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Abstract— Recent increases in demand for post-stroke motor
rehabilitation services together with limited time of therapist
and accessibility issues, in particular for patients living in
remote areas, have created a significant burden on healthcare
systems worldwide. Semi-autonomous techniques that allow for
sharing the time of a therapist between multiple patients have
attracted great interest. Among them Learning from Demon-
stration (LfD) based robots have been studied as solutions to
address this growing demand. In this work, a Gaussian Mixture
Model (GMM) and Gaussian Mixture Regression (GMR) based
LfD approach are proposed to generate a versatile framework
to deliver rehabilitation in the absence of the therapist. To
collect data for training the models, a bilateral telerehabilitation
system is used to enable patient-therapist collaborative task
performance is one Degree of Freedom (DOF). The performance
and generalizability of the trained model are demonstrated for
a variety of patient actions.

I. INTRODUCTION

Stroke is the fifth leading cause of death globally, causing
approximately 6.5 million deaths each year [1]. In Canada,
there are more than 62,000 stroke cases each year, and
405,000 Canadians are living with long-term stroke disability
[2]. Stroke and cardiovascular disease have a major eco-
nomic impact on Canada of more than $20.9B a year [3].
Motor rehabilitation is imperative for survivors in acute and
chronic phases after a stroke to help patients in regaining
the lost sensorimotor functionality. Research has found that
by actively engaging stroke patients in repetitive exercises,
it might be possible to stimulate a rewiring phenomenon
of the neural pathways in the brain, which can then result
in enhancement of motor functions and help patients in
relearning the lost movements. This procedure is referred
to as neuroplasticity in the literature [4]. Over the past two
decades, there has been a growing demand for rehabilitation
technologies, among which robotic systems have been widely
studied for assisting recovery following a disability [5], [6],
[7]. Pre-programmed robots are known for their restrictive
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Fig. 1. Illustrations for the TIL phase (a), where the patient interacts with
the therapist, and TOL phase (b), where the patient interacts with a slave
robot that emulates the therapist’s behavior.

performance in comparison to the flexibility and adaptability
of the performance of a skilled human therapist.

In order to directly combine the therapists skills and the
characteristics of a robotic system, telerobotic rehabilitation
systems have been developed, using which the therapist can
generate motion command through a robotic console, while
perceiving the reactions of the patient, and the patient would
receive the motion command of the therapist to cooperatively
conduct the task in physical or virtual reality environment
[8], [9], [10]. In this paper, our focus is on bilateral haptics-
enabled telerobotic system, and their use to train robots
in performing rehabilitation tasks. We define cooperative,
upper-limb tasks as tasks that require the use of two hands
to complete [11], such as holding a jar and unscrewing
its lid or lifting an object with two hands. We refer to
the situation where the therapist is kinesthetically interact-
ing with the patient remotely as Therapist-In-Loop (TIL).
While TIL bilateral telerehabilitation has many advantages
over unilateral telerehabilitation, a therapist may not always
be available to interact with the patient over the telere-
habilitation medium. A solution to this problem proposed
here is to first generate computational models to learn the
characteristics of the administered therapy by the therapist
during a live telerehabilitation session, and then imitate it,
for when the therapist is not in the loop. As a result, in the
absence of the therapist, the patient can continue to practice
the task in cooperation with the semi-autonomous patient-
side robot. We refer to this situation, when the therapist is
absent, as Therapist-Out-of-Loop (TOL). The paradigm to
transition from TIL to TOL will be based on learning from
demonstration (LfD) techniques. Fig. 1 depicts the TIL and
TOL phases.

In this paper, we are interested in creating cooperative
tasks with variable difficulty levels. The tasks will be coop-
eratively performed, with the therapist generating the motion
command, to deliver intervention, using a master robot, while

978-1-7281-2723-1/19/$31.00 ©2019 IEEE



the slave robot and the patient directly interact with the
physical tasks. The experimental platform is shown Fig. 2. In
this paper, LfD based on Gaussian Mixture Models (GMM)
and Gaussian Mixture Regression (GMR) will then be im-
plemented for the purpose of learning and computationally
modeling the way that the therapist interacts with the patient.
We hypothesize that the combination of these techniques can
provide a suitable middle ground between hand-over-hand
and fully semi-autonomous therapy.
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Fig. 2. (a) Experiment setup and demonstration; (b) HD2 High Definition
Haptic Device used as the master robot by the therapist; (c) a Motoman
SIA-5F industrial robot.

A. Prior Art

The concept of semi-autonomous systems and LfD has
attracted a great deal of research interest in the past decade.
Calinon et al. [12] propsed LfD models to train a robot
for cooperatively lifting a beam in a setup similar to what
we propose in this work. Gribovskaya et al. [13] extended
the work to ensure global asymptotic stability (GAS) of the
system. Peternel et al. [14] created a variant to learn motion
and compliance during a highly dynamic cooperative sawing
task. In addition, few groups have applied LfD techniques
towards the practice of physical therapy in rehabilitation
medicine. Maaref et al. [15] described the use of LfD as
the underlying mechanism for an assist-as-needed paradigm.
Lydakis et al. [16] learned and classified demonstrations of
therapy tasks through EMG measurements. Lauretti et al.
[17] optimized a system built on dynamic motor primitives
for learning therapist-demonstrated paths for activities of
daily living. Najafi et al. [18] learned the trajectory and
interaction impedance provided by a therapist and provided
user experiment evaluations. Based on our previous research,
in this present work, we have developed a new approach for
LfD with direct application in autonomous robotic rehabili-
tation.

II. LEARNING FROM DEMONSTRATION

LfD is a paradigm focused on allowing a human user to
program a robot through demonstration of desired behaviors.
In other words, a trainer (which can be a human or even
another machine) physically demonstrates the behaviors to
be imitated by the robot, thereby programming the robot
without needing to change computer code (which is called
the demonstration phase) [19], [20], [21]. In general, the
behaviors are actions or movements to be later imitated by
the robot (which is called the imitation phase).

In this paper, GMM and GMR are used as the underlying
learning and imitation algorithms for the LfD paradigm.

The GMM algorithm takes multiple demonstrations and
extracts the necessary parameters to describe the data with
Gaussian functions. This process avoids redundancy of data
in memory. The GMR algorithm uses the stored data and,
based on the regression input, retrieves the general form of
the output.

A. Gaussian Mixture Models

GMM is a probability density function widely used for
generatively modeling data [22], [23]. The model param-
eterizes a set of datapoints and its underlying function as
weighted sums of Gaussian component densities, with each
Gaussian having its own mean and covariance. Because of
the simplistic, adaptable nature of Gaussian functions and
the advantages that come with generative modeling, GMM
is widely used for LfD. GMM is a weighted sum of K
component Gaussian densities given by the equation,

p(ξj) =

K∑
k=1

p(k)p(ξj |k) (1)

where p(k) are the prior probabilities, p(ξj |k) is the con-
ditional density function, and ξj is the D-dimensional
continuous-valued data vector.

The Expectation-Maximization (EM) algorithm is used to
train the GMM parameters. It is widely used to iterate the
parameters until convergence of an optimization factor. EM
has a simple local search technique that guarantees increase
of the likelihood.

B. Gaussian Mixture Regression

The GMR model uses the Gaussian conditioning theorem
and linear combination properties of Gaussian distributions
to retrieve the desired output values from a GMM [23].
GMR traditionally uses temporal values (ξt) as query points
to estimate the corresponding spatial values (ξ̂s) through
regression. Given a set of temporal and spatial values for a
kth component of a GMM, the representations of the mean
and covariance matrices are given as

µk = {µt,k, µs,k},Σk =
(

Σt,kΣts,kΣst,kΣs,k

)
(2)

Conditional expectation (ξ̂s) and conditional covariance (Σ̂s)
of the output ξs given ξt are then calculated for a mixture
of all GMM k components.

Note that while the query points are described as temporal
points, these inputs to the GMM and GMR can be any type of
data. As is the case in our work, the learned system behaviors
can be time-independent. Spatial coordinates, as an example,
can be used as the query points.

III. EXPERIMENTS, MATERIALS, AND METHODS

A. Materials

The teleoperation system has two robots: a master robot
(Quanser High Definition Haptic Device, or HD2) used di-
rectly by the therapist, and a slave robot (Yaskawa-Motoman
SIA5F) handled by the patient. Even though both robots
have upwards of seven DOF, the movements of the users and
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Fig. 3. Design of the cooperative task. The slave robot holds one side of
the bar, while the patient holds the bar from its other side.
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Fig. 4. The two phases of LfD are shown separately through (a)-(b) and
(c)-(d), respectively. In (a) and (b), the therapist is present (making this the
TIL phase). Then in (c) and (d), the patient is practicing in the absence of
the therapist (the TOL phase).

robots are constrained to only one DOF due to the nature of
the cooperative task. A potentiometer is used to measure the
angle θ that a bar attached to the Motoman makes with the
horizontal axis. A mass is placed on the bar, and allowed
to slide along the length of the bar. Two identical springs
attached to opposite sides of the bar pull the sliding mass
towards their respective sides. Fig. 3 shows the design of the
bar.

B. Methods

1) Task: We choose a task that requires the therapist and
the patient to collaborate to lift a bar. The spring-mass system
on attached to the bar will allow the mass to slide towards
one end of the bar in a manner directly proportional to θ,
similar to if a box was being lifted by the participants with
objects inside of it that slide back and forth freely. The
therapist can thereby adjust the amount of force the patient
must exert to lift the bar by either lowering or raising his/her
own end, effectively resulting in an assistive/resistive therapy
provided in the context of a functional task.

2) GMM and GMR design: The demonstration phase uses
GMM to create K Gaussian distributions of dimensionality
D. In this paper, K has a value of 12 (decided experimentally)
and D has a value of 3. D has as many dimensions as inputs
to the GMM. These inputs are:

• Therapist position in vertical axis (XTh)
• Patient position in vertical axis (XPa)
• Patient velocity in vertical axis (ẊPa)

The imitation phase uses GMR to retrieve the trajectory
of the movements. The GMR algorithm takes XPa and ẊPa

as inputs, and based on the GMM distributions, retrieves an
appropriate value for XTh as an output. Fig. 4 shows the
process of learning and reproducing the therapist’s behavior
with the given GMM inputs.
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Fig. 5. The top shows a block diagram for the demonstration phase while
the bottom shows a block diagram for the reproduction phase.

3) Experiments: The system is trained with different
scenarios. The idea is to create an adaptive system capable
of assisting the patient, resisting the patient, or keeping a
neutral behavior with the patient, based on the patient’s
performance. To do so, the GMM is trained with three
different demonstrations of these scenarios. Later, during the
demonstration phase, the GMR takes the patient’s behavior
as input to reproduce the therapist behavior.

The system measures the patient’s position and velocity to
learn the patient’s behavior. Based on the patient’s velocity,
the therapist can make a decision on how much assistance
or resistance to apply. We selected four different general
scenarios for the system to learn, described as follows. A
positive and fast velocity means that the patient is able to
easily perform the task and a resistance can be applied to
challenge the patient during the therapy. A positive and
medium velocity means that the patient can perform the
task and the therapist only has to keep/maintain a neutral
behavior. A positive and slow patient’s velocity means that
the patient has some problems/difficulties in performing the
task so assistance is provided by the therapist. Finally, a
negative patient’s velocity means the patient is experiencing
significant difficulty and is unable to perform the task.
These scenarios will also be referred to as ”fast”, ”medium”,
”slow”, and ”back”, respectively. Two block diagrams of the
system are shown in Fig. 5.

IV. RESULTS AND DISCUSSION

Two able-bodied participants played the roles of the ther-
apist and the patient. During the experiments, the therapist’s
position, patient’s velocity and the patient’s position data
were recorded and then used in the GMM algorithm to
train the robot. Three demonstrations of each scenario were
used to train the GMM. After the demonstration phase, the
system’s imitation performance was tested. The GMR model
takes the patient position and patient velocity as inputs and
returns the estimated therapist position as an output. This
estimated therapist position was used to move the slave
robot in the imitation phase. Therapist positions and patient
positions are mainly used in analysis of the results. We
present our results in two parts: first a qualitative examination
of the system’s imitation results , and second an evaluation
of the training data’s efficacy.



(a) (b)

(c) (d)

(e) (f)

Fig. 6. The plots shows the GMR output (blue and dashed line), the
patient’s position (red and solid line) and the patient’s velocity (black and
dotted line). (a) shows the slow scenario, (b) the medium scenario, (c) the
fast scenario, (d) the back scenario, (e) the simulated trajectory, and finally
the multi-behavioral trajectory in (f).

A. GMR output for different patient behaviors

GMR output results are shown in Fig. 6. We show results
for assisting, resisting or keeping a neutral behavior given
velocity-specific patient trajectories.

The obtained plots show how the system is able to respond
similarly to how a reference therapist would. Based on
the input data, the GMR output demonstrates a reasonable
accuracy through most of the different scenarios. For patient
trajectory data with higher velocities, GMR returns accurate
trajectories with low variance, as in Fig. 6 (c). For slower
velocities however, velocity measurements are heavily af-
fected by noise from hand tremor, muscle fatigue, etc.; the
”slow” and ”back” scenarios seen in Fig. 6 (a) and (d)
exhibit this problem. Results for these scenarios are less
accurate, often switching between behaviors. A simulated
data trajectory is also used to show the system’s response
through different scenarios given an ideal patient motion
trajectory with minimal velocity fluctuation. In this situation
the system produces very accurate results. Finally, a real
complex demonstration that combines multiple behaviors is
used to show the robustness of the system, including the
transitions between scenarios. The system responds quite
accurately throughout the task, but transitions are made
too quickly to be safely implemented in clinical settings.

Designing a different motion controller, for example based
on impedance control principles, is a possible solution.

B. Evaluation of Training Data Quality

Motivated by the previous results, we examine the efficacy
of the dataset used to train the system. In the first experiment,
a total of 12 demonstrations were recorded for training the
GMM, with N = 3 demonstrations for each of the four
behaviors. We now remove a single demonstration and use it
instead as the input for the GMR process; this is performed
for every demonstration dataset used for training. By operat-
ing under this assumption, we can find demonstrations that
are less useful if their trajectories are already included in the
system. We quantify this as the error between the reference
therapist trajectory, used to train the system, and the GMR
output.

Table 1 shows the average error between the GMR output
and the recorded therapist position for every removed demon-
stration. By extension, we can infer that the system is able to
better fit the Gaussian components to higher velocity data.
Results for overall average error of the slow and medium
cases in particular are very similar. This may indicate that the
GMM may not be able to distinguish between the velocities
of the two cases well, resulting in equal sensitivities when
demonstrations from either case is removed.

TABLE I
ERROR BETWEEN GMR OUTPUT AND RECORDED THERAPIST POSITION,

AVERAGED OVER THE DURATION OF THE DEMONSTRATION.

Removed
demonstration

Average error between GMR output and
recorded therapist position (mm)
Slow Medium Fast Back

1 34.576 18.088 17.661 40.135
2 24.320 35.364 15.404 55.013
3 30.739 36.326 8.549 53.515

Overall average 29.878 29.926 13.871 49.554

A resultant suggestion for works in the field of rehabili-
tation medicine looking to incorporate LfD principles would
be to provide more demonstrations when aiming to imitate
motions with large inherent variation, such as the slower
movements seen in this work.

V. CONCLUSION

In this paper, semi-autonomous imitations of therapist
movements were performed. The results showed that demon-
strations provided by the therapist in response to faster
patient movements were better learned by the algorithm.
Slower patient movements had larger variations in velocity
and produced less accurate imitations of the therapists be-
havior. Examining the sensitivity of the system to the num-
ber of demonstrations showed that the difference between
the GMR-produced interactions and those provided by a
therapist was relatively small (between 8.549 and 17.661
mm) at a higher patient velocity. However, the mentioned
difference was increased substantially (up to 55.515 mm)
for finer patient motions that involve lower velocities.
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