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ABSTRACT

This paper proposes a unified framework to study the stabil-
ity of sampled-data, haptic virtual environment (HVE) systems
and sampled-data position-error-based (PEB) bilateral teleopera-
tion systems based on the discrete-time circle criterion. Communi-
cation time delay and controller discretization are two major factors
that jeopardize the system stability. We provide a framework for the
system stability analysis in which both these two destabilizing fac-
tors can be addressed. In this paper, first the well-known Colgates
stability condition for a 1-user haptic system with a passive oper-
ator is reproduced in a different manner and then extended to the
case where delay can exist in the communication channel. Then, it
is shown that using the same method, the stability of sampled-data
position-error-based (PEB) bilateral teleoperation systems can be
dealt in a similar manner. Simulation results confirm the validity
of the proposed conditions for stability of both sampled-data, HVE
and PEB bilateral teleoperation systems.

Keywords: HVE systems, PEB bilateral teleoperation systems,
circle criterion.

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Haptic I/O; I.2.9 [Artificial Intelligence]: Prob-
lem Solving, Control Methods, and Search—Control theory

1 INTRODUCTION

Many applications of haptic enabled interfaces can fall into two
main categories: Haptic virtual environment (HVE) systems, and
teleoperation systems. An HVE system consists of a human oper-
ator and a virtual environment and a haptic interface that acts as a
link between them and conveys a kinesthetic sense of presence in
the virtual environment to the operator. Surgical simulation [14, 1]
and telerehabilitation [3] are only a few applications of HVE sys-
tems. A teleoperation system comprises of a human operator inter-
acting with a master robot, thus remotely controlling a slave robot
to perform a task in a remote environment. Ideally, from a per-
formance perspective, the slave robot exactly reproduces the mas-
ter’s position trajectory while the master robot reproduces the slave-
environment contact force for the human operator; this is called
bilateral teleoperation. Bilateral teleoperation has applications in-
cluding telesurgery and remote underwater and space exploration.
Surveys on bilateral teleoperation can be found in [12, 13]. A num-
ber of authors have considered the issue of stability in sampled-
data haptic interaction in the virtual space. A more rigorous ex-
amination of stability was performed by Colgate and Schenkel [4].
For a common discrete-time implementation of the virtual environ-
ment composed of a spring and a damper in parallel, the necessary
and sufficient condition for passivity and absolute stability of the
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sampled-data HVE system was derived as

b >
KT

2
+ |B| (1)

Another approach to the stability analysis of a similar HVE system
was provided by Gil et al. In a series of papers [5, 8], using the
Routh-Hurwitz criterion, the closed-loop stability problem of the
1-DOF, HVE system was addressed directly. The environment was
modeled as a virtual spring and damper in mechanical parallel and
the stability condition for a delayed HVE system, which delay td
can be the sum of several effects (computations, communications,
etc), the stability condition was found to be

K <
B+b
T
2 + td

(2)

The above condition was shown to be valid only for low values of
the virtual damping B. In the context of bilateral teleoperation, in
more recent studies, the effects of discretized controllers on system
passivity and stability have been investigated [9, 10]. In this paper,
a discrete-time circle criterion based framework to find the stability
condition for a sampled-data, delayed haptic system as well as a
sampled-data delayed bilateral teleoperation system under PEB ar-
chitecture is proposed. The rest of the paper is organized as follows.
Section 2 provides mathematical preliminaries required for the rest
of the paper. In Section 3, for the haptic system in Figure 2a, sta-
bility conditions are derived for both under delayed or non-delayed
channels. Section 4, studies the stability of a sampled-data PEB
bilateral teleoperation system under delayed or non-delayed chan-
nels. Simulation results are presented in Section 5 and Section 6
presents the conclusions.

2 MATHEMATICAL PRELIMINARIES

In this section mathematical preliminaries required for the rest of
the paper are provided:

Lemma 1. [11] The LTI minimal realization

x(i+1) = Ax(i)+Bu(i) (3)

y(i) =Cx(i)+Du(i) (4)

with G(z) =C(zI −A)−1B+D is

• passive if G(z) is positive real;

• strictly passive if G(z) is strictly positive real.

Definition 1. [11] An m×m proper rational transfer function ma-
trix G(z) is positive real if

• poles of all elements of G(z) are inside or on the unit circle

• for all real ω for which e jω is not a pole of any element of
G(z), the matrix G(e jω )+GT (e− jω ) is positive semidefinite,
and
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Figure 1: The model of a sampled-data feedback system with LTI system G in the

forward path and the nonlinearity φ = φ(y) in the feedback path

• the poles of any element of G(z) on |z|= 1 are simple and
the associated residue matrices of these poles are positive
semidefinite.

Definition 2. [11] Let A be a Hermitian symmetric matrix. A is
positive semidefinite, if all its leading principle minors are non-
negative. We say that A is positive definite if all its leading principle
minors are positive.

Theorem 2.1. [7] Consider a sampled-data multivariable control
system that consists of an LTI system in the forward path and the
nonlinearity φ = φ(y) in the feedback path as shown in Figure 1.
Such a system can be presented by the difference equation

x(i+1) = Ax(i)−Bφ(y) (5)

y(i) =Cx(i), y ∈ Rm (6)

φ(y) = [φ1(y1),φ2(y2), ...,φm(ym)]
T (7)

If there exists K = diag(k1, ...,km)> 0 such that

K−1 +C(zI −A)−1B (8)

is positive real then G(z) is absolutely stable for any φ satisfying

φ(0) = 0, 0 < yiφ(yi)≤ y2
i ki (9)

Thus, the sampled-data system (5)-(7) will be stable. For a passive
φ , ki → ∞ and condition (8) will change to G(z) being positive real.

3 STABILITY ANALYSIS OF A SAMPLED-DATA HVE SYS-
TEM

The block diagram of the HVE system is shown in Figure 2a,
where Zh(s) is the unknown human operator model and H(z) is the
known discrete-time model of the environment (i.e., the digitally-
implemented virtual coupling between the haptic interface and the
virtual wall). The haptic interface is a rigid manipulator and is mod-
eled as a mass m and a damper b. The input and output of H(z) pass
through a sampler and a ZOH with a sampling period of T , respec-
tively. Simple manipulations in the block diagram in Figure 2a will
result in the one in Figure 2b. The equations governing the resulting
system in Figure 2b will be

fh −u = bvh (10)

xh =
vh

s
(11)

u∗ = z−nH(z)x∗h (12)

With the assumption that n = td/T is an integer (td represents the
communication delay), the discrete-time equivalent of (10) is

f ∗h −u∗ = bv∗h

and with the help of (12) we get

f ∗− z−nH(z)x∗h = bv∗h

The above can be written in the z-domain as

F(z)− z−nH(z)Xh(z) = bVh(z)

where

Xh(z) = Z {
vh

s
}

It is important to note that Z { vh

s } 6= Z { 1
s }Vh(z). To be able to
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Figure 2: Model of a 1-DoF sampled-data HVE system

derive the transfer function from fh to vh, we need to approximate
Z { vh

s }. We can do so based on one of the following approximation
methods:

• Forward Difference: Xh(z) =
T

z−1Vh(z)

• Backward Difference: Xh(z) =
T z

z−1Vh(z)

• Tustins Transformation: Xh(z) =
T
2

z+1
z−1Vh(z)

In previous related works [4, 8, 6] the impedance of the environ-

ment in the z domain has been assumed as H(z) = K +
B(z−1)

T z and,
we will use the same model. In the following, we consider two
cases for a passive operator.

Passive Operator, No Delay Assuming that td = 0, depend-
ing on which approximation is chosen, the f to v mapping will be
one of the following:

Fh(z) = bVh(z)+(K +
B(z−1)

T z
)

T

z−1
Vh(z) = G−1

1 (z)Vh(z)

Fh(z) = bVh(z)+(K +
B(z−1)

T z
)

T z

z−1
Vh(z) = G−1

2 (z)Vh(z)

Fh(z) = bVh(z)+(K +
B(z−1)

T z
)

T

2

z+1

z−1
Vh(z) = G−1

3 (z)Vh(z)

The above correspond to forward difference, backward difference
and Tustin approximations, respectively. Based on Theorem 2.1
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Figure 3: Model of a sampled-data bilateral teleoperation system

since Zh(s) + ms is passive, the system in Figure 2b is stable if
G(z) is positive real. Based on Lemma 1 and using the fact that

passivity of G(z) is equal to G−1(z) being passive [2], the stabil-

ity of the system is ensured if G−1(z) is positive real. The first

condition for positive realness of G−1(z) is satisfied since it can be

clearly seen that the poles of G−1
i (z), i = 1,2,3, lie inside or on the

unit circle. Since z = 1 is a simple pole and its residue for each

G−1
i (z) is positive semidefinite, KT , the only remaining condition

to check is the second condition in the Definition 1, which requires

ℜ{G−1
i (z)}≥ 0. In this way, the conditions for stability of the HVE

system based on the three approximations can be found. It can be
easily shown that the forward difference approximation method re-
sults in the worst-case condition and as a result in the rest of this
paper the 1

s is approximated using the forward difference approxi-
mation method. Using forward difference method the condition for
stability of a non-delayed HVE system is

b >
KT

2
+B (13)

which is identical to Colgate’s condition.

Passive Operator, Delay The previous condition was found
assuming no delay in the system. For a delayed HVE system, the
stability condition will take a different form depending on the vir-
tual environment model. Here again, it can be shown that forward
difference will lead us to the worst-case condition. The f to v map-
ping in the z domain will then be

Fh(z) = bVh(z)+ z−n(K +
B(z−1)

T z
)

T

z−1
Vh(z) (14)

Since the passivity of G(z) is equal to G−1(z) being passive, the
delayed sampled-data HVE system is stable if (15) is positive real:

G−1(z) = b+ z−n(K +
B(z−1)

T z
)

T

z−1
(15)

The first and third conditions in Definition 1 are obviously the case
here since all poles of G(z)−1 are on or inside the unit circle and the
z = 1 is a simple pole with positive residue. This will leave us with
the third condition which requires ℜ{G−1(z)} ≥ 0. Substituting

z = cos(ωT ) + j sin(ωT ) in (15) the real part of G( jω)−1 must
satisfy:

b+Bcos(ωtd −T )−
KT

2
cos(ωtd)−KT S > 0 (16)

where, S=
sin(ωtd)sin(ωT )
2(1−cos(ωT ))

. With the assumption that td/T = n and B

is small, the worst-case condition will happen if cos(ωT ) = 1.Then,
it can be easily shown that (16) will simplify to

b+B−
KT

2
−Ktd cos(ωT/2)> 0 (17)

For cos(ωT/2) = 1 the passivity condition for a delayed HVE sys-
tem will be derived as follow:

b+B >
KT

2
+Ktd (18)

Interestingly, the above condition is identical to the condition re-
ported in [6].

4 STABILITY ANALYSIS OF PEB BILATERAL TELEOPERA-
TION SYSTEMS

A sampled-data teleoperation system with PEB architecture is mod-
eled in Figure 3. The master and slave robots are modeled as 1-
DOF, mass-damper, LTI systems with the following dynamics:

f
′

h − fm = mmẍm +bmẋm

f
′

e − fs = msẍs +bsẋs (19)

In the above, f
′

h and f
′

e are the human operator and the environment
forces. Also, fm and fs are the control actions from the master and
the slave discrete-time controllers Cm(z) and Cs(z). The parameters
bm and bs are the dampings and mm and ms are the masses of the
master and slave robots, respectively. In the force-velocity domain,
the operator and the environment are modeled as LTI impedances
Zh(s) and Ze(s), respectively. In Figure 3, f̃h is the exogenous input
force from the operator and f̃e is the exogenous input force from
the environment. As shown in Figure 3, the positions of the master
and robots are discretized using sampler blocks. The superscript ∗

denotes sampled signals. ZOH blocks convert the sampled signals
back to the continuous-time domain. The PEB controller blocks in
Figure 3 apply forces based on the master/slave position difference
while considering the time delay incurred when each position sig-
nal travels to the other end of the teleoperation system. Thus, the
discrete-time controllers of the master and the slave implement the
following laws:

F∗
m(s) =Cm(z)|z=esT [X∗

m(s)− z−nX∗
s (s)]

F∗
s (s) =Cs(z)|z=esT [X∗

s (s)− z−nX∗
m(s)] (20)
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Figure 4: Block diagram of a teleoperation system, which includes discretized con-

troller models

The system in Figure 3 can be represented as the block diagram in
Figure 4a where delay n = td

T is an integer and

H(z) =

[

Cm(z) −z−nCm(z)

−z−nCs(z) Cs(z)

]

(21)

Simple manipulation in Figure 4a will result in Figure 4b. Note
that by moving the masses of the master and slave robots mm and
ms to the operator and environment impedances, the closed-loop
transfer matrix will not change. Then, the mapping for the system
in Figure 4b can be written as:

[

Fh(z)

Fe(z)

]

=

[

bm 0

0 bs

][

Vm(z)

Vs(z)

]

+H(z)Z

[

Vm(s)
s

Vs(s)
s

]∗

(22)

Note that Z { v
s } 6= Z { 1

s }V (z). To be able to derive the trans-
fer function from force to velocity we need to approximate Z { v

s }
based on one of the three approximation methods (forward differ-
ence, backward difference and Tustin transformation) discussed in
Section 3. In this paper it is assumed that Cm = Km + Bms and
Cs = Ks + Bss. In agreement with [9, 10], to have the z domain
equivalent of Cm and Cs, the backward difference is used to approx-
imate s:

Cm(z) = Km +
Bm(z−1)

T z
Cs(z) = Ks +

Bs(z−1)

T z
(23)

Passive Terminations, No Delay Here, similar to HVE sys-
tems, it can be easily shown that the forward difference approxi-
mation method derives the worst-case condition for stability. Thus,
for brevity the procedure resulting in choosing forward difference
method is not included in this paper. Assuming that td = 0, the force

to velocity mapping will be:

[

Fh(z)

Fe(z)

]

= (

[

bm 0

0 bs

]

+H(z)
T

z−1
)

[

Vm(z)

Vs(z)

]

(24)

Again based on Theorem 2.1 and Definition 1 three conditions are
to be satisfied. The first condition in Definition 1 requires all poles
of G−1(z) to lie inside or on the unit circle, which obviously is the
case here. As it can be clearly seen in (24), z = 1 is a simple pole
and in order to satisfy the second condition for positive realness the
residue matrix corresponding to this pole must be positive semidef-
inite. For this pole the residue matrix is

R0 =

[

KmT −KmT

−KsT KsT

]

(25)

which is clearly positive semidefinite since Km,Ks,T > 0 and
det(R0) is zero. The only remaining condition is the second con-

dition in Definition 1, which requires G(e jω ) + GT (e− jω ) to be
positive semidefinite. Substituting z = cos(ωT )+ j sin(ωT ), lead-

ing principle minors of G(e jω ) + GT (e− jω ) need to be positive
semidefinite. Therefore,

bm −
KmT

2
+Bm cos(ωT )> 0 (26)

det(G−1
1 (e jωT )+GT−

1 (e− jωT )) =

(2bm −KmT +2Bm cos(ωT ))(2bs −KsT +2Bs cos(ωT ))−

((
Km +Ks

2
)T − (Bm +Bs)cos(ωT ))2−

((
Km −Ks

2
)T cot(

ωT

2
)+(Bm −Bs)sin(ωT ))2 > 0 (27)

It can be easily shown that condition (27) is valid for Cm = Cs =

K +
B(z−1)

T z if

bmbs

bm +bs
>

KT

2
−Bcos(ωT ) (28)

Condition (28) is dependent on the frequency ω and since cos(ωT )
can vary between −1 and 1, the worst-case for conditions (26) and

(28), assuming Cm = Cs = K +
B(z−1)

T z and for b = min{bm,bs}, a
sufficient condition for absolute stability of a non-delayed sampled-
data PEB bilateral teleoperation system will be

b > KT +2B (29)

Passive Terminations, Delay For a delayed sampled-data
PEB bilateral teleoperation system, again the three approximation
methods are compared and the worst-case condition is chosen as
the absolute stability condition. For brevity, only the procedure
using the forward approximation method is shown here because
it returns the worst-case condition for the stability of the delayed
sampled-data PEB bilateral teleoperation system. The resulting in-
verse transfer matrix will be

G−1(z) = (30)
[

bm +(KmT
z−1 + Bm

z ) −z−n(KmT
z−1 + Bm

z )

−z−n(KsT
z−1 +

Bs

z ) bs +(KsT
z−1 +

Bs

z )

]

Same as before, based on Definition 1, three conditions are to be
satisfied. The first and third conditions are the case here since all
poles of each element of G−1(z) lie inside or on the unit circle and
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the pole at z = 1 is simple with the same residue matrix as (25),
which is clearly positive semidefinite. The third condition which
requires G−1{ jω}+G−T {− jω} to be positive semidefinite, is yet

to be checked. Substituting z = e jωT = cos(ωT )+ j sin(ωT ), the

second condition in Definition 1 for positive realness of G−1(z) will
lead to the following conditions:

bm +Bm cos(ωT )−
KmT

2
> 0 (31)

det(G(e jωT )+GT (e− jωT )) =

4(bm +Bm cos(ωT )−
KmT

2
)(bs +Bs cos(ωT )−

KsT

2
)−

4(
(Km +Ks)T

2
(cos(ωtd)+S)− (Bm +Bs)cos(ω(T + td)))

2−

4(
(Km −Ks)T

2
(sin(ωT )−S)− (Bm −Bs)sin(ω(T + td)))

2 > 0

(32)

where S =
sin(ωtd)sin(ωT )
(1−cos(ωT ))

. Assuming that td/T = n is an integer

and for equal controllers Cm =Cs = K +
B(z−1)

T z , the worst-case for
(32) occurs when S has its maximum value. Therefore, solving the

d
dω S= 0 will lead us to cos(ωT )= 1, which is confirmed to give the
maximum value of S by checking the sign of the second derivative
of S when cos(ωT ) = 1. Then, it can be easily shown that condition
(32) will simplify to

(bm +B−
K

2
)(bs +B−

K

2
)− (

KT

2
+Ktd −B)2 > 0 (33)

With b = min{bm,bs}, the absolute stability condition for a delayed
sampled-data teleoperation system under passive terminations will
be

b+2B > KT +Ktd (34)

5 SIMULATION STUDY

In this section, the conditions derived throughout the paper are
tested using MATLAB/Simulink. In order to test conditions (13)
and (18), the sampled-data HVE system in Figure 2a is simulated
in MATLAB/ Simulink. To determine the stability of the system,
the system outputs are monitored for boundedness at all times —
if any output goes unbounded, the system is unstable. The master
robot has been modeled with m = 0.15 and b = 0.1. The opera-

tor model was considered to be 1
s ; note that ℜ{ 1

s } = 0 makes it
a least-passive operator corresponding to a worst-case scenario for
the coupled system stability. During the simulations, the sampling
time is increased by steps of 1ms. For each sampling time, the con-
troller gain K is changed to find the largest gain value for which
the system remains stable. In Figure 5, each of these maximum
controller gain values at a given sampling period is represented by
a blue star. Evidently, these simulation data points are very close
to the solid blue line, which correspond to the theoretical border-
line given by (13). Therefore, the simulations confirm the theoret-
ical condition (13). For the delayed HVE system with m = 0.15,
b = 0.1 and B = 0, the delay td is set to 10T and again simulations
are conducted with the same procedure as before. As shown in
Figure 5, again the simulation data points represented by red stars
are close to the theoretical borderline (18). Again, these simulation
data points are very close to the solid red line (corresponding to
the theoretical borderline given by (18)), confirming the theoretical
condition. Also as shown in Figure 5, for the same passive operator,
delay causes the stability region to shrink. This was predictable if
one compares the theoretical conditions (13) and (18) for B = 0. In
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system

order to test conditions (29) and (34), which correspond to passive
terminations without and with delay, the sampled-data bilateral tele-
operation system in Figure 4a is simulated in MATLAB/Simulink.
Again, to determine the stability of the system, the system outputs
are monitored for boundedness at all times. For the non-delayed
bilateral teleoperation system with mm = ms = 0.015, b = 0.02 and
B = 0, simulations have been conducted. The operator and the en-

vironment models are considered to be 1
s . Following a similar pro-

cedure as for the non-delayed HVE system, the controller gain K is
changed to find the largest gain value for which the system remains
stable. As shown in Figure 6, the blue stars, represent each of these
maximum controller gain values at a given sampling period. Evi-
dently, these simulation data points are very close to the solid blue
line, which correspond to the theoretical borderline given by (29).
Simulations confirm the theoretical condition (29), since the simu-
lation data points are very close to the solid line, which correspond
to the theoretical borderline given by (29). Conducting similar sim-
ulations for the delayed bilateral teleoperation system with a de-
lay set to td = 4T as shown in Figure 6, again the simulation data
points represented by red stars are very close to the solid red line
which correspond to the theoretical borderline (34). Thus, simula-
tions confirm the theoretical condition. Same as before, comparing
the non-delayed (blue) and delayed (red) sampled-data systems, it
is evident that delay causes the stability region to shrink, Figure 6.
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6 CONCLUSION AND FUTURE WORK

This paper studied the stability of both haptic virtual environ-
ment systems and PEB bilateral teleoperation systems based on
the discrete-time circle criterion. The proposed stability analysis
method enables a unified framework in which sampling time and
communication time delay as two major destabilizing factors can
be addressed. Simulation results confirm the validity of the pro-
posed stability conditions.
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