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ABSTRACT 
 
The development of children’s cognitive and perceptual skills 
depends heavily on object exploration and manipulative 
experiences. New types of robotic assistive technologies that enable 
children with disabilities to interact with their environment, which 
prove to be beneficial for their cognitive and perceptual skills 
development, have emerged in recent years. In this study, a human-
robot interface that uses Event-Related Desynchronization (ERD) 
brain response during movement was developed. A haptic robot 
generates force feedback to constrain the user’s hand motion into a 
defined region using a Forbidden Region Virtual Fixture (FRVF). 
Two channels of electroencephalography (EEG) brain signals were 
acquired and used to design classifiers to discriminate the pattern of 
brain signals between “movement” and “rest” during the operation 
of the robot. The highest ERD classification accuracy achieved was 
69.4%.  With the classifier, ERD-based FRVFs were tested in a 
simple robot operation task with two non-disabled adults. The 
virtual wall triggered by ERD successfully blocked the motion of 
the two participants on average 7 and 6.4 out of 10 times, 
respectively. Although further improvement of the system is still 
needed, the experimental results demonstrate the potential of the 
ERD-based FRVFs in robot control for a clinical population. 
 

Index Terms— Brain–computer interface (BCI), 
electroencephalography (EEG), event-related synchronization 
(ERD), haptics, robot, virtual fixtures. 
 

1. INTRODUCTION 
 

The experience of object manipulation in a physical environment 
has a large influence on development of cognitive skills in children 
[1, 2]. Manipulation has been identified as a critical motor 
experience that enables children to acquire skills such as the 
emergence of symbols, referential communication, and the 
understanding of relations between objects [3]. 

For children who have severe physical disabilities such as stroke 
or cerebral palsy, one of the biggest concerns is lacking 
opportunities for meaningful manipulation tasks, often in the context 
of play activities [4]. This lack of opportunities may negatively 
affect the progressive development of their learning skills and 
mental growth [5]. Unlike an adult who has lost acquired functions, 
many children with neurological impairments are born with 
functional deficits.  In this case, the children may not have many 

opportunities to find out about the world through manipulative 
experiences.  

Play is an enjoyable and natural way in which all children interact 
with their social and physical environment in order to explore and 
discover different objects and experiences [6]. Robots can be 
utilized to facilitate the play activities of children with impairments. 
Simple button switches are common human-robot interfaces used as 
a means of robot control by children with physical impairments. 
Switch interfaces require the cognitive ability to understand how the 
switches relate to the robot operation, and children’s understanding 
of robot control is correlated with the child’s cognitive age. In 
comparison, joysticks provide users with a more intuitive robot 
operation; however, children who have physical impairments may 
not be physically able to manipulate the interface in the desired 
direction.  

Kinesthetic or other types of guidance through the user interface 
can help to accomplish control of the robot in spite of the disability. 
In a study by Atashzar et al. [7],  a haptics-capable human-robot 
interface was used to teleoperate another robot performing a task. 
The haptic capabilities of the system allowed forces occurring at the 
task-side robot to be felt through the user-side haptics-capable robot. 
A system such as this can also limit the user’s hand motion into a 
defined region using the so-called Forbidden Region Virtual 
Fixtures (FRVFs), so that the interface can help the users traverse 
the non-forbidden regions of the environment more efficiently. In 
our previous research [8], a computer vision system was used for 
defining appropriate locations of the FRVFs, so the users could rely 
on the FRVFs and move their hand along the outside of the fixtures 
to reach the target destination. With ten non-disabled participants 
and one participant with physical impairments, the system 
successfully restricted the users’ hand movement to a defined region 
during robot operation. This robot function could be beneficial for 
people with physical impairments, especially people who do not 
have the skills to correctly operate a robot. However, by using only 
computer vision-based FRVFs, the system does not know where the 
user intended to move the robot. 

Electroencephalography (EEG) is a measure of the brain's 
activity as detected by electrodes placed on the surface of the scalp 
[9]. Today, several consumer Brain-Computer Interface (BCI) 
instruments are available on the market. They are compact and low-
cost compared with conventional BCIs. EEG signals are generally 
categorized based on the type of response. A type of brain response 
called Event-Related Desynchronization (ERD) appears during 
movement or preparation for movement of parts of the body. 
Therefore, observing ERD makes it possible to detect the user’s 
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intended motion. Although children with physical disabilities have 
limitations of movement, it is still possible to generate ERD with 
only motor imagery. Many studies have successfully demonstrated 
a significant benefit of the ERD-based BCIs with both non-disabled 
adult participants and adult participants with physical impairments 
[10-13]. For example, Huang, et al. [13] tested BCIs for 2-
dimensional cursor control based on ERD during motor execution 
and motor imagery with 5 non-disabled participants. Classification 
methods using Linear Discriminant Analysis (LDA), Decision Tree, 
and Support Vector Machine (SVM) provided as high as 88% 
accuracy rate for the physical movements and 73% accuracy rate for 
the motor imagery.  López-Larraz, et al. [12] tested four subjects 
with a hemispheric stroke and attempted to classify their EEG 
patterns while they moved the affected limb. The study successfully 
demonstrated high classification accuracies (i.e., in the range of 80% 
– 92%).  However, to the best of our knowledge, very few studies 
have actually tested ERD-based BCI in robot control for children 
with disabilities [14]. ERD for children with neurological 
impairments might be a feasible access pathway to control robots 
and to help children with motor impairments to explore their 
environment using assistive robots. As a first step, we trialed the 
system with adults.  

In this study, movement-related brain activity manifested as ERD 
response was evaluated for use in the haptic feedback system. The 
goal of this study was to develop and test a human-robot interface 
that uses an ERD-based BCI to generate the FRVFs that facilitate 
the interface operation based on the user’s movement intention.  
 

2. METHODOLOGY 
 

A. Participants and Materials  
The intended target population will be children who have 

physical impairments; however, this preliminary study was done 
with two right-handed adults without disability, a 42 year old male 
and a 37 year old male. This was because the system was in the 
preliminary testing stage and still required careful validation of 
accessibility and safety before being used by our target population. 
The robotic system includes a Windows PC, an OpenBCI brain-
computer interface (OpenBCI, Inc., Brooklyn, NY, USA), and a 
Novint Falcon haptic device (Novint Technologies, Inc., 
Albuquerque, NM, USA). The OpenBCI measured the user’s brain 
signals over the motor cortex area and was used to discriminate 
movement intention during the robot operation. The Novint Falcon 
haptic robot device was used as the haptic user interface. The 
participants were asked to hold and operate the end-effector of the 
haptic robot device. A schematic diagram is shown in Figure 1. 

LabVIEW (National Instruments, Corp, Austin, TX, USA) was 
used for the EEG data acquisition/analysis and robot control. In 
addition, the Statistics and Machine Learning Toolbox for 
MATLAB (MathWorks, Inc., Nadick, MA, USA) was used for 
design and validation of EEG classifiers based on the ERD response. 
All the features were implemented and run in LabVIEW for user 
experiments.   

 
B. Experiments  

The experiment was designed to discriminate between “rest” and 
“movement” states of the user’s hand during robot operation and 
apply the FRVFs to the robot according to the user’s detected motion 
intention. The experiment was divided into two sessions. During the 
first session, participants familiarized themselves with the 
experimental setup, and the system was calibrated for the individual. 

The participants were seated and asked to hold the end-effector of 
the haptic interface with their dominant hand. According to a visual 
cue displayed on the computer screen, the participants were asked to 
either rest or move the end-effector. The first session consisted of 
30 trials. In each trial, a blank screen was displayed on the screen 
for the first 4 seconds. For the next 4 seconds, the visual cue 
indicating ‘Movement’ or ‘Rest’ was randomly displayed. At the 
same time, the participants were asked to move their respective limb 
according to the visual cue until the display was blank again.  EEG 
brain signals were recorded during the trials and used to design a 
binary classifier between rest and movement for detecting the ERD 
response. 

In the second session, feasibility of FRVFs based on the user’s 
intention was investigated. The participants were seated and asked 
to hold the end-effector of the haptic device with their dominant 
hand as in the first session. First, the participants were asked to move 
the end-effector between the left and right endpoints of the robot 
workspace repeatedly 10 times with FRVF off in order to record the 
hand trajectories without FRVF. Next, with FRVF on, the 
participants performed 5 trials. In the trials with FRVF on, the 
participants waited during a blank screen for 4 seconds, and when a 
"Movement" visual cue occurred, the participants tried to move the 
end-effector from the left to the right endpoints of the robot 
workspace 10 times. If the user’s ERD was correctly detected, the 
ERD-based FRVF was activated to block the user’s hand from 
moving to the right half of the robot workspace as shown in Figure 
2. 

 

 
Figure 1.  Schematic diagram of the proposed system 

 
 

 
Figure 2.  Illustration of the forbidden region virtual fixture 
(FRVF). 
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C. Haptic Device Control 
The FRVF was added to the system as software-generated forces. 

The constrained region of motion was defined by a closed cylinder 
along the horizontal direction placed only on the left half of the robot 
workspace (Figure 2). There was no force applied to the haptic end-
effector inside the cylindrical area, but there were forces applied if 
the user tried to move outside of the region.  The FRVF was 
implemented as a nonlinear spring force attached between the 
current position of the robot’s end-effector (𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ) and a 
reference point (𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) at each instant. If the distance between 
𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  and 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒was greater than the cylinder radius, the 
FRVF was applied to the robot based on the following formula:  

 

𝐹𝐹𝑉𝑉𝑉𝑉 = �𝑘𝑘 ∗ |𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|3, 𝑑𝑑𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 > 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟𝑑𝑑
0                      , 𝑜𝑜𝑑𝑑ℎ𝑑𝑑𝑟𝑟𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑

      (3) 

 
where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 −  𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  and k is the spring 
constant. The spring constant determines the amount of force 
applied; the larger the k value, the stiffer the boundaries of the 
cylinder. The k value in this study was set to 200 N/m. 
 
D. EEG Data Collection and Analysis 

The OpenBCI recorded two EEG channels over the motor cortex 
area in the left hemisphere, C3 and F3 locations of 10-20 system, at 
a sampling frequency of 250 Hz. The C3 and F3 locations were 
chosen because the ERD response is generally localized at the 
contralateral hand representation area, and the participants in this 
study were all right handed. The location of the electrodes used in 
this study is shown in Figure 3. 

 
Figure 3. Locations of the electrodes used in the experiments (C3 
and F3) 

 
After a 3 - 40Hz FIR band pass filter removed noises, power 

spectral density using a hamming window was computed every 250 
samples of EEG signals.  The absolute power of alpha band (8-13 
Hz) and beta band (14-26 Hz) of the EEG were extracted as the 
features in order to verify if the ERD response was present. 

Two classification methods, Linear Discriminant Analysis 
(LDA) and Quadratic Discriminant Analysis (QDA) were used to 
discriminate the pattern of the EEG signals between “movement” 
and “rest”. The accuracies of the classification for both methods 
were evaluated with 5-fold cross validation using MATLAB, and 
the classifier with the higher accuracy was chosen to be the classifier 
used in the second session for online classification.  

 
 
 

3. RESULTS 
 

The power spectral densities of the EEG data for the participants 
are shown in Figure 4.  A significant decrease in alpha frequency 
band at C3 and F3 locations and small decrease in beta band at C3 
location were observed. By using the 5-fold cross validations, LDA 
and QDA were examined for the classification accuracies of the 
ERD with different combinations of the features, which are the 
absolute power values of alpha and beta band at C3 and F3 locations, 
as shown in Figure 5.  The LDA classifier demonstrated a higher 
classification accuracy than the QDA classifier overall, and the LDA 
with the combination of alpha band at C3 and beta band at C3 
achieved the highest accuracy for both participants (69.2% for 
participant A and 62.6% for participant B). Therefore, the value of 
alpha band and beta band at C3 location were selected as the features 
for the LDA classifier used in the second session. 

 

 
 

Figure 4. Power spectrum density of the EEG during movement 
(black line) and rest (red line) for the participants. (a) and (b) show 
the results of participant A at C3 and F3 locations respectively. (c) 
and (d) represent the results of  participant B. 

 
 

 
 

Figure 5. Classification accuracy of LDA and QDA with 5-fold 
cross validation. 
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Table 1 shows the number of times the virtual wall blocked hand 
motion to the right side of the robot workspace for each participant 
in each trial. The average of all trials for participant A and 
participant B were 7 and 6.4 out of 10 times respectively. The 
trajectory followed by participant A's hand without the ERD-based 
FRVFs and then with the ERD-based FRVFs in one trial is shown 
in Figure 6.  Figure 6 (b) shows that the virtual wall blocked motion 
of the participant to the right side seven out of ten times. The 
trajectory in the X direction with respect to time in Figure 6 (b) also 
clearly shows that the virtual wall constrained the participant's 
motion and did not allow him to reach the right side of the robot 
workspace those seven times. 

 
 
TABLE 1. THE RESULTS OF THE TRIALS IN THE SECOND 

SESSION. 
   

Participant A Participant B 

Trials Total 
movements 

Blocked 
movements 

Blocked 
movements 

1 10 6 7 
2 10 6 7 
3 10 7 5 
4 10 7 7 
5 10 9 6 

Average 10 7 6.4 

 
 

 
Figure 6. Hand trajectories during a trial in the second session. In 
(a), the results show how the user’s hand moved during the trial in 
XY directions (Top) and in the X direction with respect to time 
(Bottom) without FRVF. In (b), the rectangle with a dashed border 
is the force field of FRVF. The hand trajectories during a trial with 
FRVF on are shown in (b). 
 

4. DISCUSSION 
 

The highest ERD classification accuracy obtained by the cross 
validations in this study was 69.4%. The results of this study 
demonstrated slightly lower classification accuracy than that of 
previous BCI studies [10-13]. Because of some inaccuracy in the 
ERD classification, the ERD-based FRVFs were not always 
successfully generated. Several possible reasons were considered to 
be a cause of the classification inaccuracy.  First, artifacts caused by 

muscle activity could impact ERD classification, since EEG data 
collected in this study was not only EEG signals during motor 
imagery but also during physical movements. We used the FIR 
bandpass filter to remove noise from the environment before 
performing the classification process, but other than the FIR filter, 
applying a spatial filter such as Laplacian spatial filtering or 
Independent Component Analysis (ICA) with larger EEG channels 
may improve signal to noise ratio (SNR) of the EEG signals and may 
result in a better classification accuracy.  

Secondly, inadequate feature selection used for the classifier 
design was considered to be another contributor to inaccurate 
classification. Even though power spectrum density is one of the 
common feature extraction approaches in the field of BCI, there are 
many other successful approaches, such as Discrete Wavelet 
Transformation (DWT). In this study, the frequency ranges used for 
the absolute power calculation were set to be a typical frequency 
range of alpha band, from 8 Hz to 13 Hz and beta band, from 14 to 
26 Hz. However, the power spectrum of the EEG data in this study 
shown in the Figure 4 demonstrated that the amplitude of the signals 
between 9 Hz and 11 Hz constantly decreased during the user’s 
movements. For this reason, the frequency range used for this study 
appeared to be too broad for the absolute power calculation. 
Narrowing the frequency range for the calculation will be expected 
to yield better classification accuracy. 

For BCI applications, achieving high classification accuracy is 
always challenging [15]. Much BCI research has demonstrated 
results with higher ERD classification accuracy by conducting 
training prior to participation in trials. It is important to note that, in 
this study, no long-term training session was held prior to the start 
of trials due to the limited time schedule of the participants. 
Providing multiple sessions for BCI training prior to the trials would 
likely improve the BCI task performance in future trials.  In addition, 
trials with more participants, including people with disabilities will 
be performed. 
 

5. CONCLUSION 
 

To the best of our knowledge, this is the first study to generate 
virtual fixtures based on a person’s motion intention measured by 
ERD response. Even though the classification accuracy was only 
69.4% and would need to be improved for practical use, the ERD 
response generated the FRVFs in real-time. This is an important step 
toward showing that ERD-based FRVFs can potentially be used for 
clinical populations in the future.  

Decoding EEG allows us to understand the user’s intention and 
translate the commands to devices without any physical movement 
required. Including different types of brain response (e.g., Event-
Related Potential (ERP), and Steady-State Visual Evoked Potentials 
(SSVEP)), brain computer interfaces have potential benefits for 
people with severe physical impairments to express their intention.  
Combining other types of biological signals such as 
Electromyography (EMG) and Electrooculography (EOG) could 
also be possible approaches for robot control. EMG and EOG 
signals are generally of larger amplitude than the EEG and can be 
reliably observed in children with disabilities [16].  
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