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Abstract—This study presents a speech-based motion plan-
ning strategy (SBMP) developed for lower limb exoskeletons
to facilitate safe and compliant human-robot interaction. A
speech processing system, finite state machine (FSM), and central
pattern generator (CPG) are the building blocks of the proposed
strategy for online planning of the exoskeleton’s trajectory. A
novel set of CPG dynamics is proposed to synchronize time-
continuous transitions between exoskeleton locomotion states
(e.g., sit, stand, walk) in response to discrete user inputs, while
speech inputs are processed through an FSM. According to
experimental evaluations, this speech-processing system achieved
low levels of word and intent errors. Regarding locomotion, the
completion time for users with voice commands was 54% faster
than that using a mobile app interface. With the proposed SBMP,
users are able to maintain their postural stability with both hands
free. This supports its use as an effective motion planning method
for the assistance and rehabilitation of individuals with lower-
limb impairments.

I. INTRODUCTION

Assistive robotic systems can enhance the quality of life
of people affected by neurological impairments [1]. These
systems include lower limb exoskeletons, such as ReWalk [2],
Indego [3], HAL [4], and Exo-H3 (used in these experiments)
[5], which are designed to rehabilitate individuals with neuro-
logical impairments. In comparison with traditional physical
therapies, wearable exoskeletons allow users to interact more
easily with their environment, improving mobility and inde-
pendence in non-ambulatory individuals [1], [6], [7], [8]. To
facilitate safe and compliant human-robot interactions (HRIs),
the exoskeleton motion planning strategy should be intuitive
and efficient to use [9]. Social HRI, where humans use body
language, gestures, and speech to interact with robots, shows
promise in addressing issues with physical interactions through
quick and efficient identification of user intentions [10].

Although speech recognition (SR) is increasingly adopted
for HRI, this adoption is generally limited to humanoid robots
[10], [11]. Nonetheless, the integration of SR into other forms
of robotics may improve their ergonomics and practicality for
human use. For example, SR reduces the need for button-
based control interfaces, allowing for hands-free use of an
exoskeleton, benefitting users who require both hands to grasp
gait aids. However, these interactions are only effective if the
robot can perceive what a user is saying.

Computational SR is a task that requires turning auditory
information into text. Over the last 40 years, there have
been several technological advancements permitting accurate
speech transcription even under adverse conditions [12]. In
particular, a neural network architecture called the time delay
neural network factorization model has been shown to be
effective at acoustic modeling and speech perception [13],
[14]. Natural language understanding (NLU) addresses the
problem of interpreting user intentions through two primary
methods. The first method (true NLU) uses a combination of
keyword analysis, semantic processing, discourse processing,
and context analysis to determine the meaning and intent of
speech [15]. This second method (phrase mapping) is less
complex and requires fewer computational resources than true
NLU, making it suitable for real-time intent determination.

With high-level speech commands as an input, control
systems should translate wearer intents into low-level con-
trollers, such as position, force, or impedance controllers, to
synchronize gait planning in a smooth and time-continuous
manner. Finite state machines (FSMs) address this motion
planning problem by acting as a central planner for transitions
between exoskeleton states, such as standing and walking [16].

One bioinspired strategy for exoskeleton control is the cen-
tral pattern generator (CPG). The CPG consists of connected
nodes that can generate rhythmic patterns without receiving
rhythmic inputs, facilitating joint motion synchronization nec-
essary to replicate rhythmic motor behaviors such as bipedal979-8-3503-1579-0/24/$31.00 ©2024 IEEE
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locomotion [17], [18]. CPGs typically include parameters that
allow for modulation of locomotion, which provides additional
control and flexibility for the wearer [19], [20]. The ability of
CPGs to generate time-continuous rhythmic motions makes
them an appropriate candidate for shaping the trajectories of
lower limb exoskeletons, as shown in [21], [22], [23], [24],
[25].

In this study, a speech-based locomotion planning strategy
combined social HRI, FSM, and CPG for the intelligent
motion planning of a lower limb exoskeleton for bipedal
locomotion. As opposed to a button-based interface, voice
input was the primary mode of determining user intent. These
high-level commands were processed by an FSM to ensure
safe and natural state transitions before being executed in
low-level position controllers. The major contributions of the
proposed control scheme can be summarized as follows:

• Integration of SR and a lower limb exoskeleton to create
a system that allows a user’s hands to be free to use
mobility aids while still controlling the exoskeleton.

• A novel set of CPG dynamics was proposed to syn-
chronize time-continuous transitions between exoskeleton
locomotion states (e.g., sit, stand, walk) in response
to discrete user inputs. Speech inputs were processed
through an FSM alongside joint angles and velocities to
streamline state transitions (e.g., speed up, slow down).
Although voice-activated robotic systems have previously
been investigated [26], [27], previous CPG dynamics
have not incorporated speech-based inputs for lower limb
exoskeletons [17].

II. SPEECH PROCESSING SYSTEM

The proposed speech processing system was a customized
version of the pipeline (Fig. 1) developed by Reverb Robotics
[28], consisting of a denoising function to increase the signal-
to-noise ratio (SNR), a speech perception module to process
raw speech data, and a natural language understanding model
to determine speech intent. The system is compatible with a
Raspberry Pi. Once an intent was determined, the Pi sent the
command over a network to the central exoskeleton motion
planner as shown in Fig. 1.

A. Denoising Pipeline

The denoising function processed raw user inputs before
passing the denoised signal to the speech perception function.
Denoising was achieved by detecting voice activity, analyz-
ing its spectral signature to estimate noise, and subtracting
its spectral signature of the noise from the input audio to
produce the denoised audio (Fig. 2). We used RNNoise, a
deep recurrent neural network, to denoise the input SR audio
[29].

B. Speech Perception Network

The speech processing system used the Vosk speech per-
ception system [30]. The Vosk implementation combines the
time delay neural network factorization model and a multi-
stream convolutional neural network. We used a pre-trained set

TABLE I
CPG PARAMETERS, INITIAL CONDITIONS, AND CONSTANTS FOR THE

PROPOSED MOTION PLANNING SCHEME. l AND r REFER TO THE LEFT AND
RIGHT SIDE OF THE EXOSKELETON, RESPECTIVELY.

Parameters Initial conditions Constants

vij = 0.1 A0(k) = 1 cr = 2.5
ϕll = 0 rad Ω0(k) = π/2 rad cθ = 2 rad
ϕrr = 0 rad θl(0) = (2 + π) rad βω = 10π
ϕlr = π rad θr(0) = 2 rad βr = 10π

T = 2 s

of open-source weights called ‘vosk-model-small-en’ provided
by Alpha Cephei [31].

C. Natural Language Understanding

The SR system used Snips NLU [32] to create a list of
intents along with phrases that trigger those intents. The intent
parser used a probabilistic engine that focuses on keyword
analysis, enabling the NLU engine to associate perceived
speech with the proper intent. Once an intent was extracted,
the program determined whether the speech was directed at
the exoskeleton by checking if the command contained the
word ‘robot’. The specific key words or phrases to trigger
a state transition were ‘robot {keep moving, don’t change,
maintain speed, stand up, stand, sit down, sit, stop moving,
stop, walk forward, walk, move forward, move, forward, slow
down, slow, speed up, go faster, faster},’ where one of the key
words or phrases in the set are used (Fig. 3).

III. MOTION PLANNING AND CONTROL

A. Overview of the Exoskeleton Motion Planning System

The proposed exoskeleton locomotion motion planning
strategy combined a speech processing system, FSM, and CPG
to ensure safe time-continuous transitions between exoskeleton
states (Fig. 1).

B. Synchronization of Joint Trajectories

The proposed CPG dynamics for the phase θi(t) and
amplitude r(t) of the ith exoskeleton joint are governed by
the following equations based on the Kuramoto model for the
synchronization of coupled oscillators [33].

θ̇i(t) = ω(t) +

N∑
j=1

vij sin(θi(t)− θj(t)− ϕij)

ω̈(t) = λ(t)βω

(
βω

4
(Ωn(k)− ω(t))− ω̇(t)

)
r̈(t) = λ(t)βr

(
βr

4
(An(k)− r(t))− ṙ(t)

) (1)

where N is the number of joints, vij is the coupling strength,
ϕij is the phase offset, βω and βr are fixed constants, Ωn(k)
and An(k) are user-adjustable constants which modulate the
frequency and amplitude of the system, respectively, and λ(t)
is a user-triggered ramping system which multiplies the CPG
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Fig. 1. Proposed strategy for speech-based planning of lower limb exoskeletons.
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Fig. 2. Major functions for denoising voice activity.

signal by a linear time-dependent gain. In particular, Ωn(k)
and An(k) update in response to user inputs, k (Table I).

Ωn(k) =


Ωn−1 + cθ, k = speed up
Ωn−1 − cθ, k = slow down
Ωn−1, k = otherwise

An(k) =


An−1 + cr, k = speed up
An−1 − cr, k = slow down
An−1, k = otherwise

(2)

Here, Ωn and An are the updated speed constants, Ωn−1

and An−1 are the current speed constants, and cθ and cr
are constants that adjust the frequency and amplitude of the
dynamics in (1).

The ramping system is defined as follows:

λ(t) =


t/T, stand-to-walk
1− t/T, walk-to-stop
1, walking
0, otherwise

(3)

where the stand-to-walk and walk-to-stop conditions are trig-
gered by user commands and held for a period T (Table
I). Coupling between all joints is maintained by the same
principal frequency of ω(t) and amplitude r(t) to synchronize
locomotion trajectories.

The desired walking trajectory qwi
(t) for the joint i of the

exoskeleton is defined as

qwi(t) = r(t)

(
a0i +

Ni∑
k=1

(aki cos kθi(t) + bki sin kθi(t))

)
(4)

where aki
and bki

are the coefficients of Fourier series with Ni

terms (Table II). The amplitude and phase of these oscillatory

motions are updated in real-time by θi(t) and r(t). Trajectories
for the ankle, knee, and hip during walking were obtained from
Subject 6 in the experiments of [34].

The sit-to-stand and stand-to-sit trajectories for the ankle,
knee, and hip are obtained from the experiments of [35]. The
mean trajectory values of all subjects for each joint were used
to compute the desired sit-to-stand and stand-to-sit trajectory
qsi(t) for the joint i of the exoskeleton.

qsi(t) = a0i +

Ni∑
k=1

(aki
cos kωsit+ bki

sin kωsit) (5)

where ωsi is the angular frequency of the trajectory, and aki

and bki are the coefficients of the Fourier series with Ni terms
(Table II). Equation (5) was set to satisfy the time-dependent
boundary conditions q̇si(t0) = 0 and q̇si(T ) = 0, where t0 is
the initial time and T is the time after one sit-to-stand or stand-
to-sit period (Table I). The output of (5) was transformed into
the coordinate system of the exoskeleton via the linear function

qt,si(t) = −qsi(t) + max(qsi(t)) (6)

where qt,si(t) is the transformed angle. This function ensures
that the endpoint for the sit-to-stand trajectory for the ankle,
knee, and hip terminates at 0◦. The stand-to-sit trajectory is
implemented as the reverse of the sit-to-stand trajectory.

C. Safety Considerations

The finite state machine was designed to ensure safe tran-
sitions between exoskeleton states. The states and intents for
triggering transition can be seen in figure 3, and the initial state
of the exoskeleton is either sitting or standing, depending on
the initial position of the user. Position controller constraints
include limitations on the maximum torque and velocity and
maximum and minimum joint angles.

IV. EXPERIMENTAL EVALUATIONS

A. Speech Processing Experiments

Experimental assessments were performed to evaluate the
efficacy of the SR system with ethics permission from the
University of Lethbridge Human Subjects Review Board,
number 2013-037. In the experiment, participants spoke a
series of predefined commands consistent with normal use of
the exoskeleton in a quiet environment. After each command,
the output of the SR system and NLU engine was recorded.



TABLE II
COEFFICIENTS OF THE FOURIER SERIES FOR THE HIP AND KNEE FROM SITTING, STANDING, AND WALKING.∗

State Joint a0 a1 a2 a3 a4 a5 a6 b1 b2 b3 b4 b5 b6

Sitting/
Standing

Hip 105.40 −1.52 1.29 0.42 0.36 −0.04 −0.12 −3.86 2.92 0.24 −0.49 −0.28 0.01
Knee 140.20 −38.30 −1.75 0.55 1.32 0.14 n/a −29.22 8.39 4.14 0.15 −0.39 n/a
Ankle 49.59 22.01 −1.31 0.28 −0.07 0.15 n/a 35.11 −11.48 −4.05 −0.16 0.40 n/a

Walk
Hip 40.69 23.22 −4.49 0.40 0.70 1.08 −0.27 −8.65 3.34 1.39 0.80 0.34 0.07
Knee 25.70 −3.83 −8.54 1.91 1.09 2.05 −0.31 −19.28 17.93 3.77 1.50 0.58 −0.90
Ankle −0.99 5.29 −8.58 −0.48 1.69 −0.04 1.30 3.61 −5.95 5.92 −2.12 1.02 −0.72

∗R2
adj ≥ 0.99 for each trajectory.

Sit Stand

Locomotion
Initiation

Locomotion
Completion

Walk

stand

sit

walk

stop

speed up

slow down

Fig. 3. Proposed FSM to plan the transitions between exoskeleton states.

Then, the participant put on a face mask and repeated the
experiment. SR performance was measured with two metrics,
word error rate (WER) and intent error rate (IER). WER is
determined by the ratio of insertions (I), substitutions (S), and
deletions (D) required to transform a response into the target
to the number of words in the target N :

WER =
I + S +D

N
× 100% (7)

IER is a measure of whether the correct intent was derived
from the user’s speech:

IER =
1

N

( ∑
all trials

{
0, correct output
1, incorrect output

)
× 100% (8)

After WER and IER were calculated for individual trials,
the results were aggregated to get a cumulative average for
both metrics.

Experiments were performed by 4 male and 3 female
participants. Participants were taken from a population of
undergraduate and graduate students at the University of
Lethbridge aged between 19 and 31. WER and IER scores
from each participant were aggregated and computed (Fig. 4).

B. Locomotion Tasks With and Without Speech Commands

The proposed motion planning strategy was assessed ex-
perimentally to provide proof-of-concept evidence for the
effectiveness of speech-based locomotion planning with the
Exo-H3 lower limb exoskeleton from Technaid. The proposed
motion planning scheme was implemented in real-time us-
ing MATLAB Simulink, which received sensory data and
controlled motors at a sampling rate of 100Hz via a CAN

Fig. 4. Results for the human SR trials for WER (top) and IER (bottom).
F=Female, M=Male, C=Combined. There were no significant differences
between or within groups.

Fig. 5. Exo-H3 lower limb exoskeleton worn by two able-bodied users for
walking. The participants use a wireless headset to command the exoskeleton.
(a) User 1 (21-year-old) and (b) User 2 (33-year-old).



Fig. 6. Actual and desired trajectories for the left hip (top), knee (middle),
and ankle (bottom) for A to B locomotion task for user 1.

interface (Vector VN1610) with 2 channels. The SR system
was run on a Raspberry Pi 3, which received speech input
from the microphone on a Logitech Wireless Headset H600 at
a sampling rate of 16 000Hz, and the processed signals were
transmitted to the laptop via the user datagram protocol. The
major computations in this strategy involve time integration
of the CPG dynamics in equation (1) and calculating each
joint angle for the exoskeleton with Fourier series in equations
(4), (5), and (6). Preliminary tests were performed in a trial-
and-error manner to obtain reasonable parameters for speed
modulation (cθ and cr in equation 2) and initial values and
parameters of the proposed CPG system (Table I). These final
CPG parameters were used in the described experiments. Here,
two able-bodied users wore the exoskeleton using a walker
for postural stability (Fig. 5). Various angles for a forward-
learning posture were experimentally trialed (0◦ to 30◦), and
15◦ resulted in a subjective optimal angle.

The first experiment involved walking in a straight line for
approximately 12m. The participants were initially sitting,
stood and walked, then sat. Between the start and end points,
the user could choose to speed up or slow down ad-lib. A 21-
year-old participant, user 1, and a 33-year-old participant, user
2, completed 9 and 12 trials, respectively. The time to walk

Fig. 7. Desired trajectories for the left hip, knee, and ankle for A to B
locomotion task for user 2.

Fig. 8. Time taken by users 1 and 2 to complete a locomotion task using
voice control (n1 = 9, n2 = 12). Voice is the weighted mean time of users
1 and 2 to complete the task with voice control. Button is the mean time of
user 1 to complete the task with a button-based interface (n = 10).

in these trials for user 1 was 56± 2 s and that for user 2 was
66 ± 2 s (P = 0.0023 for a two-tailed t-test assuming equal
variances, Fig. 8). The significant difference in time between
users 1 and 2 to complete this experiment can be attributed to
user preferences in walking speeds. The trajectory for walking
from point A to point B for one representative trial of user 1
is plotted in Fig. 6 and that for user 2 is plotted in Fig. 7.

The same experiment was performed using a button-based
smartphone app from Technaid with user 1 as the participant
for 10 trials, and the time taken to walk from A to B was
113 ± 5 s. In comparison with the voice command time of
62± 2 s, a two-tailed t-test assuming equal variances yielded
P = 4.0 × 10−13 (Fig. 8). This significant difference can be
attributed to the additional time the user needed to stop the
exoskeleton, remove their hands from their walker, search for
the appropriate command on the exoskeleton remote control,
and press that button.

V. CONCLUSIONS

In this study, we developed a speech-based locomotion
planning strategy to provide safe and convenient motion plan-
ning of a lower limb exoskeleton. This method combined a
speech processing system, FSM, and novel CPG to plan the
exoskeleton movements based on user intents.

The proposed speech processing system showed WER and
IER values of 10.29% and 12.24%, respectively, tested with
participants aged 19-31 under various conditions. Despite



being slightly higher than desktop models cited in [36], its
performance suggests potential for speech-based HRI applica-
tions, especially on limited hardware.

In user studies, the exoskeleton’s voice control outperformed
button control in locomotion tasks, being 54% faster. Voice
commands also freed users’ hands, improving postural stabil-
ity. Thus, speech-based planning increased convenience and
safety, making it a potential choice for the control of lower
limb exoskeletons.
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