm, Kvs, Kpm, Kps≥ 0. Assume the op-
erator on the master side can be characterized by an INP impedance with
SOP value of a while the operator on the slave side can be characterized
by an INP impedance with SOP value of b. By applying (10) to (11),
we have the following closed-form stability condition to be satisfied
involving the controller gains for a given set of robot parameters:

Kvm+Bm ≥ a
Kvs+Bs ≥ b

(Kvm+Bm−a)(Bs−b)+Kvs(Bm−a)≥
(KpmKvs−KvmKps)

2

4KpmKps
(12)

Figure 5: Bilateral teleoperation experimental setup with both the master
and slave robot coupled to virtual active operators.

Next, we perform experiments to compare the stability conditions
derived directly from (5) and (10); recall that (10) led to (12) and (5)
would lead to the same with a = b = 0. Bilateral teleoperation is set
up as shown in Fig. 5 using a pair of 3-DOF Phantom Premium 1.5A
haptic devices (Geomagic Inc., Wilmington, MA, USA). Only the first
joint of each robot is teleoperated, and the other two joints are controlled
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Table 1: Augmented teleoperator impedance matrix with different termination topology combinations, where M = Z22 + a(Z11Z22 − Z12Z21), and
N = Z11 +b(Z11Z22−Z12Z21)`````````̀Term. 1

Term. 2 INP with SOP of b OSP with EOP of b DNP with SOP of b

INP with SOP of a
[

Z11−a Z12
Z21 Z22−b

] [
N−abZ22−a

1+bZ22

Z12
1+bZ22

Z21
1+bZ22

Z12
1+bZ22

] [
N−abZ22−a

1+bZ22

Z12
1+bZ22

Z21
1+bZ22

−1+bZ22
2b(1+bZ22)

]

OSP with EOP of a ?

[
N

aN+bZ22+1
Z12

aN+bZ22+1
Z21

aN+bZ22+1
M

aN+bZ22+1

] [
N

aN+bZ22+1
Z12

aN+bZ22+1
Z21

aN+bZ22+1
aN+bZ22−1−2aZ11

2b(aN+bZ22+1)

]

DNP with SOP of a ? ?

[ 2aN−bZ22−1
a(2aN+bZ22+1)

2Z12
2aN+bZ22+1

2Z21
2aN+bZ22+1

2aN−4aZ11+bZ22−1
2b(2aN+bZ22+1)

]

Figure 6: Schematic of the bilateral teleoperation experimental setup.
The virtual systems are distinguished from physical systems by being
shaded in orage.

to be locked in place by using high-gain control. The sampling time
is 1ms. The robot dynamics are identified as mass-damper with
Mm = Ms = 0.015 and Bm = Bs = 0.01822 in joint space [16]. The
active operators are realized in the virtual environment with the transfer
function 1

(s+
√

12.5)2 . The reason why we use virtual operators is

that they allow us to have control over the exact SOP of each active
operator, which is beneficial in validating our stability analysis approach.
Plotting the Nyquist diagram of the transfer function can show an
SOP of a = b = 0.01 for the terminations. A detailed schematic of
the experimental system is presented in Fig. 6, where τ and θ denote
torque and angular position, respectively. Also subscripts h1,h2,m,s
denote operator 1, operator 2, the master and the slave respectively. Two
sets of experiments are conducted, with the following control gains:
1. Kvm = 0.1,Kpm = 20,Kps = 12,Kvs = 0.1;
2. Kvm = 0.1,Kpm = 32,Kps = 10,Kvs = 0.1;

For the first set of control gains, both (5) and (10) predicted stability.
As the experimental result in Fig.7(a) show, the bilateral teleoperation
system is indeed stable in the presence of a persistent sinusoidal input
of amplitude 0.08 Nm and frequency 5 rad/s. For the second set of
controller gains, (5) predicted stability while (10) predicted instability.
The experimental results in Fig.7 show that the robot positions in the
teleoperation system diverge if we release the robots from two different
initial conditions. Overall, the conclusion is that with active operators,
Llewellyn’s theorem cannot be used for controller design while the new
approach can be.

4.2 Trilateral teleoperation under one INP termination
Consider a trilateral teleoperation system coupled to an active
environment characterized by an INP impedance with a SOP value of c.
The trilateral system considered here is a dual-user teleoperation system,

Figure 7: Bilateral master-slave joint position profiles for the first set (a)
and the second set (b) of control gain.

consisting of two master robots and a remote environment. The two
users collaboratively control a robot to perform a desired task. This type
of trilateral systems is seeing emerging applications such as collaborative
surgical training where a novice (operator 1) is trained by an experienced
surgeon (operator 2) to perform a surgical task on the remote environ-
ment. In the case of beating heart surgery, for instance, the remote
environment (the beating heart) is active, introducing the necessity of
a stability analysis capable of dealing with non-passive environments in
trilateral teleoperation. Also, motor complex tasks from either operator
lead to activity of that termination for the trilateral teleoperator.

Using the three-port network model of the trilateral teleoperator
and applying Lemma 5 to (9) while assuming the two users are
passive (a = b = 0) but the environment is INP with a SOP value of
c, conditions (7c) and (7e) are revised to
Re(Z33)≥ c, (13a)

2Re(Z11)Re(Z22)(Re(Z33)−c)

−Re(Z11)(|Z23Z32|+Re(Z23Z32))

−Re(Z22)(|Z13Z31|+Re(Z13Z31))

−(Re(Z33)−c)(|Z12Z21|+Re(Z12Z21))

+4Re(
√

Z12Z21)Re(
√

Z13Z31)Re(
√

Z23Z32)≥ 0 (13b)
As discussed in [17], the desired position for each robot is obtained

by calculating the weighted sum of positions of the other two robots.
The parameter α determines this weight, which can be interpreted as
the relative authority of each operator over the slave robots position. By
adopting the PEB control architecture in [17] and the aforementioned
complementary-linear-combination (CLC) authority sharing laws, we
have the following impedance matrix representing the system:[

Cm1+Mm1s −(1−α)Cm1 −αCm1
−αCm2 Cm2+Mm2s −(1−α)Cm2
−αCms −(1−α)Cms Cms+Mss

]
(14)

where the robots are modeled as Zm1 = Mm1s and Zm2 = Mm2s on
the users side and Zs = Mss on the environment side. Similar to the
bilateral teleoperation case in Section 4.1, local position controllers
are Cm1 = Kvm1 +Kpm1/s and Cm2 = Kvm2 +Kpm2/s on the users
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side and Cs = Kvs +Kps/s on the environment side. We assume
Kvm1, Kvm2, Kvs, Kpm1, Kpm2, Kps ≥ 0. Note that in order to satisfy
the symmetrization condition (6), α has to take the value of 1

2 . By
applying the revised Lemma 5 to (14), we can get the following
sufficient frequency-independent stability conditions for the trilateral
teleoperation system:

Kvs ≥
3c
2

Kvm1

Kpm1
=

Kvm2

Kpm2

5Kvs−6c−2
√

6K2
vs−15Kvsc+9c2

Kvs
≤

KvsKpm2

KpsKvm2

≤ 5Kvs−6c+2
√

6K2
vs−15Kvsc+9c2

Kvs
(15)

Figure 8: Trilateral teleoperation experimental setup with the slave robot
interacting with virtual active environment

Finally, we put the previously-derived theoretical stability conditions
to test by performing a 1-DOF trilateral teleoperation experiment. The
two Phantom Premium 1.5A haptic devices used in Section 4.1 are used
here as the two master robots. The slave robot at the environment side
is a Phantom Omni haptic device (Geomagic Inc., Wilmington, MA,
USA) (Fig. 8). Two master robots are actuated with (human opera-
tors modeled by) persistent sinusoidal inputs of amplitude 0.07 Nm,
frequency 5 rad/s and phase 1.5 rad. The active environment is im-
plemented as a virtual environment with transfer function 1

(s+
√

1.25)2 ,

giving an SOP value of c = 0.1 on the remote environment. Based
on (15), we chose the following stabilizing control gains (according
to the theoretical stability condition): Kpm1 = 4, Kvm1 = 0.1, Kpm2 =
4, Kvm2 = 0.1, Kps = 8, and Kvs = 0.2. The result is shown in Fig. 9,
which shows the stability of the teleoperation system.

Figure 9: Robot joint positions for environment INP, dual-user PEB control.

The above demonstrates that the proposed approach can be used to
provide effective controller design guidelines in the presence of active
operator/environment in trilateral teleoperation.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrated the proposed series-shunt for
stability analysis in the presence of strictly passive or active opera-
tors/environments for bilateral and trilateral teleoperation systems.
Different from previously proposed approaches, this approach
can effectively deal with strict passivity/activity in any number of
terminations, easily apply to both bilateral and trilateral teleoperation,
and rely solely on immittance parameters, which are relatively easy to
obtain for mechanical systems. We detailed the approach for termination
impedance decomposition for different impedance topologies and
applied the approach to PEB bilateral and trilateral teleoperation with
one or more INP terminations. Experiments were performed to validate
the stability criteria and demonstrate the difference between the newly
derived stability criteria and the traditional ones. In the future, the
implemented active virtual operators can be replaced with robots
under impedance control, so that we have a physical active system
demonstrating desired active impedances. We will also investigate the
implications of improved stability analysis on teleoperation transparency
and thus human task performance.
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